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If X and Y are compact Hausdorff spaces and E a uniformly convex
Banach space, then the existence of an isomorphism 7 of C(X, E) onto
C(Y, E) with ||T|| ||7!|| small implies that X and Y are homeomorphic.

1. Introduction. Throughout this article, the letters X, Y, Z, and W
will denote compact Hausdorff spaces, and E a Banach space. C(X, E)
denotes the space of continuous functions on X to E provided with the
supremum norm. If E is a dual space then C(X, E,.) stands for the
Banach space of continuous functions F on X to £ when this latter space
is provided with its weak* topology, again normed by |F||, =
sup, « x || F(x)||. If E is the one-dimensional field of scalars then we write
C(X) for C(X, E). The interaction between elements of a Banach space
and those of its dual is denoted by ( - , - ). We write E;, = E, to indicate
that the Banach spaces E, and E, are isometric.

The well known Banach-Stone theorem states that if C(X) and C(Y)
are isometric then X and Y are homeomorphic. Various authors, begin-
ning with M. Jerison [13], have considered the problem of determining
geometric properties of E which allow generalizations of this theorem to
spaces of norm-continuous vector functions C(X, E). The most exhaus-
tive compilation of results of this nature can be found in the monograph
by E. Behrends [2]. Another type of generalization of the theorem was
obtained independently in [1] and [3], and, while still dealing with scalar
functions, replaces isometries by isomorphisms 7 with ||T|| || T ~*|| small.

The first attempt to combine these two directions of generalization is
found in [4], where it is shown that if F is a finite-dimensional Hilbert
space, then the existence of an isomorphism 7 of C(X, E) onto C(Y, E)
with ||T|||IT"Y| < V2 implies that X and Y are homeomorphic. More
recently, K. Jarosz [12] has obtained a similar generalization for Banach
spaces E whose dual space satisfies a geometric condition involving both
T 1T} and the number 4 /3. Here we obtain such a theorem for all
uniformly convex spaces E. Moreover, given such a space E, the bound on
the isomorphisms for which our theorem works depends on the modulus
of convexity associated with E.
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Our method of proof depends on a characterization of the second
dual space of C(X, E), and is analogous to the method used by H. B.
Cohen in the scalar case to obtain a new proof of the results of [1] and [3].
The first dual of C(X) is, of course, given by the Riesz representatioin
theorem which states that C( X)* consists of all finite, regular, scalar-val-
ued Borel measures p on X. The vector analogue of this result was
obtained by I. Singer in [15], where it is shown that C(X, E)* is the
Banach space of all regular Borel measures m on X to E*, with finite
variation |m|, and norm given by ||m|| = |m|( X). An English version of the
proof of this theorem can be found in [16, p. 192].

In [7] Cohen exploited the fact, first established by Kakutani [14], that
C(X)** is isometric to a space C(Z) for a particular compact Hausdorff
space Z dependent on X. And in [5] it is shown that if X is dispersed or if
E* has the Radon-Nikodym property, then C(X, E)** = C(Z, EX*
where Z is that compact Hausdorff space such that C( X)** = C(Z). The
interaction between the elements of the first dual of C(X, E) (that is,
vector measures on X), and functions in C(Z, EX¥) is given explicitly in
[6]. It is the result of [S] on which we base most of our arguments.

We shall assume henceforth, that E is a uniformly convex Banach
space. Let U denote the unit ball in £ and let

8(e) = inf {1 —[l(e; + e))/2: lle; — eyl = &}

e, €U
Recall that E is uniformly convex means that §(¢) > 0 when 0 < ¢ < 2.
We will frequently use the fact that we always have §(1) < 3.

The uniform convexity of E enters into our proof in a number of
ways. First, we rely upon a geometric property of uniformly convex spaces
which we establish in Lemma 1. Also E uniformly convex implies that E is
reflexive [8, p. 147], and thus E* has the Radon-Nikodym property [9, p.
218] and the result of [5] applies. We wish to prove the following:

THEOREM. Let X and Y be compact Hausdorff spaces and E a uniformly
convex Banach space. If T is an isomorphism of C(X, E) onto C(Y, E)
satisfying ||T|| IT7Y| < (1 — 8(1))7L, then X and Y are homeomorphic.

The proof of the theorem will be established via a sequence of lemmas
and a proposition. However we first note the following. By replacing T by
the isomorphism (1 + ¢€)||T ~}||T for a sufficiently small positive number e,
we may suppose, without loss of generality, that T is strictly norm-increas-
ing—i.e., ||TF||, = (1 + ¢)||F||,, for F € C(X, E), and that we have
IIT|| < (1 — 8(1))7%. Fix such an ¢, and then fix a positive number P with
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1 <P <1+ e We will thus assume, throughout the remainder of this
article, that we are dealing with an isomorphism 7 of C(X, E) onto
C(Y, E) satistying ||TF||,, > P||F||, for F€ C(X, E), F+ 0 and ||T|| <
1 -8Q).

Since here we have E** = E| it follows that C( X, E)** is of the form
C(Z, E,.) for a certain compact Hausdorff space Z. Similarly, C(Y, E)**
= C(W, E,.) for that compact Hausdorff space W with C(Y)** = C(W).
We can thus regard 7** as a strictly norm-increasing isomorphism of
C(Z, E,.) onto C(W, E_.) satisfying ||T**|| < (1 — 8(1)) ! and | T**F||,,
> P|\F||,, for Fe€ C(Z, E,.), F # 0.

Next note that if F* € C(Z, E_.)*, then the restriction of F* to
C(Z, E) is a continuous linear functional of norm less than or equal to
[|F*}}]. Thus, by Singer’s result, this restriction is given by a regular Borel
vector measure # on X to E* with ||n|| < || F*||. If z is any point of Z, n can
then be uniquely decomposed as n = - u, + m, where p, denotes the
scalar unit point mass at z, ¢ € E*, and m € C(Z, E)* withm({z}) = 0.
(Take y = n({z}) and m = n — ¢ - n,.) We then let m denote any norm-
preserving linear extension of m to an element of C(Z, E,.)* and set
" =F*~4¢-p,—m. Then ® is a continuous linear functional on

Z, E,) which vanishes on C(Z,E) and F* =4y -p, + m + O.
Whenever we write an element F* € C(Z, E_.)* in this manner, F* =
Y- u, +m+ @, it will be implicit that € E*, that m is a fixed Hahn-
Banach extension of the vector measure m determined as above, and
consequently that ® € C(Z, E)*. A similar convention applies when we
write an element G* € C(W, E,)*as G* = - u, + m + D.

Finally, we let X, denote the set of isolated points of Z. It is known
that each point of X, is of the form ¢x for some x € X, where ¢ is the
canonical (nontopological) injection of X into Z, and every such point 7x
is i1solated [11, p. 841]. Similarly, we let Y, denote the set of isolated points
of W so that Y|, consists of the points sy, y € Y, where s is the correspond-
ing injection of Y into W.

2. Proof of the Theorem.

LemMA 1. If E is a uniformly convex normed linear space and r is a
positive integer, and if we are given 2" elements e; € E with |le/|| > > 0
forl <j <2, then

(i) there exists scalars \;, 1 < j < 27, with |\ ;| < 1 for all j such that
]|ZJZ.'=1 Ae /el = (1 — 8(1))7", and consequently

(ii) there exist scalars a;, 1 < j <27, with |a;} < 1 for all j such that
IS age,ll = (1~ (1)
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Proof. The proof is established by induction on r. First assume that
r = 1and thate,, e, € E, withle || = 5,/ = 1,2. Then
er/lledll = 3(er/lledll + ex/llesll} + 3 (ey/llesll — ea/llesll),

and, since a uniformly convex space is strictly convex, we must thus have
either

lley/lledll + ex/llesll It > 1 or fley/llel — ey/llesll | > 1,
and both of these norms are less than or equal to 2. Let M be the
maximum of these two norms. Then by taking A\; =1 and A, =1 or -1
we can find scalars A ; of modulus one such that
(*) IAse1/llesll + Ayer/llesll |l = M > 1.
Now
a= (1/M)(Ae/lley]l + Azey/lles]))
and
b= (1/M)(Ae./lledl — Azer/lles)
are in the closed unit ball U of E and (1/M)(Ae,/||e,])) is the midpoint of
the segment joining them. Also, since |ja — b|| = 2/M and M is less than
or equal to 2, we have
1-1/M=1-|1/M)(Ne/llesdDll = 8(2/M) = (1),
giving M > (1 — §(1)) ! and establishing (i) for » = 1.
Next let N = min{||e,||, ||e,]|}. Then from (*) we have
VA el ey +(NA /el esll = N - M > (1 = 8(1)) 7.
Thus letting &, = NA /||e/|| for j = 1,2 we have established (ii) for r = 1.
Now assume the lemma is valid for all » with 1 < r < k, and that we
are given elements ¢, € E, 1 <j < 26+ with lle,ll = n for all j. By the
inductive hypothesis there exist scalars A ;, 1 < j < 2¢*%, with |\ | < 1 for
all j such that

=M, 2 (1-8(1)"

21(
2 Ae/lle|
j=1

and
2k+l
X Ae/llelll= My = (1-8(1)"
j=2¢+1
Then

2k+1

2 1 A
¢ = (_) Y Ae/lell and d= (ﬁ) 2 Ae/llell
2

J=1 j=2k+1

[
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belong to U and ¢ = (3)(¢c + d) + (3)(c — d). Since ||c|| = 1, again we
must have either |[¢c + d|| > 1 or ||c — d|| > 1, and both of these norms
are < 2.

Let M be the maximum of these two norms. Thus taking either
g =~7\j for all j with 2k+1<j<2 ord, = —Xjfor all such j, we can
find A ; with |A ;| < 1 such that

1 2k . 1 2k+1 3
(**) (ﬁl)jgl}\jej/”ejn +(I4_2)j=§+1)\jej/”ej” =M>1.

2k+1

Let e=(1/M)X% 5, Ae;/llejl. Now a=(1/M)c+e) and b=
(1/M)(c —e) are in U and (1/M)c is the midpoint of the segment
joining them. Also ||a — b|| = 2/M. Hence

1-1/M=1-|(1/M)c|| = 8(2/M) = 8(1),

giving M > (1 — 8(1)) ™~
Let M, = min{ M,, M, }. Then from (**) we have

=M-My>(1-801)"",

'|ZZ* (MOXJ.) e ., 22 M\ e,
M, ”ej” M,

JJ=1 j=2k+1 le;

so that, by letting A, = Moj\j/M1 for1<j<2¥andA; = MO7\J/M2 for
2%k + 1 < j < 2%*! we have established (i) for r = k + 1.
Finally let N = min{|le||: j = 1,...,2¢*'}. We then have

2k+1 N}\
= (e

L\ ez N1-68(1)" " =91 -81)" "

and thus, setting a; = NA /|lej|| for 1 < j < 2k*1 we have established (ii)
for r = k + 1. This completes the proof.

LEMMA 2. If w € W and tx € X, then there exists an element ¢ of
E* with ||¢|| =1 such that T***¢ - u,, is of the form ¢ -, + m + @
with ||Y|| > P if, and only if, for some e € E with |e|| =1 we have
IT**(X (1xy - €)(W)I| > P.

Proof. Suppose that for some e € E with |le|| =1 we have
IT**(X (1x - €)(W)|| > P. Choose ¢ € E* with ||¢|| = 1 such that

<T**(X{tx) -e)(w), ¢> = “T**(X{Ix} : e)(w)“.
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Then writing T***¢ - uasy - u,, + m + ® we would have

P < NT**(X{tx} : e)(w)“ = <T**(X{tx} -e)(w), ¢>

= fT**(X{tx} : e) d(¢ ’ Mw) = <x{tx} e, T***¢ - Hw)

= f(X{zx} ) e) d(‘l/ TRy T m) +<X(tx} te, (I)> = <e’ "l’)a

and hence ||y} > P.

Conversely, suppose there exists a ¢ € E* with ||¢|| =1 such that
T***¢ - u has the specified form. Take e € E with |le|| = 1 such that
(e, ¥) > P. A computation exactly like that above then gives

(T**(X (1, - €) (W), 0) = (e, 4) > P

and, consequently, [|[7**(x .y - eXw)|| > P.

We now let W, denote the set of all w € W such that for some
¢ € E* with ||¢|| = 1 there exists a tx € X, with T***¢ - p = ¢ - p,, +
m + ®, where ||{|| > P. Then define p: W, — X, by p(w) = tx if w and
tx are related as in the previous sentence.

We first note that p is a well defined map from W, to X,. For by
Lemma 2 we have w € W, and p(w) = tx if, and only if, for some ¢ € E
with |lel = 1 we have ||[T**(x (,y - €)(w)|| > P. Thus if we assume that
there exist ¢, ¢, € E* with ||¢,]| = ||$,]| = 1 and

T***¢i i '4’1’ * My, + mi + (I)i

for i = 1,2, with ||{,]| > P and tx, # tx,, then for all choices of scalars «;
with |a;) <1 and all e, € E with |e)|=1, i=1,2, we would have
louX (1x,) ~ €1 F @2X (1x,) * €2llc < 1. However, it follows from Lemmas 1
and 2 that for appropriate choices of such a; and e; we would have

NT**("ﬁX{le} cept X (hx,y ez)”w
2“0‘1T**(X{txl} : 31)(”’) + “zT**(X{txz} : ez)(w)“

>P(1-8(1)" > (1-81)7"

contradicting the fact that ||7**|| < (1 — 8(1)) . Consequently p is well
defined as claimed.

Moreover, p maps W, onto X,,. For given tx € X, then for any e € E
with [|e|| = 1 there exists some w € W such that ||T7**(x ., - e)(w)|| > P.
Thus, as noted in the second sentence of the previous paragraph, we have
w € W, and p(w) = tx.
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By arguments exactly analogous to those given above, one obtains the
companion result:

LeEMMA 2'. If z € Z and sy € Y, then there exists an element ¢ of E*
with ||¢|| = 1 such that T*** ¢ - pu_ is of the form y - B, + m+ ® with
gl > 1 — 8Q) if, and only if, for some e € E with |le|| =1 we have

IT** (X sy - XD > 1 = (D).

We then let Z, denote the set of all z € Z such that for some ¢ € E*
with ||¢|| = 1 thereexists ansy € Yy with T***7 1o - p_ =y - p, + 7 + O,
where ||{]| > 1 — 6(1). And we define 7: Z, — Y, by 7(z) = sy if z and sy
are related as in the previous sentence. Just as before one establishes that 7
is a well defined map carrying Z, onto Y,. Moreover, by Lemma 2’, we
have z € Z, and 7(z) = sy if and only if for some e € E with ||e|| = 1 we
have [|T**"X(x ,,, - ) 2)]| > 1 — 8(D).

LEMMA 3. (i) For each tx € X,, p™*({tx}) is a finite open set of points,
and consequently W, C Y,,.

(ii) For each sy € Y,, 7 '({sy}) is a finite open set of points, and
consequently Z, C X,,.

Proof. Suppose tx € X, and w € p'({tx)). Then there exists an
e, € Ewith|le,|| = 1 such that || T**(x,,, - e,)(w)|| > P. Let

8y = T**(X1x) @) W)/ T**(X (1) - €)W
and take any continuous g: W — [0, 1] such that g(w) = 1. Then define
Ge C(W,E)c C(W,E,.)by G(w)=g(w)-é,w € W.Now
“G + T**(x{,x} . ew)”oo ZHG(W) + T**(X{tx} . ew)(w)“ >1+ P,
so that
|75 HG) + x (1) - €], > (1 + PY(1 — 8(1)) = (1 + P) /2.

Thus as ||T**~(G)||,, < 1 we must have ||7** }(G)(x)|| > (P — 1) /2.

Now pick any element ¢, € E* with ||¢, || = 1 such that (&, ¢,) = 1.
Then w € {w’ € W: |<T**(x{,x} e, )(w), ¢w>| > P}, and this set is
open. Moreover, for any w’ in this set, we have [T**(x ., - e, )(W)|| > P
and thus w’ must belong to p~({ #x}). Hence fixing such elements e,, and
¢,, for each w € p™!({#x}) we have

() = U (e W (T - e )W) 60| > P),
wep ({1x})

an open set.
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We now show that p~!({ #x}) is a finite set. Suppose that w,, 1 < k <
27, are elements of p~!({#x}). We have seen that for each k we can find
G, € C(W, E,.) with ||G,|l, =1 and [|[T**"}(G,)(tx)|| > (P — 1)/2. If
we choose the G, to have pairwise disjoint supports, then for all scalars
a,, 1 < k <2, with |a,| < 1, we have ||=?_, ¢,G, ||, < 1. But by Lemma
1(ii), we can choose the a, such that
2,

Z.l o, T**7(G,)(1x)

_ (P=1)(1 - 5(1)”
> ; .

Hence p~'({ x }) must be finite as claimed.

Thus for each tx € X,, p~}({¢x}) is a finite open set of points, and
thus consists entirely of isolated points. Hence W, =U,, p ' ({x})
consists of isolated points and so W, C Y, proving (i). The proof of (ii) is
analogous.

LEMMA 4. Given an element of C(Z, E.)* of the formy - p, . + m + @,
where tx € X, is an isolated point of Z, then

-+ m+ @ =[] +]Im + 2.

Proof. Suppose ¢ > 0 is given. Choose F € C(Z, E,.) with ||[F||, <1
such that (F,m + ®) is real and greater than |m + ®| — e Let
e; = F(ix). Then both m and @ annihilate e, - x,, so that
(F — e X (), M+ <I>> > ||m + ®|| — e. Choose an element e, € E with
lleyll = 1 and (e,, ¥) = [I¥|l. Then |IF + (e, — €;) - X )|l < 1 and thus

Y- b, +m+ 0

2'<F +(82 - el) ‘X{tx}’\P * Bix +m + ¢>l

= f €3 ° X{tx) d(y - p,) + <F“ € Xuxy> M+ (I)>
> |yl + |Im + @|| — e.

LEMMA 5. If sy € W, C Y, and p(sy) = tx, then tx € Z, and 1(tx) =
sy.

Proof. Let sy belong to W, and let p(sy) = tx. Suppose that either zx
is not an element of Z,, or that tx € Z,, but 7(¢x) # sy. Either supposi-
tion leads to the conclusion that for all e € E with |le]| = 1 we have
IT**x ,,,  eXtx)] < 1 = 8(1).

Fix an e € E with |le|| = 1 and let Q = sup, . ||IT**"'(x,,, - €)(2)II
Then by Lemma 3(ii), and the paragraph preceding the statement of
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Lemma 3, we have
{z e Z: ”T**‘l(x{sy) . e)(z)“ >1- 8(1)}

= {tx' € X,: “T**‘I(X{sy} . e)(tx’)” >1 - 8(1)} c ' ({sv}),
a finite set, and thus we can find a tx” € X, such that

IT** (X (4 - €)X = Q.

Now tx’ # tx since 7(tx) # sy.

Let é = T**‘l(x{sy} -e)(tx’) and é = é/}jé||. Then consider the ele-
ment X (., - € of C(Z, E) C C(Z, E,.). There exists a w € W such that
IT**(X (1xy - €)(W)|| > P. Hence this w belongs to W) C Y, sow = sy’ for
some sy’ € Y,. Moreover sy’ # sy since p(sy’) = tx’ # tx = p(sy).

From the proof of Lemma 2, we know that if ¢ € E* with ||¢|| = 1 is
such that

<T**(X{tx’} : é)(sy’), ¢> = ”T**(X{tx’} : é)(s)/)”
then
T***¢ -y, =Y - p, +m+® where (&, y) > P.

Hence (&, ¢) = ||¢|(é, ) > QP > Q. We have
0= [ Xoy-ed(d ) =Xy e 1)
= (T (X (syy - ), T***¢ - 1,y
= [ T U xy @) A ) + (T Hx (g - €)1+ @)

=(&,4) + (T Nx(yy - e), 7+ tI>>.

But the modulus of the first term on the right is greater than Q while, by
Lemma 4, the modulus of the second term on the right is less than or
equal to (||T]| — |I¥|)Q < Q. This contradiction completes the proof of
the lemma.

Note that Lemma 5 implies that X, = p(W,) C Z,, so that X, = Z,.
It also shows that Y, = 7(Z,) € W,. For p maps W, onto X; hence, given
tx € Z, = X, there exists an sy € W, with p(sy) = tx. And by Lemma 5
7(tx) = sy € W,. Thus p maps Y, onto X,, p is injective since 7 is a
function and 7 = p~L. It follows that p = ¢ ' o p o 5 is a one-one map of Y
onto X. We would like to show that p is a homeomorphism.

To this end again recall that we have sy € W, = Y, and p(sy) = #x if,
and only if, for some e € E with le|| = 1 we have ||T**(x (.., - e)(sy)|| > P.
Since for any e € E with |le]| = 1 we must have [[T**(X (., - e)(w)|| > P
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for some w € W, it now follows that for all e € E with |le]| = 1 the only
candidate for this w is sy. That is, given tx € X, let sy = 7(¢x). Then for
each e € E with |le|| = 1 we must have [T**(x,,, - e)(sy)|| > P and sy is
the only point of W for which such an inequality holds.

Next note that fore € E, ¢ € E*, tx € X,and sy € Y, we have

<T**(X{tx) e), - H‘sy> = <¢ *Hy, T**(X{Ix} ) e)>,
the equality holding by the proof of Theorem 2 in [6]. We next have
<¢’ i T**(X{tx} : e)> = <T*(¢ : Hy)’ Xy * e>
by definition of the adjoint map, and then
(T*(6 - 1), X(ixy - €) = (e (T*¢ - 1, )({x})),
again by the proof of Theorem 2 in [6]. Thus
(T*(X 0y €)s 8 - ) = (e (T - ,)({x]).

PROPOSITION. p is a homeomorphism of Y onto X.

Proof. As noted above we have p(y) = x if, and only if, for alle € E
with |lef| = 1 we have ||T**(x (,,)(sp)|| > P, which will be true if, and
only if, for every e there exists a ¢ € E* (depending on e and y) with
¢l =1 such that (T**(x,.,-e). ¢ p,,) = (e, (T*¢-p,)({x})) is
real and greater than P.

Now suppose that { y,: B € B} isanetin Y, yg = y, but x5 = p( ;)
+ p(¥,) = x,. Then there exists a compact neighborhood V of x, such
that for all 8, € B thereis a 8 > B, with x, outside V.

Fix an e € FE with |le|| = 1. By the paragraph before last there is a
¢y € E* with [|¢ol| = 1 and (e, (T*¢, - p,,)({x})) > P. Write T*, - p,,
as Y, - p, + m, where y, € E* and m is a regular Borel vector measure
on X to E* with m({x,}) = 0. Then (e, ¥,) > P. Choose a neighbor-
hood V; of x,, ¥; € V, such that |m|(¥;) < P — 1. Next choose a continu-
ous function f;: X — [0, 1] such that the support of f; is contained in ¥V
and fi(x,) = 1. Then define F; € C(X, E) by Fi(x) = fi(x)-e, x € X.
We have

[((TF)(50), 0| =[((TF), 90 - )| =|( Fi T*(90 - 1,,))]

=|(F, ¥o - by, + m)| =1<F1(x0),¢0> + fFldm|

> (e, %) = [IIFIdim| > 1.
Thus [(TF,)(yo)ll > 1.
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Since y; — y, and TF, is continuous in the norm topology, there is a
By € B such that B > B, implies ||(TF,)(y,)l| > 1. Thus fix a 8 such that
I(TF ) yp)ll > 1 and xp = p(yg) lies outside V. Then for some ¢y € E*
with |j¢g]| = 1 we have <e,(T*¢B . ,uyﬁ)({xﬁ})> > P. Write T*¢ - p, as
Vg Py, 1 where Y, € E* and n({xz}) = 0. Then (e, ‘I’B> > P. Take a
neighborhood V, of x, disjoint from V with |n|(V,) < P — 1 and choose
continuous f,: X — [0, 1] such that the support of f, is contained in V, and
f2(xg) = 1. If we then define F, € C(X, E) by Fy(x) = f,(x) - e, x € X,
it follows as above that |[(TF,)( )|l > 1.

Now since F; and F, have disjoint supports, for every choice of scalars
a;, with |a;| <1, i=1,2, we have |la,F, + a,F,||,, < 1. However, by
Lemma 1, there exist such scalars a; with

“T(alFl + aZFZ)”oo Z”al(TFI)(yB) + az(TFz)(yB)“ > (1 - 8(1))_1,

which contradicts our assumptions about the norm of 7. Thus p is a
continuous, one-one map of Y onto X, and is hence a homeomorphism.
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