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Let A c B be commutative rings, and Γ a multiplicative monoid
which generates the matrix ring Mn{B) as a ^-module. Suppose that for
each γ e Γ its trace tr(γ) is integral over A, We will show that if A is an
algebra over the rational numbers or if for every prime ideal P of A9 the
integral closure of A/P is completely integrally closed, then the algebra
A(T) generated by Γ over A is integral over A. This generalizes a
theorem of Bass which says that if A is Noetherian (and the trace
condition holds), then A(T) is a finitely generated A -module.

Our generalizations of the theorem of Bass [B, Th. 3.3] yield a

simplified proof of that theorem. Bass's proof used techniques of Procesi

in [P, Ch. VI] and involved completion and faithfully flat descent. The

arguments given here are based on elementary properties of integral

closure and complete integral closure. They serve also to illuminate a

couple of theorems of A. Braun concerning prime p.i. rings integral over

the center.

One might expect that integrality of tr(γ) for γ e Γ would be

sufficient to assure that ^4(Γ) is integral over A. But this is not so, as we

will show with a counterexample. As it frequently happens with traces,

complications arise in prime characteristic.

1. Integrality and complete integral closure. Recall that if A is an

integral domain and b lies in its quotient field, b is said to be almost

integral over A if there is an a e A, a Φ 0, such that ati e A for all

integers i > 1. A is said to be completely integrally closed (c.i.c.) if every

element almost integral over A lies in A. Recall that a Krull domain is

completely integrally closed [Bo, §1, No. 3], as indeed is any intersection

of rank 1 valuation rings. (However, examples are known of c.i.c. domains

which are not intersections of rank 1 valuation rings — see [Nk] or [G,

App. 4].) If A is a Noetherian domain, the Mori-Nagata Theorem [N,

(33.10)] says that the integral closure of A is a Krull domain, hence is c.i.c.

LEMMA 1. Let A be a completely integrally closed integral domain with

quotient field F, and let B be the integral closure of A in any extension field

of F. Then B is completely integrally closed.
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Proof. This is [K, Satz 11].

LEMMA 2. Let R be a ring and A a subring of the center of R, such that
A contains no zero divisors of R. Suppose the integral closure of A is
completely integrally closed. If there is an a ^ A, a Φ 0, with aR integral
over A, then R is integral over A,

Proof. If not, take t e R with t not integral over A. We may assume
R = A[t]9 which is commutative. Let S = {b f(t)\b e A, b Φ 0 and
/ e ^4[x],/monic}, a multiplicatively closed subset of R not containing 0.
Let P be an ideal of R maximal such that P Π S = 0. Then P Π A = (0)
and, replacing R by i?/P, we may assume that R is an integral domain.
Let B be the integral closure of A in the quotient field of R. By hypothesis
aR c 5; hence, ί is almost integral over B. By Lemma 1, ί e f i , con-
tradicting the choice of /.

Here is a variant of Lemma 2. It is proved in the same way, but using
S = {alf(t)\f e ^4[x],/monic} and applying the Mori-Nagata Theorem.

LEMMA 2'. Let A be a Noetherian subring of the center of a ring R\ let
a G A be a regular element of R. If aR is integral over A, then R is integral
over A.

These lemmas can be applied to prime pi. rings, yielding short proofs
of one theorem of A. Braun and part of another. For, if R is a prime p.i.
ring with center C, then a theorem of Amitsur using central polynomials
[A, Th. 6] says that there is a δ ^ C, δ Φ 0, such that δR lies in a ring
which is a free C-module of finite rank. It follows by the usual determi-
nant argument that δR is integral over C

PROPOSITION 3 (Braun, [Brl5 Th. 2.7]). Let R be a prime p.i. ring
which is finitely-generated as an algebra over some commutative Noetherian
ring A. Let C be the center of R. Then R is a finitely-generated C-module if
and only if the integral closure of C is a Krull domain.

Proof. If R is a finitely-generated C-module, then by the Artin-Tate
Lemma [AT] C is a finitely-generated ^-algebra. Hence, C is Noetherian,
so by the Mori-Nagata Theorem its integral closure is a Krull domain.
Conversely, suppose the integral closure of C is a Krull domain (hence
completely integrally closed). By Lemma 2 and the remarks above, R is
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integral over C. Then, by a theorem of Procesi [P, p. 128], R is a finitely
generated C-module.

PROPOSITION 4 (Braun [Br2, pp. 13-14], Schelter [S, Cor. 2 to Th. 2]).
// R is a prime p.i. ring with center C, and if the integral closure of C is
completely integrally closed, then R is integral over C.

Proof. Apply Lemma 2 and the remarks preceding Prop. 3.

2. Integrality when traces are integral. We now return to Bass's
theorem. Throughout this section, let A c B be commutative rings, and Γ
a multiplicative monoid in the n X n matrix ring Mn{B) which generates
Mn{B) as a 5-module. Let ^4(Γ) be the^4-module (and algebra) generated
by Γ. We wish to consider when the following statement is true:

, v If tr(γ) is integral over A, for each γ e Γ, then A(T) is
^ ' integral over A.

PROPOSITION 5. If A is an algebra over a field F9 and if char F = 0 or
chaiF = p > n, then (*) is true.

Proof. Consider first the generic n X n matrix α, whose entries are the
commuting indeterminates xll9 x129... 9xnn. Let λl9,.. ,λw be the eigenval-
ues of α in an algebraic closure of F(xll9... 9xnn)9 and let the characteris-
tic polynomial of α be

For each /, let tt = tτ(αι) = λ\ + + λ'π; these traces are related to the
e/s by Newton's identities (see, e.g., [C, pp. 436-437], or [H, p. 249]):

7 - 1

(1) t{ + E cjti-j + ici = 0> 1 < i < n.
7 = 1

Now, take any y & A(T). Then tr(γ) is integral over A9 since γ is an
A -linear combination of elements of Γ. Specializing from α to γ we obtain
formulas corresponding to (1) relating the traces tr(γ') and the coeffi-
cients of the characteristic polynomial χγ(jc). The assumption on char/7

assures that we can divide by 2,3,...,π. Therefore, we may solve recur-
sively for the ct in (1), obtaining expressions for the coefficients of χγ(x)
as polynomials in {tr(γ')|l < / < n). Thus, the coefficients of χy(x) are
integral over A; hence γ is integral over A9 as desired.
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REMARKS. The argument for Prop. 5 is valid for any ring A in which
the images of 2,3,... ,/i are all units. Note also that the assumption that
B(T) = Mn(B) was not used.

PROPOSITION 6. Suppose that for every prime ideal P of A, the integral
closure of A/P is completely integrally closed. Then (*) is true.

Proof. If not, take any t G A(Γ), t not integral over A. Let S =
{f(t)\f G A[x]9 /monic} c Mn{B). S is closed under multiplication and
O ί S. Let <2 be an ideal of Mn(B), maximal with the property that
Q Π S = 0. Then Q is a prime ideal and, reducing mod g, we may
assume that A and B are integral domains. Furthermore, since there is no
harm in enlarging B or replacing A by an integral extension, we may
assume that B is a field and A is integrally closed in B. Then, by Lemma
I, A is completely integrally closed.

Let c1 ?.. ,9cn2 G Γ be a basis for Mn(B) as a vector space over Z?.
Take any γ G ̂ 4(Γ), and write γ = Σ ^ c r Then, for each7,

(2) tr(γc,.) = I>,.tr( c,.c,).
i

By hypothesis, all the traces appearing in (2) lie in A. Viewing (2) as n2

equations in the variables bv...,bn2, it follows by Cramer's rule that
8bi G A, i = 1,... ,n2, where δ = det(tr(czcy)) e 4̂. By the nondegeneracy
of the trace, δ Φ 0. Let T = Σ f l ^ δ q ) ; since δZ?, G ̂ , we have

(3) δl4(Γ) c Γ.

To see that T is actually a ring we make a similar computation. Let

(4) C Cj^ΣβijkCk
k

Multiplying (4) by any c{ and taking traces, we have

(5) tr(cI.cyc/) = ΣAy Λtr(^/)
k

Again, the traces in (5) lie in A9 so (fixing / or j) by Cramer's rule
δβijk G A. Thus, rewriting (4) as

k

we see that T is closed under multiplication. Since T is also a finitely
generated yl-module, it is integral over A. Therefore, Lemma 2 and (3)
above show that A(T) is integral over A. This contradiction completes the
proof.
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COROLLARY 7 (Bass). If, in addition to the hypotheses at the beginning

of the section, A is Noetherian and Γ is a finitely generated monoid, then

A(T) is a finitely generated A-module.

Proof. As noted earlier, the Mori-Nagata theorem assures that the
integral closure of a Noetherian domain is c.i.c. Therefore, by Prop. 6,
A(T) is integral over A. Since, in addition, A is Noetherian and A(T) is a
finitely generated p.i. A -algebra, it follows by a theorem of Procesi [P, p.
128] that ̂ 4(Γ) is a finitely generated A -module.

EXAMPLE 8. Let F be any field of prime characteristic/?, and let x and
y be commuting indeterminates over F. Let C = F[x, y]\ J = yC, A the
subring F + / of C, and B the quotient field of C. In the matrix ring
Mp(B), let / be the identity matrix, and {EiJ} the usual matrix units. Let
Γ be the monoid generated by {xl + yE^l < i, j <p}. Then B(T) =
Mp(B), and for each γ G Γ , tr(γ) e A. But none of the generators of Γ is
integral over A. So, (*) does not hold.

Proof. The/?2 generators of Γ are linearly independent over B; hence,
B(T) = Mp(B). Note that Γ c Mp(C), and in Mp(C/J)ihe image of Γ is
generated by scalar matrices; so the image must consist entirely of scalar
matrices, which have trace 0. Thus, for γ e Γ, tr(γ) e / c A. However,
xl + yEjj cannot be integral over A9 since its image in Mp(C/J) is clearly
not integral over A/J = F.

REMARKS. Example 8 shows the need for the hypotheses in Prop. 5
and Prop. 6. In the example A is integrally closed, but its complete
integral closure is C. By slightly modifying the example, one can obtains a
counterexample to (*) for any n > p and any ring A with a prime ideal P
such that A/P has characteristic/?, and the integral closure of A/P is not
c.i.c. E.g., to obtain a counterexample in characteristic 0, replace F in Ex.
8 by the ring Z of integers, and / by the ideal of Z[x, y] generated by p
and >>.
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