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CAPILLARY SURFACES OVER OBSTACLES

GERHARD HUISKEN

We consider the usual capillarity problem with the additional re-
quirement that the capillary surface lies above some obstacle. This
involves a variational inequality instead of a boundary value problem. We
prove existence of a solution to the variational inequality and study the
boundary regularity. In particular, global C'!-regularity is shown for a
wider class of variational inequalities with conormal boundary condition.

Let & € R", n > 2, be a bounded domain with smooth boundary 3
and let

(01)  A=-p(a(p)! @(p)=p (1+pf)"
be the minimal surface operator. Then we study the variational inequality
(0.2) (Au+ H(x,u),v —u)>0 VveEK,
K:={ve H" >y}
where
(0.3) ( Au, ) =f a'(Du) - Dy dx + f BndH,_,.
Q aQ

Here H describes a gravitational field, ¢ is the obstacle and B is the cosine
of the contact angle at the boundary. We make the assumption that

(0.4) H=H(x,t)€ C*'R"x R), B e C(3Q)

satisfy the conditions

oH
(05) W > K> 0
and
(0.6) Bl<1-a, a>0.

Under these assumptions Gerhardt [2] showed, that (0.2) admits a solution
u € H*?(Q), if we impose on ¢ the further condition

(0.7) —a'(Dy)-v,2B ondQ

'Here and in the following we sum over repeated indices.
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122 GERHARD HUISKEN

where ¥y = (v;,...,Y,) is the exterior normal to 0. The main theorem
which we shall prove, is the following:

THEOREM 0.1. Let 0Q be of class C?, let ¥ € H*>*(Q) and assume that
H and B satisfy (0.4)—(0.6). Then the variational inequality (0.2) admits a
solution
ue H"(Q)N H*?(Q) N HZ>(RQ)
with continuous tangential derivatives at the boundary. In the case n = 2 we

have u € CY(Q). Furthermore, if we assume that 0Q is of class C>*
B € CYY(3R) and that  satisfies (0.7) then we have

u € H>>(Q).

REMARKS. (i) The physically interesting problem, where ¢ is the
bottom of a cylinder containing some liquid of prescribed volume, is also
included in this setting: a solution of this problem fulfills (0.2), if we
replace H by (H + A) with some Lagrange multiplier A. (See Gerhardt [2,
3D.

(ii) The boundary regularity results in Theorem 0.1 are valid for
solutions of a much wider class of variational inequalities with conormal
boundary condition, see §§3 and 4 below.

To prove the existence of a solution to (0.2) it is necessary to establish
a priori estimates for the gradient of solutions to the corresponding
boundary value problem:
(0.8) Au+ H(x,u)=0 in§
(0.9) —a'(Du)-y,=B onoQ.

Using ideas of Ural’ceva [12] and Gerhardt [2] we can find a bound
for | Du|o, which does not explicitly depend on |H(-, u)|g.

At this place the author wishes to thank Claus Gerhardt for many
helpful discussions.

NOTATION. We shall denote by | - | the supremum norm on £ and by
Il - Il, the norms of the L?-spaces. By ¢ = ¢( - - ) we shall denote various
constants whereas indices will be used, if a constant recurs at another
place.

1. Existence. To get a Lipschitz solution to (0.2), we consider the"
following related boundary value problems:
Au,+ H(x,u,) +pO.(u,—¢)=0 inQ

(1.1 —a'(Du,)-v,= B ondQ
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where p > 0 is a parameter tending to infinity and ©, is a sequence of
smooth monotone functions approximating the maximal monotone graph

®:

0, £>0, 0 t>0
(12) O()=|[-1,0], r=0, ®e(t)=(_’1’ f< —e
-1, t <0,

We want to use the following existence result from ([2], Theorem 2.1):

THEOREM 1.1. Let 9Q be of class C** and suppose that H and B are
CY“functions in their arguments. Then the boundary value problem (0.8),
(0.9) has a unique solution u € C*NQ), where \, 0 < X\ < 1, is determined
by the above quantities.

Assuming for a moment these sharper differentiability condition on
02, B and H, we get a unique regular solution u, of (1.1) for any e,
0 < & < 1. In §2 we shall establish a priori estimates for u,:

THEOREM 1.2. There is a large constant M, so that
(13) luelﬂ + |Due|9 <M

uniformly in € and p.. Furthermore, for each ¢, 0 < ¢ < 1, we can choose . as
large that

(1.4) u, — ¢ > —3e.

Thus we conclude, that in the limit case a subsequence of the u,
converges uniformly to some function u € H»*({Q), which satisfies (0.2).

Since the estimate (1.3) is independent of the sharper differentiability
assumptions, an approximation argument shows, that the variational
problem (0.2) has a solution u € H"*(Q) assuming only the weaker
conditions.

2. A priori estimates for |u| and |[Du|. To derive an upper bound for
u,, we multiply (1.1) with max(u, — k, 0) for an arbitrary k > k, = supg, ¢.
Observing that the critical term

(2.1) /

u.,>

0,(u, —¢)(u, — k) dx
k

vanishes because of k > sup ¥, we get an uniform upper bound in view of
the strict monotonicity of H.
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For proving the estimate (1.4), we multiply (1.1) with
(2.2) w = max(¢ — u, — §,0)
and denote by 4(6) theset {x € Qju, <y — 8}. We get

f ai(Due) (Dz‘l/ - Diue) dx + BWdHn—I
A(8) g

(2.3) + fm) H(x,u)(y — u, — 8) dx

+p-f O,(u, — ) —u, —8)dx=0.
A(8)

On A(8) we have ©,(u, — ¢) = —1 and H(x, u,) < H(x, {) because of
0 > ¢ and in view of the monotonicity of H. To estimate the boundary
integral, we use (0.6) and the inequality

(24) [ gaH, < [ |Dgldx +c(2,n)- [ |glax, ge HM
e " Q Q

which is proven in ([4], Lemma 1). We get

(2.5 a- /

iDu£|dx+y-f v —u, — ddx
A(8) A(5)

SU+2WMQM®HHHh¢mer¢-m—8ﬂ

+c- f Y—u,—8dx
A(8)
or, better

(2.6) fﬂ |Dw|dx + u-fﬂwdx < c(a, |Dylg)|4(8)]

+(e, +|H(-, ¥)lg) fﬂ wdx.
Choosing now

(2.7) p2p +H( )+ o
we get by the Sobolev imbedding theorem

(2.8) Wil n-1) + 1y -[ wdx < clA(8)] Véxe.
Q

From this we derive the inequalities

(8, — 8,)[4(8,))| < c|4(8,)]

(8, - 82)|A(81)| < pit-cla(s,)

1+1/n

(2.9) Ve, >8>
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From a lemma due to Stampacchia ([11], Lemma 4.1) we now deduce
from the first inequality

(2.10) u,~ ¢ = —2¢ - c(a, |Dylo)l4(2¢)]""
and then from the second
(2.11) |[AQ2e)| < pyt - et - clA(e)].

Thus, inequality (1.4) follows by choosing u, large enough, where p,
depends on ¢, a, | Dy|, .

The gradient bound will be established by a suitable modification of a
proof in [2].

In view of the smoothness of 9§, we can extend 8 and y into the
whole domain @, so that 8 € C*(Q) still satisfies (0.6) and so that the
vectorfield y is uniformly Lipschitz continuous in £ and absolutely
bounded by 1.We denote by S the graph of u,

(2.12) S = { X=(x,x" |x"t = us(x)}

and by 6 = (6,,...,6,,,) the differential operators on S, i.e.

(213)  bg=Dg-»- Lot Dy ge (I
=1

where v = (vy,...,7,,,) 1 thekexterior unit normal to S

(2.14) v=(1+|Du) " (~Dyt,s..., ~ Dyu,, 1)

As in [2] and [12] we want to prove that the function

1/2
(215) v= (1 + |Du8|2> +B-Duu, -y =W+ B-Du, - vy*
is uniformly bounded in Q. Notice, that

)1/2

(2.16) Du,| < (1+]Du’) " = W< % C 0.

During the proof we shall write u instead of u, and we set
(2.17) H(x,u):= H(x,u) + -0 (u—1).

We need the following lemmata:

LEMMA 2.1. For any function g € CY(Q) we have the inequality

n/(n—1) dHn
(2.18) (/S &

)(n—n/n

< cx(on) ([ Iogtast, + [ 10 lgiat, + [ Ig|- wa, |



126 GERHARD HUISKEN

For functions vanishing on the boundary, this inequality was first estab-
lished in [9], whereas a proof of the general case can be found in [2].

LEMMA 2.2. On the boundary 3%} we have the estimate
(2.19) ly a"’(D,v — D,(BY¥) -Dku)t < ¢
where c; = ¢,(39, |DB|g) anda’/ = d0a'/0p;.

LEMMA 2.3. For any positive function n € H"*(Q) we have the estimate
(2.20) f ondH,_, < f |5n|dH, + f \A| +|8v|)n dH,.
EIo

For a poof of these two lemmata see ([2], Lemma 1.2 and Lemma 1.4).
Furthermore, from the proof of Lemma 1.3 in [2] we get the following
inequalities:

LEMMA 2.4. In the whole domain 2 we have
(2.21) a“D;Dyu - a*'D;Dyu > %|1fir|2
(222)  |a“D,Du - D,(BY*)|
ij Kl |8v]
<n-a’DDu-a"DDu+c,-|1+ W
where 0 < m < 1 is arbitrary and ¢, = c,(a, n,|D(BY)).

Now we are ready to bound the function v, or equivalently
(2.23) w = log v.
As in [2], we start with the integral identity

(2.24) f D,a'D;x dx = —f D,D,a'x dx -l-f y'- Dya'x dH,_,.
Q Q 89
Choosing now x = (a* + By*)n, 0 < n € H**(Q) with suppn C {w >
h}, where h is large, we obtain in view of (1.1)
(2.25) fﬂ a"/[D,v — D,(By*) - D,u| Dy + a"D,Du - a*'D,Du - m dx
+f Dk a + By )n dx

= —f aijDiju ) Di(BYk)ﬂ dx
Q

+ " v - aif[Djv - (,87 ku]n dH,_,.
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Remark that

(2.26) Dy = (a* + By*) - D, Dju + D;(By*) - Dyu.
In the following we shall use the relations
(2.27) a'Dg-Dg=Wsg’ Vge CY(R)
(2.28) laD,g- Dx|< W' -|8g|IDx|  Vx e CY(Q)
(2.29) a-W<v<2-W
. 1,

(2.30) a’p,q; < 5 ap,p; + 55 4744 Ve>0.
Now observe that
(2.31) D, I?——a—hl+§£ Du+ p®! - D (u— ).

ox, Ot €

Then in view of the assumptions (0.5) and (0.6) and in view of the
Lemmata 2.2 and 2.4 we can deduce from (2.25)

aij[Djv— .(BY¥) ku]Dndx+f |H| n dx

5c3-[cmndHn_1+c4-/s;(l—ulj.,+1)ndx

232) °

where ¢, = ¢,(16(BY)|g, |0/9x H(-, u)|g). Here we used that suppn C
{w>hy}, hy = hy(a,|Dy|y) large. We choose

(2.33) n=v-max(w - k,0)=v-z

and set A(k) = { X € S|w(x) > k},|A(k)| = H,(A(k)). Taking the rela-
tions (2.27)—(2.30) into account, we obtain in view of dH, = Wdx and in
view of Lemma 2.3

(2.34) / |8z|2dHn+/ LaPran, < c 1agk)|+ c- [ zaH,
A(k) A(k) T A(k)

where ¢ = c(a, n, |DY|q, |DB|g, (0/0x)H(-, u)|g). To proceed further, we
need the following Lemma:

LEMMA 2.5. For any & > 0 the integral [, ,w — k dx can be estimated
by

(2.35) & f |6z|” dH,, + e[ \A[zdH, + ¢ - e YA (k)|
A(k) A(k)
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Proof of Lemma 2.5. We shall use the identity
(2.36) f a'Dy dx +f Hrn dx + / BndH, ,=0
Q Q eI

with 7 = u - max(w — k,0) = u - z. The boundary integral can be esti-
mates with the help of (2.4) and we obtain in view of (0.6)

(2.37) a-f W-zdx < |H||ujzdx+c-/
{w>k) {w>k} {w>k

|u| | Dw|dx
}
+c- u|z dx
‘/{.w>k} I l
-2
<eg- H| zdx +c-¢e ' zdx
Joi Joet

+e f |Dw|2W"1dx +c-g! f W dx
(w>k) (w> k)

<e- [ wlsw|’ dx + e [ |’z dx
{w>k} {w>k)
+c-g - Wdx.
-

Here we used that z < W for k > k. The conclusion of the Lemma now
immediately follows.

By Lemma 2.5 we deduce from (2.34) for k > k|,
(238) [ lewlaH,+ [ L|A[zdH, < c-J4(K)].
A(K) A(k)y 1

Furthermore, from the Sobolev imbedding, Lemma 2.1 and from Lemma
2.3 we conclude

n/(n—1) (n—1)/n
(2.39) ( f 2] dHn)
S
<c(n)-| | |8z|dH, + | |H|zdH, + | W -zdH
() [ tolat, + [ \izatt, + | w-zan,

<c ((js |8z|2dHn)1/2|A(k)|1/2

+e-'/;|ﬁ|2-den+cs~szdHn).
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To estimate the first term on the righthand side we note that in view of
(2.38) we have

(2.40) (fs 52| dHn)l/z < c|A(k)|.

Hence, we deduce from (2.38) and (2.39)

B (n=1)/n )
(f || dH,,) + [ [z am, + [ Yiapzan
(2.41) \°S s s
< cld(k)|+ e f |ﬁ|2z dH, + c, f zdH,.
A(k) A(k)

Applying again Lemma 2.5 we conclude finally

n/ (n=1) (n—1)/n
(2.42) ( f E dHn)
S

<c-AK)  Vk= k.

The Holder inequality yields

1+1/n

(2.43) f zdH, < c|A(k)| Vk >k,
s
and we are now in the same situation as in (2.8). It follows that
(2.44) w=logv<ky+c-|A(ky)|”"
where k, = ky(a, |Dy|g, n) and ¢ = c([(3/9x)H(-, u)lg, a, n, |8Y|q,
|DBlg, §2).

To complete the proof of the gradient bound, we have to establish an
estimate for |S| = [, Wdx independent of p and &. To accomplish this, we
use (2.36) withn = u — . We obtain

(2.45) _/Qa"(Du)-D,(u—z[/)dx+/ﬂH(x, u)u — ) dx

e [ Ou—g)w—y)dv+ [ B-(u=y)dH, =0,
The critical term
(2.46) pof OLu=¥)u =) dx

is positive in view of the monotonicity of ®,. Using again (0.5), (0.6) and
(2.4) we conclude

(247) a /&; Wdx < C(lﬂl, |u|9> H’IQ’ IH(: \l’)lﬂ’ ID‘I’[Q? a, n)'

This completes the proof of Theorem 1.2.
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REMARK. (i) As a consequence of (2.44) and (2.47) there is a gradient
bound for solutions u of (0.8), (0.9), which does not depend on |H(-, u)|,,
but only on |H(-, 0)|,.

(i) After having finished the present article the author became
acquainted with a paper of Lieberman [8] who obtained a gradient bound
for solutions to conormal derivative problems.

3. C-Regularity. It is well known, that a solution of u of (0.2)
satisfies
(3.1) Au € L*(Q)

and therefore is in H2?(Q) for any finite p.

loc

To prove regularity results up to the boundary, we transform a
neighbourhood €; = @ N By(x,) of a point x, € 3@ with a C>diffeo-
morphism y into
(3.2) B ={xeR|x|<1,x">0}
such that
(3.3) T =y(32 N By(xy)) = { x € R"| x| < 1,x" = 0}.

The transformed u satisfies in B;” a local variational inequality of the
same type as (0.2), where the transformed a’ depend now on x too.
Furthermore, the relations

a*(p, p") = a(p,-p"), l<p<n-1,
a"(p, p") = —a"(p,—p")
are not lost by the transformation.

In order to prove the continuity of the tangential derivatives of u, we
shall use an approach due to Frehse [1]. We introduce the notations

(3.4)

(3.5) [£]7=|¢g " & VEER,
and
(3.6) Di'g(x) = +h™'-{g(x + he,) — g(x))

where e, denotes the ith unit vector.
By the same arguments as in ([1], Lemma 2.1) we have

LEMMA 3.1. Let u be a solution to (0.2) and let 0 < ® € H}*(B,(0)),
supp @ C B,. Then for each h €0, dist(supp ®, 9B,)[ and each p > 1,
¢ € R there is an ¢ > 0 such that the functions

(B7) wu;=u+e- DM@ -DMu—-4y)), j=1,....n-1,

€
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and

(3.8) uf=u+e- Dj"'[CI) D} (u—y) - c]p, 1,...,n— 1,

.
1

liein K.
Now we can show the following Lemma

LEMMA 3.2. The solution u of the local variational inequality obtained
from (0.2) lies in H**(B;,) and satisfies

(3.9) f |D2u|2 -|x|2_" dx < .

L)

Proof of Lemma 3.2. (i) We insert the function u, of Lemma 3.1 into
the variational inequality and obtain

(3.10) —f a'(x, Du))D,(®D}(u — ¥)) dx
—fr D! - ®D!(u — ¥) dk
+ [ H(x,u)-D7"(®D}(u ~y))dx >0

in view of 1 <j<n—1 and since ® = 7* is a cut-off function in
C5°(B,). The boundary integral can be estimated by

(3.11) IDBl(fy |D(72D)(u — y))|dx + c - fB D) (u — )|dx |.

Since u € H"*(R), the a'/(x, Du(x)) are uniformly elliptic and we obtain
by standard arguments that D”Du is uniformly bounded in L?(B; 1) as
h — 0 and thus D;Du € LZ(B1 2)- Now we deduce from this and from
(3.1), that D,Du € LZ(BVZ)

(ii) Let » > 3. By Lemma 3.1 and by (i) we have the inequality

(312) (Au+ H(x,u),D(® -D(u—¥)))=0, 1<j<n-1
In order to find a suitable test function ®, we define in B,(0)

(x; Du(x)), x" >0,

(3.13) (%, x") =
. b(x, x
a'/(%, —x"; Diu(x)), x"<0,
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where

u(x), x" >0,

u(x, —x"), x"<0.

(3.14) (%, x") = (

The function v is defined similarly.
Now let 8, € L*(B,(0)) satisfy 8, > 0, supp 8, C B,(0) and

(3.15) / 8,dx =1, 8,(% x")=8,(% —x").
B,
Since the b'/ are elliptic in B,, there is a function G, € Hy*( B;) so that
(3.16) f b*D,v - D,G, dx =f S,vdx Vve HM(B).
Bl Bl
It is known (see [1, 6]), that G, is uniformly bounded in Hy(B,),

g < n/(n — 1) and that G, > 0. Furthermore, G, — G in H"9, where G
has the property

(3.17) mix|” " < G(x) < m"1|x]27n
with some constant m > 0. The functions G, satisfy
(3.18) G,(%,x") = G,(%, —x").

To see this, we observe that Gh(k, x") = G,(%, —x") is also a solution of
(3.16) in view of the symmetry properties of 8, and b”/. Then, (3.18)
follows from the uniqueness of G,.

Now we can use (3.12) with ® = 72G,, where 7 € C{°(B,) satisfies
12 0,7=1inB, ,and 7(%, x") = 7(X, —x"). We get

(3.19) f a’*D,D,u - D,D,u - 7°G, dx
B!
< [D,B(fF ID,(u — ¢)|G,r dz
+f a'*D,Du - D,( — u) - D,G,r* dx
B+

+ fB a™*D,Dyu - DDy - 7°G, dx

~ | a*DyDuD;(u — ¢)G,r - 2D,Tdx
da’
dx

+ k )ID(Ghrz-Dj(u—z,b))ldx.

Bf

|H| +
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The critical term

[ a*DDu-D(y - u)- DG, dx

(3.20)

1
-2/, a"Dy(7H(D,(u = ¥))’) - D,G,dx + B

where B stands for lower order terms, can be rewritten as

1 ; . ~\2
(3.21) Z-L b*D,(7X(D,(7 - §))’) - D,G, dx + B.
This follows from the symmetry properties of i, ¥, 7, G, and b"/. But

(3.21) equals

1

(3.22) Z-/8h-72(Dj(ft—tj~/))2dx+B=B

since 7> - (D,(& — §))* lies in H}*(B,), j = 1,...,n — 1. Thus we obtain
from (3.19)—using ellipticity— that

(3.23) fB DDyl Gyr? dx < const.

forh—-0,j=1,....n -1, k=1,...,n.

For j =1,...,n — 1 the conclusion of the lemma now follows by a
lower semicontinuity argument and by (3.17). For j = n the conclusion
follows from (3.1) and from the boundedness of

(324) [ DD Gdx, k=1,..,mj=1,..,n-1.
B,

Now we are ready to establish the main inequality, from which we can
start an iteration process. Therefore we insert the function u? (see Lemma
3.1) into the variational inequality, where ® = 72 is a cut-off function.
Passing to the limit 2~ — 0 we obtain

~ 1, Dia'(x, Du) - D[z — ¢]Pr* dx
325) — | DB-7%[z—¢]Pdx + H(x,u){D(7%[z —¢]?)) dx
(3:25) — [ D7z -elPds+ [ Hxu)(D(rlz - 2]))
—~ fB D,a'(x, Du) - Dyr - 27z — &]P dx = 0

where we set z = Du — Dy.
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Due to (2.4) we can estimate the boundary integral by

(3.26) |Dﬁ|-(f3; |D1|- 27z — e]P) dx

+f 2-plz — £‘|p—1|Dz|dx +c f 2z — & dx.
B} B
Using ellipticity and Holder’s inequality we deduce from (3.25) after some
calculation the main inequality

(3.27) fB ID(x[z - &]7*V72)|" ax

2 ap—1 2
<p’-c fo |z — ¢ (lD’Tl +x,)dx
where x, is the characteristic function of supp 7 and ¢ = ¢(|z|q, |[H(-, u)|g,
|9a’/dx,|, | DB|, |Dy|). Here, we used that (3.27) will be only applied with
2] < |z]g-

From inequality (3.27) we can start an iteration as in ([1], Lemma 1.3
and 1.4). We obtain for R < 1

(3.28) osc{ z(x)|x € B§(0)} < ¢ -(Rz'"f ]Dz|2 dx)l/n + ¢ R®

forn>3anda=2-(n—2)-n?
and forn = 2

R 1/2-2/(1+4)
(329)  osc{ z(x)|x € B3 (0)) sC-([ IDz| dx)

Ve>0.

, Y22+
+c- R (f |Dz| dx)

We used the notation (++) = B, — By and () = BJ%.
Since R?>™" < ¢ - |x|?>~" on (**), we obtain by Lemma 3.2 that

(3.30) R?™n f IDz|2 dx <c f lDz{2|x|2_"dx

is small if R is small. Together with (3.28) and (3.29) this means the
continuity of z = D;u — D;y.

Again following Frehse’s proof in ([1], Chap. 3) we conclude that in
the case n = 2 D,(u — ¢) too is uniformly continuous.

REMARK. Obviously this regularity result applies to any elliptic opera-
tor

A = —D,(a'(x, Du))
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if the a'’s satisfy the symmetry condition (3.4). It is not clear, whether
Lemma 3.2 can be established without this assumption.

4. Estimates in H>*(Q). In the following we shall consider a
slightly more general problem than considered in the introduction. Let u,,
be a solution of the variational inequality

(4.1) (Auy + Huy,v —ug) >0 VoeEK,
Ki={veH"(Q) >y}
where A is an elliptic operator and
<Au,n>=f a'Dyn dx +/ BndH, |,
Q 3

Au = —D,(a'(x, u, Du)), Hu= H(x,u, Du).

(4.2)

It is well known, that u, satisfies
(4.3) Au, € L*(R)

and therefore is of class H2?(Q) for any finite p, if the coefficients are

loc

smooth enough. Furthermore, if we assume that

(4.4) —a'(x,y, DY) -y,= B ondQ
holds we have (see [2]) u, € H*?() and u, satisfies
(4.5) — a'(x, uy, Duy) -y, = B on oQ.

Recently, Gerhardt [S] showed that a solution of the corresponding
Dirichlet problem lies in H**(R), if the boundary data are of class C>.
We shall prove the following

THEOREM 4.1. Let 3Q be of class C**, B € CYY(3Q) and assume that
Y € H>*(Q) satisfies (4.4). Let the a'’s be of class C? in x and u and of
class C? in the p-variable. Moreover, assume that H is of class C* in all its
arguments. Then any solution of the variational inequality (4.1) is in H>*(Q).

As in [5], we want to show uniform a priori estimates for the solutions
of approximating problems. Since a solution u, of (4.1) is of class H*” in
view of (4.4), there is a constant M with

(4.6) 1+ |uglg + | Duglg < M.
Thus, we can replace A and H by operators A and H so that
(4.7) Auy + Huy, = Au, + Hu,



136 GERHARD HUISKEN

and so that the corresponding boundary value problems are always
solvable (see [5] for details).
Furthermore, we can choose a constant y so large that the operator

(4.8) Au + Hu + yu
is uniformly monotone, i.e.

<ffu1 + qul + yu, — AAu2 - ﬁuz — YUy, U — u2>
(4.9) 5
>clu - u2”1,2’ ¢>0.
We shall write 4 and H instead of 4 and H in the following. Let us
assume for the moment, that the a’’s and H are of class C* in their
arguments. Then we consider the boundary value problems

Au+ Hu + yu + pO(u — ¢) = yu, inQ,

4.10 .
(4.10) —a'(x,u,Du)-y,=B—-8=58, on 09

where 8 > 0 is small and where now

0 t>0
4.11 ()= " ’
(411) (1) —1*, 1<0.

Again p is a parameter tending to infinity. In view of our assumptions
on A and H, the boundary value problem (4.10) has always a solution
u € C**(Q). We want to show, that the second derivatives of u are
bounded independent of p and 6. In the limit case p — oo, u tends to a

solution i, of (4.1), where B is replaced by ;. On 9%, i1, satisfies
(4.12) - al(x, i’lo, Di‘lo) * ’Yi = Bl'

Removing then the sharper differentiability assumptions and letting 8
tend to zero we shall conclude, that i, tends to u, which therefore lies in
H?>>(Q).

As a first step we need the following Lemma.

LEMMA 4.1. Let u be a solution of (4.10). Thenu — ¢ > —c - p~/? and

(4.13) pelO(u—-y)<c?

where

(4.14) c2=sup |4y + HY|, ¢>0.
Q

Proof of Lemma 4.1. We multiply the inequality
(415) Au—AYy+Hu—Hy+y(u—y¢)+pO(u—¢)+c*=>0
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by v = min(u — ¢ + ¢ - p~ /2, 0) and obtain
(4.16) f (a'(x,u, Du) — a'(x, ¢, D)) - D,v dx
Q
+p/ (@(u —¢)+ ch._l)de
Q
+f (Hu — HY + y(u — ¢))vdx
Q
+ (a’(x,xl/,D\p)-yl-F,B)vdHn_lSO.

aQ

The conclusion now essentially follows from the boundary condition

on ¢ (4.4).
We deduce from this Lemma that
(4.17) Au € L*(Q)

with an uniform bound and

(4.18) lul2p <c, V1<p<oo,

where the constant depends on p, ||{]|, .., 0§ and other known quantities.
We shall denote by f* any vectorfield such that

(4.19) il < (1 +lul2.r)”

for any 1 < p < oo, where ¢ and m are arbitrary constants depending on
p. Furthermore, f denotes any function which can be estimated as in
(4.19).

As in §3 we assume the equation (4.10) to hold in B = {x €
B,(0)|x" > 0}. Then the boundary condition takes the form

(4.20) —a"=B,(x) onT = { X € B)|x" = O}
where B, is related to B; by some positive factor depending on the

transformation.

LEMMA 4.2. The solution @, of
(4.21)  {(Aig + Hig + y(itg — uy),v — itg) =0, VoveEK,

where
(4.22) (dig,n)= [ aDndx+ [ BmaH,_,
Q aQ

satisfies the strict inequality
(4.23) i, > ¢ on d%.
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Proof of Lemma 4.2. In view of (4.12) and (4.4) we have

(4.24) — a'(x, @1y, Dity) -y, < —a'(x,¢, DY) -y, onadQ
or equivalently

(4.25) — a™(x, &1y, Dity) < —a"(x,¥, DY) onT.
Now assume that there is x, € 9§} such that

(4.26) ito(xo) = ¥ (x).

It follows that D (&1y — ¢)(xo) =0, V1 <j <n — 1. Thus, we obtain
from (4.25)

(4.27) 0<f (xq, tity +(1 — t), tDity +(1 — 1) DY)
X (D, (g — ¥)(x,)) dt
+/1 da” ——(xq, titg +(1 — t)y, tDiry +(1 — t) DY)

><((i"o - 1!/)()60)) dr
= [Mam () - Dy~ ¥)(xo) b
But in view of i, > ¢ we have

(4.28) D, (1, — ) <0 atx,.
Thus, the contradiction is a consequence of ellipticity.
Since we already know that in the case p — oo the solutions u of the

approximating problems (4.10) tend to #, uniformly, we can assume in the
following that p is so large that

(4.29) u>y ondf.
In particular we have
(4.30) O(u—y¢)=0(u—1¢)=0 onaQ.

Now we are ready to estimate the second tangential derivatives of u.

LEMMA 4.3. The second tangential derivatives of u can be estimated by
(4.31) sup |D,D,u|l < ¢ (1 +|jull2.00)
Bfr/z

for any e,0 < & < 1, where ¢ depends on ¢, ||ul|, , and known quantities.

Proof of Lemma 4.3. Following ideas in [5] and [7] we shall estimate
the quantity

(4.32) A-a*D.Du+ D,D,u, l1<p,o<n-1,
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from below. As in [5] we derive the differential inequality

(4.33) - D,.(a"ijw) +yw+ u®@(w —w) = f+ D,f’

where
w=A\-a"D,Du+ D,Du,

(4.34) <r,s<n,
w=A-a*D,Dy + DD,

and A is large.

We set r = p, s = o and multiply (4.33) with
(4.35) w, N = min(w -n? + k,O) -p?

wheren = 1in B, ,, and supp  C B, and
(4.36) k > k, = sup |w|.
Q

Using ellipticity and (4.19) we obtain
(4.37) / IDw{zn4 dx + vy f w} dx
B Bf
< ¢ (1 +lull2e) "|A(K)]

+LVMWW+L

where A(k) is the set { x € B}'|w - n* < —k}. The first boundary integral
can be estimated by

nj Cm2 . I
a”’Dw - n° - wy|dk

(4.38)  |If o (fB |Dwldx + c - fB Wy dx

<o IDulatae+ o1+l "G

To estimate the second boundary integral, we conclude from the
equation in view of (4.30) that

(4.39) Dw = D,;F + D;D,D,u
where D, F = f. In order to estimate the critical term
(4.40) a™D,D,D,u
we differentiate the boundary condition (4.20) and obtain
. da” da”
Y = .
(4.41) a”D,D,u = D,B, + 5 D,u + %

L4
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and

du " Dou + ox

ni da” da”
(4.42) — a"’D,D,D,u= D,D,B, + Dp( )

+D,(a") - D,D,u.
But this equals f and so we have

(4.43) fr

which can be estimated as in (4.38). Finally, we conclude

a”Dw - - wk|d5c < f |f - w|dx
T

(4.44) f |Dw,| dx + v / w2dx < ¢ (1 +||uface)” - |A(K)]
B B

for any k > k,. Now the conclusion of the Lemma follows from the same
arguments as in ([S], Theorem 2.2).

To get a similar bound for the mixed derivatives D, D,u, we remark
that due to (4.41)

(4.45) —a""D,Du=g+ a"D,Du onT

with some bounded function g and so—again using a”"” > 0—we deduce
that

(4.46) D, D,ul < c(1 +|D,D,ul) < &, -(1 +|lull2e0)°

holds on I'. Repeating now the proof of Lemma 4.3 with w=A-
a*D,Du + D,D,uand k > ko = ko + &,(1 + |lull,.,)% we conclude that
(4.46) holds in B}, since no boundary integrals occur.

Finally, using the equation we can estimate D, D,u in terms of D,D,u
and D, D_u. Thus, we obtain

(4.47) lllz.co. 572 < €+ (1 + flullace)®

foranye 0 <e < 1.

As 92 is compact, this estimate holds in a boundary neighbourhood.
In the interior of £ the estimate can be derived by a version of the proof
of Lemma 4.3. Thus, we have an a priori estimate for ||u|, ., o depending
only on known quantities, but not on p and 8.

Letting now p tend to infinity, 4 tends to the (unique) solution i, of
(4.21). Then, letting & tend to zero, we arrive at a function & € H>(Q)
solving the variational inequality

(A + Ha + y(&t — uy),v— )20, VYveK,

4.48 4
( ) (Ait, n) =/ a'Dmdx + f BndH,_,
Q 30
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where 4 and H satisfy the sharper differentiability assumptions. By an
approximation argument we conclude, that (4.48) admits a solution & €
H?>*(Q) assuming only the weaker conditions, since the estimates are
independent of the sharper assumptions. The conclusion

(4.49) it = u,

now follows from the uniqueness of a solution of (4.48).
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