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We prove that every Banach space with a 1-unconditional basis has
the fixed point property for nonexpansive mappings. In fact the argu-
ment works if the unconditional constant is < (33 — 3)/2.

1. Introduction. Let K be a weakly compact convex subset of a
Banach space X. We say K has the fixed point property if every nonexpan-
sive map T: K = K (i.e. ||[Tx — Ty|| < ||x — y|| for x, y € K)) has a fixed
point. We say X has the fixed point property if every weakly compact
convex subset of X has the fixed point property.

It is known that L, fails the fixed point property [A]. On the other
hand, Kirk [Ki 1] proved that every Banach space with normal structure
(for the definition see [D]) has the fixed point property. Karlovitz (see
[Ka 1] and [Ka 2]) extended Kirk’s work. Let us explain what Karlovitz
did.

Suppose K is weakly compact convex and 7: K — K is nonexpansive.
K contains a weakly compact convex subset K, which is minimal for T.
This means T(K,) C K, and no strictly smaller weakly compact convex
subset of K, is invariant under 7. If K, contains only one point, then T
has a fixed point. Hence, we may assume that diam K, = sup{||x — y||:
x,y € K,} > 0. It is easy to see that K, contains a sequence (x,) with
lim,, |lx, — Tx,|| = 0. We call such a sequence an approximate fixed
point sequence for T. Indeed, fixed y € K,,, one can choose x, to be
the fixed point of the strict contraction, 7,: K, > K,, given by T, x =
(1 -n"")Tx+n"'. Note we only need that K, is closed, bounded and
convex for this argument. Karlovitz proved the following theorem.

THEOREM A. Let K be a minimal weakly compact convex set for a
nonexpansive map T, and let (x,) be an approximate fixed point sequence.
Then for all x € K

lim |x — x,|| = diam K.
n— oo

Maurey [M] used the ultraproduct techniques to prove that ¢, and
every reflexive subspace of L, have the fixed point property. Odell and the
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author [E-L-O-S] used Maurey’s technique to prove that 7, (the Tsireleson
space of Figiel and Johnson [F-J]) and T:* have the fixed point property.

In §II we give some examples of Banach spaces with an unconditional
basis and discuss the fixed point property on those spaces.

In §III we introduce the ultraproduct technique and rewrite the
Karlovitz Theorem in the ultraproduct language.

In §1V we prove that every Banach space with a 1-unconditional basis
has the fixed point property. Indeed, our argument shows that if X has an
unconditional basis with unconditional constant (for definition see §II)
A < 1.37, then X has the fixed point property. Also we prove the every
superreflexive space (by Enflo [En] this is a space isomorphic to a
uniformly convex space) with a suppression unconditional basis has the
fixed point property.

The author wishes to thank Professors B. Maurey and E. Odell for
useful discussions regarding this paper.

2. Examples of spaces with an unconditional basis. Let X be a
Banach space. A sequence { e, }5_; in X is called a Schauder basis of X if
for every x € X there is a unique sequence of scalars {a,}; -, so that
x = X¥_,a,e,. A Schauder basis { e, }_, is called an unconditional basis if
for every choice of signs ¢, (i.e. ¢, = +1), X7_, ¢,a,¢e, converges whenever
2¥_,a,e, converges. If {e,} is an unconditional basis, then the number

n
sup{ Y gae:
1

is called the unconditional constant of {e,}7_,. If {e,}>., is an uncondi-
tional basis and Fis a subset of N, then the projection

o0
P( 5 ) = Y age,
n=1

neF

n

Zaiei

1

=1l;¢ = il}

is called the natural projection associated with F to the unconditional basis
{e, ). It is clear that the norm of any natural projection is smaller than
the unconditional constant of the basis. We say an unconditional basis is
suppression unconditional if every natural projection associated to the basis
has norm 1.

n
ExXAMPLE 1. The natural basis e, = {0,0,0,...,1,0,...} is an uncon-
ditional basis in each of the spaces ¢, and /,, 1 < p < 0. Browder [Br]
proved that every uniformly convex space has the fixed point property.
Since /,, 1 < p < oo, are uniformly convex [C], they have the fixed point
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property. Lim [L.m] proved that every weak* compact convex subset of /;
has weak* normal structure. Hence, every nonexpansive mapping on
weak™ compact convex subsets of /; has a fixed point. Maurey proved ¢,
has the fixed point property.

EXAMPLE 2. Let X, be /, with the new norm
llxll = max{{{xll,,, M~x]]5 }.

Then the natural basis is an unconditional basis with unconditional
constant A = 1. It is known that X,, fail to have normal structure
whenever M > V2. But X,, still have the fixed point property ([Ka 1],
[B-S] and [E-L-O-S)).

ExaMPLE 3. The norm on the sequence space T, is given implicitly by

el = sup{ e, 3 X sl

where the “sup” is taken over all admissible set (E,)7_; and (Ex)(i)
equals x(i) for i € E and 0 otherwise. ( E, )} _, is admissible if the E,’s are
finite subsets N with # < min E; < max E;, < min E, < max E, < - -+
< min E,. T, is a reflexive Banach space with a 1-unconditional basis.
Hence, T, has the fixed point property ([E-L-O-S]).

EXAMPLE 4. (1, | - |) is /; with norm
x| = max(flx ™1, [~ )

where x* and x~ are the positive and negative parts of x. Then (7, |- |) is
isometrically isomorphic to the dual of (¢, || - ||) where the norm is given
by

lbell =" fleo + 1% e

The natural basis is a suppression unconditional basis of (/;, | - ), and the
unconditional constant of this basis is 2. Lim [Lm] showed that there is a
weak* compact subset K of /; and an isometry 7: K — K such that T has
no fixed points. But every weakly compact subset of /; is compact. Hence,
(43, ] - ) has the fixed point property.

EXAMPLE 5. An Orlicz function M is a continuous non-decreasing and
convex function defined for ¢ > 0 such that M(0) = 0 and lim,_, (M(¢) =
0. To any Orlicz function M we associate the space /,, of all sequences of
scalars x = (ay, a,,...) such that ¥¥_, M(la,l/p) < o for some p > 0.
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The space /,, equipped with the norm

x| = inf{p 50: Y M( 'a"l) < 1}

n=1 p
is a Banach space called an Orlicz sequence space. 1f
lirr(l) sup M(2t)/M(t) < o0,
) g

then /,, has a 1-unconditional basis. In this case, /,, has the fixed point
property.

EXAMPLE 6. Let (7, | - |,) be the T, with the norm
[xls = max{{lx*[ls, lx~ s}

Then (7, | -|,) has a suppression unconditional basis. It is still open
whether (T, | - |,) has the fixed point property or not. (Note: 7, is not
superreflexive.)

3. Ultraproducts. Let % be a fre~e ultrafilter on N, and let X be a
Banach space. The ultraproduct space X of X is the quotient space of

I.(X)= {(x,,) :x, € Xforalln € N and ||(x,)|| = sup |x,|| < oo}

by &= {(x,) € I ,(X): lim,_4||x,l| = 0}. (Note lim,,_, 4 ||x,|| is the limit
of ||x,}| over the ultrafilter %.) We shall not distinguish between (x,) and
the coset (x,) + A€ X. Clearly,

IGeallx = lim fix, .

It is also clear that X is isometric to a subspace of X by the mapping
x = (x, x,...). So we may assume that X is a subspace of X. We will
write 7, Z, w for the general elements of X and f, g for the elements of the
dual X*. If S,’s are uniformly bounded operators (projections) on X, then
S = (8,) which is given by S(x,) = (S,x,) is a bounded operator (projec-
tion) on X, and ||S|| < sup,||S,|. Suppose X has an unconditional basis
(e,). We say P is a natural projection with respect to (e,) if there exist
natural projections P, on X associated to (e, ) such that P= (P,). We say
%, 7 € X are disjoint if there exist two natural projections P, Q on X such
that Px = %, Oy =y and PQ = QP = 0. In other words, % and j are
disjoint if they have the representations (x,) and ( y,) such that x, and y,
are disjoint in X for all n.

Now let us translate Theorem A into ultraproduct language. Let K be
a weakly compact convex subset of X which is minimal for nonexpansive
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map T. Let K = {(x,): x, €K for all n} and define 7: K - K by
T(x,) = (Tx,). Clearly, K is closed bounded and convex and 7 is nonex-
pansive on K. Furthermore, T has fixed points in K. Indeed, if (x,)%,1s
an approximate fixed point sequence for 7 in K, then for y = (x,,)

17y = jll = lim || Tx, — x,[ = lm |Tx, - x,| =0
n—->% n—o0

and hence Ty = 7. On the other hand, 7y =  for = (x,) then some
subsequence of (x,)%_; is an approximate fixed point sequence for 7. In
ultraproduct language, Theorem A becomes

THEOREM A’. Let K be a minimal weakly compact convex set for a
nonexpansive map T. If 7 s a fixed point of T in K and x € K, then
|| — x|| = diam(K). Moreover, suppose diam K = 1 and 0 € K. Then for
any € > 0 there is 8 > 0 such that || || > 1 — & whenever || Ty — 7|| < 8.

4. The main result.

THEOREM 1. Every Banach space X with 1-unconditional basis (e, ) has
the fixed point property.

Proof. Suppose it were not true. Then there is a weakly compact
convex subset K which is minimal for a nonexpansive map 7. Moreover,
we may assume diam K = 1. By translation of K, then passing to subse-
quences, we may suppose that 0 € K and there exist an approximate fixed
point sequence (x,)y-, for T and natural projections P, on X (with
respect to (e,)) such that P, P,, # 0 if n # m and

lim |P,x,|= lim |x,)=1 and lim ||[( - P,)x,||= 0.
n—00 n—oo n—o0

Let & = (x,) and % = (z,) with z, = x,,,. Then 7 and 7 are fixed points
of T with ||j — Z||=1.Forany x € K, x, y and Z are disjoint. Indeed, let

P=(P) and Q = (Q,) with Q, = P, ,. Then Py = j and Q7 = ? and
for any x € K,

Px=0x=P:=0=0p.
Also since (e,,) is 1-unconditional, |7 — Z|| = 1 = || + Z||. Let

W = {#W: W € K such that there exists x € K

(depending on #) with max(lw — x|, % — 7|, [w — 2[) < 1/2}.

Clearly, W is a nonempty bounded closed convex set. (Note ||( y+2)/2
=0l =Wy +2)/20=Wy—-2)/21l=1/2. So (y +2)/2 € W.) Since
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7, £ are fixed points of T and T is a nonexpansive mapping, if w € W,
max([|Tw — Tx|, | T#w - 3|, | Tw — 2)
< max(|w ~ x|, |w — 5|, |# — Z]) < 1/2.

Thus W is invariant under 7} hence, it contains an approximate fixed
point sequence for 7. On the other hand, for any w € W there exists
x € K so that||Ww — x|| < 1/2. Hence if ] is the identity map in X,

b = H(P+ Q) +(I— P)w +(I- Q)|

< 2[I(B + @)l + (T~ BYi] + (1 - ©)#]

=2127272] "%
By Theorem A’, W cannot contain any approximate fixed point sequences
for T. We have a contradiction. O

We note that the proof of the above Theorem has some leeway. More
precisely we have the following more general result.

THEOREM 2. If X has an unconditional basis with unconditional constant
A < (V33 — 3)/2, then X has the fixed point property.

Proof Let 7, Z, P and Q be as in Theorem 1, and let

= {W: W & K such that there exists x € K with
% — x| < A/2 and max(|w — 3|, |w — 2[) < 1/2}.

Since |(7 + 2)/2|l < A|(§ — £)/2|| = A/2, W is a nonempty bounded
closed convex set invariant under 7. Hence, W contains an approximate
fixed point sequence for 7. For easy calculaiton, we assume that ¥ has an
element w with ||| = 1. Let x € K with ||x — #|| < A/2 and let f € X*
with f(#) = 1 = || f|. Hence, 1 = f(5) = /(% ~ 7) < ||# = §l| < 1/2, and
so f(7) = 1/2. Similarly, we also have the inequalities f(Z) > 1/2 and
f(x)=1—=A/2. Leta = f(I — P — Q)W). Then

1-a=f(w)—f((I-P- Q)W)
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and so either f(Pw) s(I-a)y2or f(Qw) <(1 - a)/2, say f(Pv"v) <
(1 = a)/2. Since I—2Pand I - 2P — 20 are reflections, ||[I — 2P| <
Aand |wP + 2Q — I|| < A. Hence, we have

(2 2a) = A/2 < 2f((P + Q)#) — f( - x)
=f(QP +20)w) — f(w — x)
=f((2P +20)(% - x)) = (% — x)
=f(2P +20 ~ I)(w - x))
<|FI28 + 20 = I |w — x| < ¥*/2,

\z

and
a+y=2+1-(1-a)<f(3)+](¥) - 2/(P#)
=f(w—7)+2f(3) - 2f(Pw)
=f(w —3) +2f(Py) - 2f(Pw)
=f(w = 7))+ 2f(P(y — W) = f(I = 2P)(w — 7))
<[IF T = 2P| [|% - 7] < A/2.
Therefore, 3 — 3A/2 < N2/2and A > (V33 — 3)/2. 0

If X has a suppression unconditional basis, we have the following
strong result.

THEOREM 3. Suppose X has a suppression unconditional basis (e;). Then
X has the fixed point property whenever X is superreflexive.

Proof. Suppose not and, as usual, let K be a minimal set of diameter 1
for a nonexpansive map 7. Let %,, %,,...,%, be disjoint fixed points for 7
in K. We shall prove (%,)! is 2-equivalent to the unit basis of /". Indeed, if
X' ,a, =1, >0and 0 < ¢ <1, then the same argument as given in the
proof of Theorem 1 shows that every element in

W = {W: W € K such that x € K with ||x — #|| < ¢

and | — %<1 —a,fori=1,2,...,n}

has norm less than or equal to 1 — (1 — ¢)/n. W is a closed convex set
which is invariant under 7; hence, W is empty. But

x—Zax 2o (% — %)

i#j

forj=1,2,...,n.So |l}:i=1txixi|] > cand so|X", a,%,]| = 1. O

<1-a,
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REMARK 1. The disjoint fixed point sequence ( %,) for T as given in the
proof of Theorem 3 is 1-equivalent to the unit vector basis of (/7, |- |).
Indeed, let 7, 7,,...,7,,_, be disjoint fixed points of 7 and ,, = 0. Then
forY' ;aq,=lande, >0

n

<Y a =1.

=1

1= <

Z ;Y51 Z 0‘1()72171 - 5)21')
i=1 i=1

Hence, X/, a,(7,;_1 — 7,;)|| = 1. In general, we have that

[C]

(En]

[E-L-O-S]

[Ka 1]
[Ka 2]
[Kil]

(Ki 2]

[Lm]
[Ln-T]
M]

(R]

= max([|(8) [, [(8)[L) =1(B)].

n
Z ﬂi'i:l
i=1
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