Pacific Journal of

Mathematics

ALGEBRAIC ELEMENTS OF A BANACH ALGEBRA MODULO

AN IDEAL

BBBBB ALAN BARNES




PACIFIC JOURNAL OF MATHEMATICS
Vol 117, No 2, 1985

ALGEBRAIC ELEMENTS OF A BANACH ALGEBRA
MODULO AN IDEAL

BRUCE A. BARNES

Let A be a Banach algebra and rad(A4) its Jacobson radical. It is
classical that if f> — f € rad(A4), then 3¢ € A4 such that ¢ = ¢ and
e — f € rad(A). Calkin and Olsen have proved related results when 4 is
the algebra of all bounded linear operators on a Hilbert space H and the
ideal is the ideal of compact operators on H. In this paper we consider a
Banach algebra 4 with unit and an ideal X of 4 and prove generaliza-
tions of some of these results.

Introduction. Let 4 be a Banach algebra and let rad(A) be the
Jacobson radical of A. A useful classical result in the theory of Banach
algebras states that if /> — f € rad(4), then 3 e € 4 such that e> = ¢ and
e — f € rad( A) [13, Theorem (2.3.9)]. A related result proved by Calkin in
1941 concerns the Banach algebra 4 = #( H), the algebra of all bounded
linear operators on a Hilbert space H, and the ideal #"( H) of compact
operators on H. He proved that if F = F* and F? — F € #(H), then
3E € #(H) such that E= E*=E* and F — E € X' (H) [5, Theorem
2.4]. In [12] C. Olsen proved a surprising generalization of Calkin’s result:
If p(z) is a polynomial and p(T) € #'(H), then 3S € #(H) such that
p(S)=0and T — S € X (H). An element S of an algebra is algebraic if
p(S) =0 for some nonzero polynomial p. Thus Olsen’s Theorem char-
acterizes an operator that is algebraic modulo ) (H) (a polynomially
compact operator) as the sum of an algebraic operator in #(H) and a
compact operator. Other theorems of this type have been proved by C.
Akemann and G. Pedersen [1] and by R. Miers [11]. In this paper we look
at the general situation of algebraic elements modulo an ideal. The setting
is a Banach algebra 4 and an ideal K of A4 (K need not be closed). For
convenience we assume that 4 has a unit (a unit could be adjoined
without loss of generality). First we prove a useful lemma concerning
when an algebraic element modulo K is the sum of an algebraic element of
A and an element of K. The result is elementary, yet strong enough to
allow us to prove generalizations of many of the results mentioned above
and give some other applications besides.

At this point we establish some notation. For f € A we denote the
spectrum of f in A as a,(f) or a(f) when 4 is understood. If o is a
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spectral set of f (an open and closed subset of a( f)), then e(o) is the usual
spectral idempotent associated with o [4, pp. 36-37]. Some of the applica-
tions concern algebras of operators. Throughout, X will denote a Banach
space, Z( X), the algebra of all bounded linear operators on X, #°( X), the
ideal of compact operators on X, 7 ( X), the ideal in #( X) of finite rank
operators, and #( X), the ideal of inessential operators on X [6, p. 33]. On
the algebraic side, the socle of 4, denoted soc({ A), plays a role; see [13, pp.
46-47]. In particular we prove an Olsen-type theorem for elements
algebraic modulo soc( A). Note that when A = #( X), soc(A4) = T (X).

1. Algebraic elements modulo an ideal. Throughout this paper 4 is

a Banach algebra with unit 1, and K is an ideal of 4. Our first order of
business is to prove our main tool. This tool reduces many questions
concerning algebraic elements in 4 modulo K to the verification of the
following hypothesis, labeled H,.

H,: N is a fixed positive integer such that for any k%,

1 < k <N, and any idempotent e € A4, if f € A4, efe = f,

and f*€ K, then3ge€ 4, g=ege, g"=0,and 3h € K

such that f = g + A.

Note that H, is always true. The tool we use is the following.

LEMMA 1. Assume K is an ideal of A which satisfies Hy. Let p(z) =
IT72,(z = ;)™ be a polynomial with 1 <n, <N for 1 <j<m.Iff€ 4
has the properties

M p(f) €EK;and
(2 o(f) =VU7_,0, where {o0,,...,0,)} is a digjoint collection of spectral
sets of fwith A ; € o, for 1 < j < m;
then f = g + hwherep(g) =0andh € K.

Proof. For each j let e; = e(o;). Then {e;,...,e,} is an orthogonal set
of idempotents with 1 = Y7, e;. Let

q,(z)= TI (z-a)™
k=1, k+#j

Set 4, = e;Ae;, and note that from spectral theory we have 0, ( fe;) = o;.
Thus for each j 3 r, € 4; such that

q,(fe;)r; = e,.
It follows that
(fej - Ajej)"’ € K.
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By hypothesis H,, 3 g, h;such thate,ge, = g, g/" = 0,h, € K, and
fe,—ANe =g, +h,
Let g =X ((Aje, + g;), and h = L7, h;. Note that f= g + h and

J=1")

h € K. It remains to verify that p(g) = 0. Now for eachj, (g — A))e; = g,
so that

(g - }\j)njej = g;"’ = 0.
Therefore

p(g) = (jf:ll(g— }\j)”f)(e1 +e,+ - +e,)=0.

REMARK. Assume that o( f) is totally disconnected and {A,,...,A,}
C o(f). Then it is easy to see that there exists a disjoint collection of
spectral sets of f, {0y,...,0,,} with o(f) =U7_,0,and A, €0, for 1 <
< m. Thus in this case (2) of Lemma 1 holds automatically for f. This
remark applies in the following situation. Let 4 = #(X) and K C #( X).
If p(z) is a nonzero polynomial such that p(7) € K, then by the Spectral
Mapping Theorem p(o(T)) = o( p(T')) which is a countable set. There-
fore o(T') is countable, hence totally disconnected.

For f € A, let A(f) be the closed subalgebra of 4 generated by f and
the unit element, and let (f)““ denote the collection of all elements of A
that commute with everything that commutes with f.

For 7 a compact subset of C, let # denote the polynomial convex hull
of 7 [4, Def. 10, p. 101].

The case where p(z) has simple zeros is of special importance. We
derive a corollary concerning this case.

COROLLARY 2. Assume that the polynomial p has only simple zeros, and
assume that (1) and (2) hold in Lemma 1.
(1) The algebraic element g in Theorem 1 can be chosen to be

£= X (o) € (1)
(2) If {6__6,,} is a disjoint collection, then
g= % he(5) € ().
k=1
Proof. Of course H, is always satisfied by any ideal K. Then as

constructed in Theorem 1, g = X7, A,e(0,), and g € (f)““since e(0,) €
(f)< for all k. Thus (1) holds. Now assume that p(z) has simple zeroes
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ando(f) = U}, 0, asin (2) of Lemma 1. Suppose further that { 6,,...,6,,}
is a disjoint collection. By [4, Theorem 11, p. 101]

m

%I(f)(f) = (OA(f))A= U é,.

k=1

Therefore
g= 2 Ae(8,)
k=1
is in A ( f) and has the properties p(g) = Oand f — g € K.

If A=%(H) and K is any ideal, K € X' (H), then Corollary 2
applies. However, Olsen has noted that there exists an operator T € #(H)
such that T2 is trace class, but (T — J)? # 0 for any trace class operator J
[12, Example 4.6]. Thus although Corollary 2 holds for K, there is no
general extension of Corollary 2 to the situation where p(z) does not have
only simple zeroes.

Now we give two examples to show that even when solutions g to
p(f — g) = 0 exist, there need not exist a solution that commutes with f;
and even when there are commuting solutions, there need not be a
solution in 2 ( f).

ExampLE 3. Let H be a separable Hilbert space, and I the identity
operator on H. Fix an orthonormal basis of H, and let J be the diagonal
operator relative to this basis with diagonal entries J,, = 1/k, k > 1. Of
courseJ € ¥ (H) and

(D) If S € #(H) and SJ = JS, then S is a diagonal operator.

Now define T € 4(H ® H) by
_ (0 J
T—(I 0)‘
Then

0o J

By Olsen’s Theorem [12, Theorem 2.4] 3R € ¥ (H & H) such that
(T — R)? = 0. We prove that R cannot commute with 7. Assume on the
contrary that RT = TR. Write

R, R
R=( ! 2).
R, R,

T? = (J 0) e (Ho H).
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From the fact that TR = RT, one easily computes that

(2) R,=R,, RJ=JR,, and R,=JR,=R,J.
Then using (2) and the assumption (7 — R)? = 0 one can derive
(3) R(I-R,)=0 and (I-R,)’J=—R2

By (1) and (2) R, and R, are diagonal operators in 2" ( H), and thus
(R~ 0 and (Ry),, —0

as k — oo. Using the equation R;(I — R;) = 0, we have that (R,),, =0
for all but a finite number of k. But this contradicts the equation in (3):
(I — R3;)%J = —R?. Thus no commuting compact solution of (7 — R)?
= ( exists.

ExAMPLE 4. Let § be the compact subset of C given by
Q={zeC:|z|=1} U{-2,2}.
Let A4 be the algebra of all complex-valued continuous functions on . Let
K={ge4:g(-2) =g(2) = 0}.
Set f(z) =z for|z|=1,f(—2)=0,f(2) = 1. Then f? — f € K. If e is the

idempotent e(—2) =0 and e(z) =1, z € @\ {—2}, then (f—e) € K.
But

"mm(f) = (GA(f))A= {Z: lz| < 1}-

Since this set is connected, A ( /) contains only the idempotents 0 and 1.

Now we consider several applications. In considering general roots
and logarithms in a Banach algebra, the roots and logarithms of the unit
element play a significant role; see [9] or [4, p. 43, pp. 89-90]. We look
briefly at the situation concerning roots and logarithms modulo an ideal K
of operators on a Banach space X where K C #(X). In particular the
results apply when K is one of the Von Neumann-Schatten p-classes.

We adopt the terminology in [4, p. 89].

PROPOSITION 5. Let A = #(X) and K be an ideal of A with K C #( X).
Assume that T € A is invertible mod(K), and that o(T) is irrotational
mod(2w/n). If T" = R” mod(K), then T and R commute mod(K) and
T = SR + J, where S commutes with T and R mod(K), S" = I, and
J K.

Proof. That TR = RT mod(K) follows as in the proof of [4, §18,
Prop. 11 part (i)] (in the proof interpret equality as equality mod( K)).
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Now let R’ be an inverse for Rmod(K) and set Q = TR'. Then
Q" = I'mod(K) (note that TR’ = R'Tmod(K)). By Corollary 2 35 €
A(TR’) such that S* = I and TR’ — § € K. Since T and R commute with
TR’ mod( K'), both operators commute with .S mod( K).

A result similar to Proposition 5 holds for logarithms modulo an ideal
KcA(X) f Te B(X) and f(z) is a nontrivial holomorphic function
defined on some connected open set U with o(7T) C U, then f has at most
a finite number of zeros on o(7'). Thus f is of the form f(z) = p(z)g(z),
where g is holomorphic in U and has no zeroes on o(7'), and p is a
polynomial. Therefore if f(7T) € K, then p(T) € K and we can use
Lemma 1. These remarks apply to the entire function f(z) = exp(z) — 1.
These ideas can be used to establish the following result. We omit the
proof (see [4, p. 90]).

PROPOSITION 6. Let A = %#( X) and K be an ideal of A with K C #( X).
Assume that T € A, and o(T) is incongruent mod(2wi). If exp(T) =
exp(R) mod (K), then T and R commute mod(K) and T = (S + R) +J
where S commutes with T and R mod(K), exp(S) = I, andJ € K.

Next we consider the classical case where the ideal K is rad(4). We
denote the center of 4 by Z( 4).

THEOREM 7.

(1) If p(z) has simple zeroes and p( f) € rad(A), then 3 g € A(f) such
that f — g € rad(A) and p(g) = 0.

(2) If f € Z(A) and p is a nonzero polynomial with p(f) € rad(A4),
then the minimal polynomial for f modulo rad( A) has simple zeroes. Thus (1)
applies.

Proof. Assume that p(z) has simple zeros and p(f) € rad(4). Then
p(a(f)) = o(p(f)) = {0} [13, Theorem (2.3.2) (iv)], so that o( f) is finite.
Therefore (2) of Lemma 1 is automatically satisfied, and Corollary 2
implies that (1) holds.

Now suppose f € Z(A4) and p(f) € rad(A4) where p(z) is a nonzero
polynomial. Since f € Z(A), we have e, = e(0,) € Z(A) for all k. As in
the proof of Lemma 1,

((f = Ap)e,)™ € rad(4).
Now if h € Z(A) and h" € rad(A), then (Ah)" € rad(A4). This implies by
[13, Theorem (2.2.9)] that A4 is included in every primitive ideal. Since



ALGEBRAIC ELEMENTS OF A BANACH ALGEBRA 225

rad(A) is the intersection of all primitive ideals of 4 [13, Theorem
(2.3.2)(3)}, h € Ah c rad( A). It follows from this argument that

(f=A)e,€rad(4), 1<k<m.
Let

&= i)\kek and Q(Z)”—'Iﬁ(z_}\k)-

k=1
Then

f—g=k>§l<f-xk)ekerad(z4>, 4(g) =0, and g(f) < rad(4).

2. Algebraic elements modulo the socle. In this section we prove
that if 4 is a semisimple Banach algebra, p a polynomial with p(T) €
soc( A), then 3J € soc(A4) such that p(T — J) = 0. As one application of
this result, we have an Olsen-type theorem for 4 = #( X) relative to the
ideal K = 7 (X) = soc(Z( X)).

Let X be a Banach space, and let X’ be the dual space of X. For
x € Xand a € X', we write a(x) = (x, a). A subspace I of X’ is total if
(x,ay =0 for all « € I' = x = 0. Also, we use the notation a ® x to
denote the operator

(a®x)(y) =ea(y)x, yeX
For T € #(X) we denote by T” the usual adjoint operator of 7 on X'. We
let A”(T') denote the null space of 7.

LEMMA 8. Assume X is a normed linear space and I is a total subspace
of X'. Let T € #(X) be such that T'(I') C I'. Suppose {x,,...,x,} is a
linearly independent subset of X, and set M = span{x,,...,x,}. Assume
further that M N A(T) = {0}. Then 3{ay,...,a,} C I such that a,(x)
= 8, and o, (N(T)) = {0}.

Proof. Assume n = 1. If (x,, T’a) = O for all @ € T, then (Tx, a) =
0 for all « €T, and this implies that Tx, = 0, a contradiction. Thus
daeT with (Tx,a) =(x T'a) =1. Set a = T’a, and note that
a,(A(T)) = {0}. Now assume that the result holds for » — 1, and let
{x,,...,x,} be as in the statement of the lemma. Choose {a;,...,a,_;}
C T such that (x;,a)=96,, 1 <k<n-—1, and a(A(T)) = {0}.
Define S and G on X as follows:
n—1
G=)Y a®x,, and S=T(I-G).
k=1
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Then
N(T) + span{x,,...,x,_,} CA(S), and
n-1
Sx,=T|x,— Y, a,(x,)x,|+0.
k=1

As in the argument at the beginning of the proof, we can choose a, € I'
such that &, (x,) =1 and a,(A7(S)) = {0}. Then a,(x;) =0 for1 <j <
n — 1 and a,(A"(T)) = {0}. Thus the result follows by induction.

Now fix I' a total closed subspace of X". Let

J(X,T)=span{a® x:a €T, x € X}, and
Z(X,T)={TeB(X): T(T)cT}.
Then (X, T') is an ideal in the algebra «/( X, I'). The previous lemma
can be restated as follows:

Suppose T € (X, I') and M is a finite dimensional subspace of X
with M N A°(T) = {0}. Then there exists a projection F € (X, I') such
that F(X) = M and /" (T) C /'(F).

Here F is the projection,

n
F=) a,®x,
k=1

where {x, } and {a,} are as in Lemma 8.

LEMMA 9. Assume T € (X, ) and T" € T (X, T'). Then there exists
G € 7(X, ') such that [T(I — G)]" = 0.

Proof. Suppose n = 1. Then since T € (X, ') we have X = M &
A" (T) for some finite dimensional subspace M C X. By Lemma 8 3 F a
projection in (X, I') such that F(X) = M and F(A(T)) = {0}. Thus
T(I - F)=0.

Now assume that the result holds for n — 1, and 7" € (X, I'). Set
R = T(X). Since T" !|R is an operator with finite dimensional range,
there exists a finite dimensional subspace M C R such that

R=Ma&[Rn(T" ).

By Lemma 8 3E € (X, T') such that E(X) = M and E(A/(T" ")) =
{0}. Then

(T(1 = E))" (W (T"1)) = {0},
and it follows that
(T(I-E)" 'eJ(R,T).
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Applying the induction hypothesis, 3 F € (R, I') such that
[T(1 - E)I - F)]""(R) = {0}.
Of course we can consider F as an operator in.7 (X, I'). Then
[7(1 - E)(1 - F)]"(X) < [T(1 - E)(I - F)]""(R) = {0}.

This proves the lemma.

Let A be a primitive Banach algebra. By {13, Theorem (2.4.12)] there
exist a Banach space X and a total closed subspace I' of X’ such that A
can be represented as a subalgebra of &Z( X, I') and soc(A4) as (X, I).
Using this representation, we prove that Lemma 1 applies when 4 is
primitive and K = soc(A4).

THEOREM 10. Let A be a primitive Banach algebra with unit. If T € A
and p is a polynomial with p(T) € soc(A), then there exists J € soc(A)
such that p(T — J) = 0.

Proof. As noted above, we may assume that 4 is a subalgebra of
(X, T') and that soc(4) = I (X, I'). We verify that H,, holds relative to
J(X,T) for N > 1. Suppose that T" € 7 (X, T) and E = E* € A with
ETE = T. By Lemma 9 3G € (X, I') such that (T(I — G))" = 0. Then
[ET(E — EGE)]"=0. Thus T = T(I — G)E + TGE, TGE € 7 (X, I),
E(T(I — G)E)=T(I — G)E, and (T(I — G)E)" = 0. This verifies H,.

Finally, since p(T) € (X, I'), we have o( p(T)) is finite, and thus
o(T) is finite. Therefore Lemma 1 applies.

Recall that 7 ( X) is the ideal of bounded operators on X with finite
dimensional range. The following corollary was noted by Olsen [12,
Theorem 4.5] in the case where X is a Hilbert space.

COROLLARY 11. Let X be a Banach space. If T € #(X) and p is a
polynomial with p(T) € T (X), then 3J € I (X) such that p(T — J) = 0.

Now we extend Theorem 10 to the case where A4 is semisimple.

THEOREM 12. Let A be a semisimple Banach algebra with unit. Let K be
an ideal of A with K C soc(A). If f€ A and p is a polynomial with
p(f)€E K, then3h € K such that p(f — h) = 0.

Proof. The ideal K is an algebraic direct sum of minimal ideals of 4.
There exists a finite set of minimal ideals of A4, { M;,...,M,}, such that
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p(leEM & --- &M, Let I,={geA: gM;= {0}}. Let 7, be the
quotient projection, 7: 4 - A/I,. Then 7(A4) is a primitive Banach
algebra with unit and #;(M;) = soc(;(4)). Also,

p(m(£)) = 7(p(f)) € 7{M,).
Therefore by Theorem 10 3 &, € M, such that
Wj(p(f~ hJ)) =p(7rj(f_ hj)) =0.
Thus p(f— h;) € I;. Leth = 7_, h;. Now
p(f-h)eM o ---o M,
Since p(f — h,) € 1I,, we have for w, € M,,
p(f— h)wk =p(f— h)w,=0.
It follows that

p(f—h>e|r"m

k=1

Nn[M e ---o M, ={0}.

We note one application of this result. Let G be a compact group, and
let M(G) be the measure algebra on G [7, p. 269]. Then soc(M(G)) =
J(G), the ideal of all trigonometric polynomials on G [8, p. 5]. This is
verified in [3, Lemma A.6.1].

COROLLARY 13. If p € M(G) and p is a polynomial with p(p) € 7 (G),
then3 f € 9 (G) suchthatp(p — f) = 0.

3. Applications te C*-algebras. Throughout this section we assume
that 4 is a C*-algebra. When A = #(H), then soc(4) = A (H). Olsen’s
Theorem [12, Theorem 2.4] involves algebraic elements modulo soc(4) in
this specific situation. We prove a result that generalizes Olsen’s Theorem:
If A is a general C*-algebra and K is a closed ideal, K C soc( 4), then if p
is a polynomial with p(T') € K, then 3J € K such that p(7 — J) = 0.

First we prove a lemma.

LEMMA 14. Let K be an ideal of A. Assume that e = e*> € A, E = E* =
E? € A and that

(1) Ee = e and eE = e.
Assume further that the ideal EKE in the C*-algebra EAE has the property:

(2) if k € EAE and k" € EKE, then 3 h € EKE such that (k — h)" =
0.

If f=efe and f" € K, then 3g€ 4 with g = ege, g" =0, and
3h e Ksuchthatf=g + h.
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Proof.

fr=1(f)""f=(fEe)" 'f=(/E)"'}.
Therefore (EfE)" = Ef"E € EKE. By (2) EfE = EgE + EhE where
(EgE)" = 0and h € K. Now
f = ef = Eef = Efe = Ege + Ehe.
Also, e( Ege)e = Ege,
(Ege)" = (Eg)"e = (EgE)"e = 0,
and Ehe € K.

If A is a semisimple normed algebra and E = E? € 4, then it is not
difficult to prove that

soc( EAE) = Esoc(A)E.
We use this fact in the proof of the theorem.

THEOREM 15. Let A be a C*-algebra with unit, and let K be a closed
ideal of A such that K C (soc(A))". If T € A and p is a polynomial with
p(T) € K, then3J € K such that p(T — J) = 0.

Proof. Since K C (soc(A))~, K is a Riesz-algebra [3, p. 60]. This
implies that o( p(T)) is countable. Therefore o(7") is countable by the
Spectral Mapping Theorem. Thus (2) of Theorem 1 is automatically
satisfied for T. We verify that K satisfies H, for any N. Using the
construction given in [3, pp. 79-81], 4 has a representation as a closed
*-subalgebra of B( H) with the properties:

(i) there is an index set A such that {Hy: A€ A} U{H,} is a
collection of mutually orthogonal closed 4-invariant subspaces of H with
H = H, ® X, ., H, (Hilbert space direct sum);

(i) for all A € A, A|H, D X' (H,).

Also, using the fact that K is a Riesz (or annihilator, or dual) C*-algebra,
we have from [13, Theorem (4.10.14)]:

(i) R € K if and only if R, = R|H, € &' (H,) for all A € A, and

for eache > 0,

(N € A: |Ry]| = e} is finite.

Let V be the von-Neumann algebra generated by 4 as a subalgebra of
#( H). The characterization of K in (iii) implies the key fact that

K is a closed ideal in V.
Assume T" € K. By [10, Theorem 2} 3 E = E* a projection in V such that

T"'E e Kand (I - E)T € K.
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We prove that 3J € K such that (T — J)" = 0 by induction. Certainly
this is true if n = 1. Assume it holds true for n — 1. Now let E be as
above.

T=ET+(I-E)T and (I-E)T<K.
Therefore 3J, € K such that T"~! = (ET)"" ' + J,,. Thus

(ETE)"™' = (ET""'E — EJ,E) € EKE.

As noted before the statement of the theorem, soc( EVE) = Esoc(V)E.
Therefore EKE is a closed ideal in the closure of soc( EVE). Applying the
induction hypothesis we have 3J, € EKE such that (ETE — J;)"' = 0.
Set S, = ETE — J, (note ES,E=S,). Let J=J, + (I — E)T € K, and
S=T-—J=ESE+ ET(I — E). Then

S" = [ES,E + ET(I — E)]”

= (ES,E)" +(ES,E)" 'ET(I — E) = 0.

Now suppose 7" € K and e = e? € A with T = eTe. Choose E = E*
= E? € 4 such that Ee = e and eE = E [14, Theorem 6.1]. We have EKE
is a closed ideal contained in the closure of the socle of the C*-algebra
EAE. Thus the previous argument establishes that (2) of Lemma 14 holds.
Then it follows from that lemma that H, is true for X for all N.

The West Decomposition in a C*-algebra A states that if K is a closed
ideal, K C soc(A), and f is quasinilpotent modulo K, then f=gq + A
where ¢ is quasinilpotent (]|g"||/" = 0 as n = o0) and h € K [3, C*.2.5].
We note that in this same situation, Theorem 15 implies that when
f" € K, then f = g + h where g” = 0 and & € K. Whether this property
holds when K is an arbitrary closed ideal is an open question [1, Question
2.7]. Akemann and Pedersen prove that this is so for n = 2 [1, Prop. 2.8].
We use their result and Lemma 1 to prove our next theorem. If the
question of Akemann and Pedersen [1, Question 2.7] has an affirmative
answer, then the next result would be true with no restriction on the
integers n ;.

THEOREM 16. Let A be a C*-algebra and K be a closed ideal of A. let

m

p(z)= I_I (Z - }‘j)nj

j=1
where n; =1 or 2 for all j. If f € A has properties (1) and (2) listed in
Lemma 1, then f = g + hwherep(g) = 0andh € K.

Proof. It is enough to verify H, holds for K. Assume f € 4, e?> = e €
A, f = efe, and f? € K. By [14, Theorem 6.1] there exists E = E* = E* €
A such that Ee = e and eE = E. Also, by the Akemann-Pederson result
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[1, Prop. 2.8] property (2) of Lemma 14 is satisfied with n = 2. Thus by
that lemma, 3g € 4 with g = ege, g2 =0, and 34 € K such that f =
g+ h.

(1
[2]
3]

(4]
(5]

(6]

[7]

(8]
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