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The main result of this paper is (a slightly stronger form of) the
following theorem: let 7 be a countable complete first-order theory which
is stable. If, for some a > 1, the Malitz quantifier Q2 is eliminable in 7
then all Malitz quantifiers Qf' (8 = 0, m > 1) are eliminable in 7. This
complements results of Baldwin-Kueker [1] and Rothmaler-Tuschik [3].

1. Introduction. In this paper we consider various logics extending
first-order logic that are obtained by adding quantifiers asserting the
existence of a large homogeneous set of n-tuples. For a« > 0, m,n > 1,
Q" is a quantifier binding m - n variables whose semantics is defined by

A Oz, - X,0(%,....%,,)
iff there is a set X C A" of power > 8
which is homogeneous for ¢, i.e., for all n-tuples
Bl,...,i)m eX:AE <p[51,...,7)m].

a

The quantifiers Q""" were introduced by Baldwin and Kueker in [1] and
denoted by Q*™". For n = 1, Q7" is the usual Malitz quantifier of order
m in the R -interpretation, and Q' is just the cardinality quantifier Q,
(“there are ¥, many”). We shall also consider another family of quanti-
fiers: fora = O and n > 1, E is defined by

QI = Eo,:'xl ‘xnyl T yn(P(f,)_’)
iff @ is an equivalence relation on 4" of index > N .

The statement on the right side is expressible by a sentence of L(Q>"),
but there is no L(QL")-sentence equivalent to it. So, being strictly
stronger than QL", E” may be viewed as a weak form of Q2.

Adjoining a quantifier Q7" to an elementary logic L results in an
increase of expressive power. There are, however, first-order theories that
admit elimination of Q)" for each L-formula ¢(X,,...,X,, y), where
I(X,) = --- =1I(x,,) = n, there is another L-formula §(y) such that, for
all models % &= T of power > N _andalla € 4,

(A,a)=Ed e Q1'% -+ X,9.
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Throughout this paper T always denotes a countable complete first-order
theory with infinite models. For simplicity we assume that the language of
T does not have function symbols.

If Q7" is eliminable in T, this has interesting consequences. Firstly, 7’
remains complete as an L(Q")-theory. Secondly, if T is decidable and
the elimination of Q)" can be carried out effectively, then it is also
decidable whether a given L(Q2"")-sentence holds in some (all) model(s)
of T. In many cases elimination procedures are known; for a survey see
[2].

Aside from investigating particular examples, it is natural to look for
purely first-order properties of T which imply or characterize eliminability
of certain quantifiers Q7"". Another problem is to determine the relative
strength of eliminability of various Q7". Regarding the N j-interpretation
Baldwin and Kueker [1] gave a solution to both problems if stability of T
is assumed.

THEOREM 1.1. (a) If T does not have the finite cover property (f.c.p.)
then all quantifiers Q3" for m, n > 1 are eliminable in T.
(b) If T is stable and E} is eliminable in T then T does not have the

f.c.p.

Thus Theorem 1.1. shows that in the stable case the following are

equivalent:
(i) T does not have the f.c.p.,

(i) all quantifiers Q" and E[ are eliminable in T;

(iii) any single quantifier Q" or EJ (m > 2) is eliminable in 7.

Regarding N -interpretations for a > 1 one has to look for a first-order
property different from “not f.c.p.” in order to characterize eliminability
of Q" or E;. For example, put T:= Th(A4, R), where R is an equiva-
lence relation on A with infinitely many equivalence classes and each class
infinite. T is w-categorical and w-stable. Hence, by Theorem 7 of [1], it
admits elimination of all Qg"". Thus, by Theorem 1.1, T does not have the
f.c.p. However, none of E or Q7" for a > 1 is eliminable in 7.

In [3] Rothmaler and Tuschik introduced the notion of a regular
theory and proved

THEOREM 1.2. If T is regular then all quantifiers Q7" (a« > 0, m > 1)
are eliminable in T.

It is also mentioned in their paper (“added in proof”) that, for stable
T, the converse of Theorem 1.2 is true. This suggests regularity as a
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substitute for “not f.c.p.” when looking at all Malitz quantifiers Q"".
Yet, when this result is compared to Theorem 1.1, two questions remain
open:

(1) Does regularity of T imply eliminability of Q7" for n > 1?

(2) Is there a single quantifier whose eliminability implies that of all
Qu"?

It will turn out (see Corollary 3.4) that, in the stable case, question 1
may be answered positively. When using a slightly more general concept
than regularity, which we call strong regularity, the stability assumption
can be dropped (cf. Definition 2.3 and Theorem 2.4):

THEOREM 1.3. If T is strongly regular then all quantifiers Q7" (a = 0;
m, n > 1) are eliminable in T.

This theorem is also due to Rothmaler and Tuschik (compare the
appendix of [3]).

With regard to question 2 the main result of the present paper shows
that the situation closely parallels that of 1.1(b).

MAIN THEOREM (see 3.2). Let T be stable and suppose some quantifier
Qr"or EI (where o > 1 and m > 2) is eliminable in T. Then T is strongly
regular.

Hence, for stable 7', the following are equivalent:
(1) T is strongly regular;

(1) all quantifiers Q7" are eliminable in T,

(iii) any single quantifier EZ or Q7" (m > 2, « > 1) is eliminable
in T.

The main theorem partially answers problems 2 and 3 of [2]. It will be
proved in §3. Section 2 contains definitions and known results. Moreover
it 1s shown that the connections among eliminability of E for various a
are exactly the same as for the cardinality quantifiers Q. We thus obtain
a generalization of some of Tuschik’s results in [5].

2. We shall sometimes abbreviate the statement that a quantifier Q
is eliminable in a theory 7 by EL,(Q). If, for any generalized quantifier
Q and Q’, L(Q) is included in L(Q’) then EL(Q’) implies EL(Q). We
shall collect some facts that are based on this simple observation.

PROPOSITION 2.1.
() If m < m’ andn < n’ then EL(Q™"") implies EL(Q™"),
(i) If n < n’ then EL(E[) implies EL (E"),
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(i1) If EL(E]) then ELT(Qf;”),
(iv) EL(QL") if and only if EL(QLY).

Proof. Observe, for instance:

for (i):
= Q;Vl,”x“ e xmn(p(xl""’xm) « athrasz1+l)_Cly1 o )—Cmym
(qo(fl,--‘,fm) A A u=y,-);
l<i<m
for (iii):
E QL"xp(X) « EIXp(e(X) A@(F) A “X=77) V(=9(X) A =o(¥))];
for (iv):

EQxp(x) © 0% A o(x,);
l<i<n
E Q. "Xe(X) < 0.y(*y € field(¢)”).
If (xy-..5X, V1s---»,) 1s a first-order formula then eq(¢) stands for
the first-order sentence expressing that ¢ is an equivalence relation on
n-tuples. The number of equivalence classes is denoted by ind(¢).

For m, n, k < w and a formula 6(x,,...,x,,), where I(X,) = --- =
(x,)=n, H™"x, --- X0 stands for the first-order sentence asserting
the existence of a homogeneous set of n-tuples for § that contains at least
k such n-tuples.

The following lemma serves as a basic tool for eliminability investiga-
tions. In its general form it is due to Tuschik, for a proof see [2]. We state
the lemma for the quantifiers Q" and E: it shows that if they are
eliminable in some theory 7, then this can be done in a very simple way.

LEMMA 2.2 ( Definability lemma).

(a) EL(Q") iff for each first-order formula 8(X,,...,X,,, z) there is
a number k < w such that

TU{Qp(y=y)} EVZ(H"%, -+ X,0 > Q7% -+ X,8).

(b) EL,(E]) iff for each first-order formula ¢(X, y), where /(X) =
[(y) = n, there is k < w such that

TU{Q,y(y=y)} EVi(eq(p) Alp) = k = EIXy9p).

DEerFINITION 2.3. Let L be a first-order language.
(1) A structure A for L is called (m, n)-singular if there are
(a) an L-formula ¢(X,,...,X,,, y) with [(x,) =nfor1l <i < m,
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(b)a € A and C C A", where 8, < |C| < |4],
such that C is maximally homogeneous for ¢ in (2, a).
(i1) T is (m, n)-regular if it has no (m, n)-singular models.
(ii1) T is regular if it is (m, 1)-regular for all m;
T is strongly regular if it is (m, n)-regular for all m, n > 1.
(iv) (U, B) is a generalized Vaughtian pair of index (m, n) if A < B,
A # B, and for some formula ¢(Xx,,...,X,, y) there are a € A and
C < A" such that C is an infinite maximally homogeneous set for ¢ in

(B, a).

A straightforward application of the arguments in [3] to sequences
rather than elements yields

THEOREM 2.4 ( Rothmaler, Tuschik).

(1) Let 9(x,,...,X,,, ) be an L-formula T has a generalized Vaughtian
pair of index (m, n) for @ iff T has an (m, n)-singular model of power ¥, for
@ iff T has any (m, n)-singular model for .

(11) If T is (m, n)-regular then Q" is eliminable in T for all a > 0.

Clearly, (it) entails Theorems 1.2 and 1.3. In general, a formula
¢(X,,...,X,,) where m > 1 may have maximal homogeneous sets of
different cardinality in a model 9. However, if m = 1 then there is just
one, namely ¢”. Similarly, if 8(X, ¥) is an equivalence relation on A”, then
a maximally homogeneous set for —8 is just a set of representatives, and,
clearly, all such sets have the same cardinality.

DEFINITION 2.5. T is n-regular for equivalence relations if whenever
NE=T, ac A and (U, a) = eq(6(x,, X,, Z)), where I(X,) = I(X,) = n,
then either ind(8%) < w or ind(8%) = |A|.

COROLLARY 2.6. T is n-regular for equivalence relations if and only if
E is eliminable in T for all a = 0.

Proof. The direction from left to right is shown exactly like Theorem
2.4(i1). For the other one use the remark preceding Definition 2.5.

The remainder of this section is devoted to generalizing Tuschik’s
result on the relative strength of eliminability of Q, to the quantifiers E..
Recall that, by Lemma 2.1(iv), EL(QL") if and only if EL,(Q,); so the
situation does not change if Q, is replaced by QL" for some n > 1. The
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same is true for E! and E! although this is not so obvious at first sight
(see Proposition 3.1).

PROPOSITION 2.7.
(i) EL( EL) for some a > 0 implies EL( E;),
(i) EL ( E}) implies EL( E}) for all a.

Proof. (1) By the definability Lemma 2.2, for each formula ¢(X, , Z)
there is a number k such that, for all % = T of power > N and alla € 4,
the following holds:

if ind(@™?) >k then ind(e™?)>N,.

Suppose there are B T, b € B such that (B, b) E eq(p) and k <
ind(¢®?) < 8,. By hypothesis | B] < & . But (%, b) has an elementary
extension (€, b) of power 8. Now k < ind(¢®?) = ind(¢®?) < ¥,
< N, a contradiction.

(ii) By (i), EL,(E}). Assuming that E} is not eliminable in T for some
a > 1, we can conclude that there are a model ¥ = T, such that [4] > N,
and a singular equivalence relation on A4 defined by some formula
@(x, y, Z) in an expansion (¥, @). Put T’ := Th(¥, @, P¥), where the new
predicate symbol P is interpreted in U by a set of representatives for ¢. By
Vaught’s two-cardinal theorem, 7" has a singular model of power N,
whence E is not eliminable in 7.

Thus EL,(E}) is the strongest notion, EL (E;}) the weakest, and
EL,(E}) for a > 1 is somewhere in between. Under additional assump-
tions we can say more:

COROLLARY 2.8 (GCH). If ¥  is regular and EL ( E} |) then EL .( E}).
Proof. Use Chang’s two-cardinal theorem in the proof of 2.7(ii).

THEOREM 2.9. Let T be stable. If EL(E.) for some a > 1 then
EL(Ey).

Proof. Again, the hypothesis together with the negation of the claim
imply that there is ¥ = T, and some formula ¢(x, y, Z) defines a singular
equivalence relation in some expansion (2, a). We may assume that
4] = 8.

In order to finish the proof by contradiction, we have to verify that
there is a model B = T of power ¥ such that, for some b € B, ¢ defines
a singular equivalence relaton in (B, b). We would like to apply Shelah’s
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two-cardinal theorem [4, p. 287] to T’ = Th(¥, a, P ¥) as above, but due
to new dependencies caused by P¥, T" may not be stable any longer.
However, Shelah’s method of “imaginary elements” provides a means to
overcome this difficulty.

First, we may assume w.l.0.g. that the singular equivalence relation in
I is defined (without parameters) by a two-place relation symbol R,
where R € L and L is the language of %. Now let L* := LU { P, E} and
9 * be the following model for L™:

(a) as domain 4 U X, where X N 4 = & and X contains exactly one
element for each equivalence class of R,

(b) P*"= A and the relations of L are restricted to P*’,

(c) E¥" = {(a, x)|a € 4, x € X, ais in the R¥-class coded by x}. Put
T+ := Th(% ™). Some obvious facts about T are the following:

(1) each A = T has, up to isomorphism, a unique extension A= T7;

Q) if B T then B~ = T, where 87! = P® | L.
Hence (B 1)*"= 8.

Moreover, we have

LEMMA 2.10. T is stable.

From this, Theorem 2.9 is proved as follows: apply Shelah’s two-
cardinal theorem to T™. (A, (= P)¥") is a model of type (8, N,), so there
exists B = T+, where B is of type (X, 8,). Now B! is the required
model of T.

Proof of Lemma 2.10 (sketch). The first step is to show that 7" is a
conservative extension of 7" for each L*-formula ¢(x,,...,x,) there is an
L-formula 7(Xx) such that

T E Vf( APx, - (po 77)),
() T vx(w(x) - A Px,.),

forall B = T: B = x[c] iff B !'ea[c].
7 is defined by induction on L*-formulas. The idea is that quantification
over elements in (—P) can be replaced by quantification over the corre-
sponding R-equivalence classes.

Now assume T is not stable in A. Then, for some I &= T, thereis a
subset N C M, |[N| <A and I realizes A* L*-types over N. W.lo.g.
N c PM. By (*) one can conclude that M ~! realizes A* L-types over N,
whence 7 is not stable in A.
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3. In this section we prove the main theorem of this paper. We need
another fact about the quantifiers E .

PrROPOSITION 3.1. Foralln > 1:
(1) L(EL) is included in L(E);
(ii) for all « = 0, EL(E}) implies EL.(E[).

Proof. Let @(X, X,) be a first-order formula with /(x,) = /(X,) = n.
We define
(Y1, y,) 1= leaﬁlq?()ﬁ "5, W) © 30,9(y, 7 Dy, W)]
Let % be a model of TU {eq(p)} and let K(¢*) be the set of all
¢¥-equivalence classes. For b € 4 put

oy = {(ay, a,)|a,a, € A" ;A =@lb " a, b " a,]).

Then:
(1) ¢¥ is an equivalence relation on 4” ! and K(p}) consists essen-
tially of all those k € K(¢") that contain some n-tuple ai,...,a, with

a, = b. Therefore, ind(¢Y) < ind(¢™).

() K(9") = Uye  K(9).

(3) #¥ is an equivalence relation on 4. For b € A the 7¥-equivalence
class of b is completely determined by the set K( ¢y ). Hence, ind(7™) <
2ind(q>u)‘

Now we claim

T E EJ%,%,p <
() [eQ((P) A (32E{7_1‘7152‘P(z 0,27 0,) v Egynyym(s yz))]-
Let A E Efx,X,p. Then ind(¢”) = |K(¢")| = N,. Now either some
K (oY) is infinite or otherwise (2) implies K(7¥) to be infinite.

For the other direction, suppose ¢ is an equivalence relation of finite
index. By (1), ind(¢¥) < N, for each b € 4. By (3), ind(#¥) < 24" <
N, So the right side of (*) is false in .

From () it follows by induction on » that (i) of the proposition holds.
Also, (ii) is clear for @ = 0. Now assume that, for some a > 1, EL,(E})
holds and EL ( E!) does not, where n > 1 is minimal with this property.
By 2.7(1) and 3.1(i) above, EL,(E{). Hence, there is a model B & T,
|B| = ¥, and ¢(X;, X,) defines a singular equivalence relation on B”.
Therefore B = E['X,X,¢ and we may apply (*) again.

Case 1. For some b € B, ind(¢}) = N,. Since ind(¢}) < ind(¢?) <
N, there is a definable singular equivalence relation on B"~!, whence
E"~1is not eliminable in 7.
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Case 2. ind(g7) is finite for all » € B. But then ind(7?) > 8. Also,
ind(7®) < (ind(¢®))~“ = ind(¢®) < ¥ _ and, therefore, EL -( E}) fails.

In either case this contradicts our original assumption and the proof
is complete.

REMARK. To prove (*), regularity of 8, is needed for — and inacces-
sibility for < . So the stronger statement in (i) also holds for all « such
that N _ is a strongly inaccessible cardinal; we do not know if it is true,
e.g., fora = 1.

THEOREM 3.2. Let T be stable. Suppose some quantifier Q" or E;
(where a = 1 and m > 2) is eliminable in T. Then T is strongly regular and,
hence, all Qp"" for m,n > 0 and B = 0 are eliminable in T.

Proof. By 2.1 and 2.7(i) we have
(1) EL,(E,), EL.(E}).
As T is stable it follows from Baldwin’s and Kueker’s Theorem 1.1 that
(2) T does not have the finite cover property.

Now assume, for contradiction, that I"is not strongly regular. That is,
for some m and k, T has an (m, k)-singular model. So let Y be a
A-powered maximally homogeneous set of k-tuples for ¢(X,,...,X,,, V) in
(A, a). Suppose |4] = Ny, R; <A <N, For notational simplicity we
suppress y and a.

Let6(4, y,,...,Y,_1) be the following formula, where /(%) = I(y,) = k
A=<i<m)

8:= /\ sca ¢)—)i”

1<i<m
A A e(X\f(1),....%,,\ f(m)).
SiAL,...,m)
—){__u’yly-“’ym—J}
u€range(f)

Put 2:= {8(&, by,...,b,,_1)| by,...,b,_, € Y.
As Y is infinite, ¥ is consistent in ¥, ie., for every finite =, C 3:
A = JuA, s, 7 Also, 2 is omitted in U since ¥ maximally homogeneous.
Now, much like Baldwin and Kueker made use of the f.c.p.-theorem,
we shall apply another result of Shelah:

THEOREM 3.3 ([4, p. 80]). Suppose T does not have the f.c.p. and some
M &= T omits a A-m-type of cardinality N, where A is finite. Then there are
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P < w, aformulay(X,, X,, z) with [(X,) = [(X,) = p and ¢ € M such that

(1) (M, ¢) = eq(y);
(i) B, < ind(y®9) < A.

By (2) and the previous remarks, the hypotheses of 3.3 are satisfied
witht = A, m=kand A = {5}.

Now the conclusion of 3.3 implies that, for some number p < w,
EL(Ef) fails. Although p may be very large (as a proof of 3.3 would
show), it follows from Proposition 3.1(ii) that

(3) Ej is not eliminable in 7.

But this leads to a contradiction: by (3) and 2.7(ii), EL,( E}) fails. On the
other hand, as T is stable, (1) together with Theorem 2.9 imply EL -( E}).

COROLLARY 3.4. Let T be stable. Then the following are equivalent:
(i) T is strongly regular;

(ii) T is regular;

(iti) T is 1-regular for equivalence relations.

Proof (i) = (ii) is trivial.

(i1) = (iii): If @(x, y) defines a singular equivalence relation on 4 in
some model U, then —¢ shows that % is a (2, 1)-singular model.

(iii) = (i): By (the proofs of) 3.3 and 3.1 (3).
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