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In this paper we shall improve upon the results by K. Faulstich, W.
Luh and L. Tomm by (i) considering power series representing other
meromorphic functions f, (ii) using a regular weighted means method D
to obtain the overconvergence property and (iii) showing that D has a
universal property with respect to analytic continuation i.e. for every
simply connected region G which contains the open disc of convergence
of the Maclaurin series of f but no pole of f, there is a subsequence of
the D-transform of the nth partial sums of the Maclaurin series of f that
converges to f uniformly on compact subsets of G.

1. Introduction. The behaviour of partial sums of power series
outside their circle of convergence has been studied by various authors c.f.
[4], [9]. Power series that have subsequences of partial sums which
converge at points outside their circle of convergence are said to be
overconvergent. In [1], Chui and Parnes proved the existence of a power
series I1, convergent in the open unit disc and with the following universal
property with respect to overconvergence:

Given any compact set L which does not separate the plane and does not
intersect the closed unit disc A, and given any function g that is continuous on
L and holomorphic in the interior of L (i.e. § € A(L)), there exists a
subsequence of the partial sums of 11 that converges to g uniformly on L.

More recently, it was shown in [12], that a power series exists that is
absolutely convergent in A and overconverges almost everywhere outside
A to any given measurable function f. Moreover such power series are
dense in the Banach space A(A) (with the uniform norm). On the other
hand, not all power series are overconvergent. For instance, the geometric
series has the property that no subsequence of its partial sums converges
at any point outside A. However, even in this case, if we consider a
summability transform of its sequence of nth partial sums (as in [5], [7])
then it is possible to obtain overconvergence properties. More precisely, in
[6] Luh proved the existence of a summability method 4 such that the
A-transform of the nth partial sums of the geometric series (¢7),.,
converges on the interior of A to 1/(1 — z) and has the following
universal overconvergence property:
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Given any compact set L which does not separate the plane and does not
intersect A, and given any function g € A(L), there exists a subsequence
(Y1) of (¥}) that converges to g uniformly on L.

Using a summability approximation theorem obtained in [10], it was
shown in [3] that the method 4 constructed by Luh could be chosen to be
regular and in fact it could be a regular ‘generalised weighted means
method’ or ‘generalised Riesz method’ previously introduced by Faultstich
(see [2]). Furthermore, as a consequence of the results in [3], the sequence
(¢ provides an analytic continuation of the geometric series into a fixed
simply connected region G containing the open unit disc but not the point
1.

NoTATION. For every set S € C, let S denote the interior, S the
closure and S the complement of S. A sequence of functions ( f,) will be
called compactly convergent to a function f on S if it converges to f
uniformly on every compact subset of S. We use the following abbrevia-
tions throughout: A, = {z € C: |z| < r} for r = 0, A = A}, N, for the set
of non-negative integers and C,, = C U {o0}. If K is a compact subset of
C then A(K) denotes the Banach space of all functions that are continu-
ous on K and holomorphic on K.

A matrix D = (d, ;) defining a sequence to sequence summability
method is called a weighted means method if there is a sequence (d,) .,
suchthat D, =d,+d, + ---+d,# 0forn=0,1,2,... and

(1) dnk={d"/D" %fOSkSn,
0 if k> n.

Cf. [9] where the notation #(d) is used and [4] where (N, d) is used.
It is well known that D is regular (i.e. finite limit preserving) if and
only if the following two conditions hold

(2) lim D, =

n— oo

®) X ld = o(1p,)

2. Statement of the results. First we describe the class of functions
to which our results apply. Throughout this paper let f denote a function
that is meromorphic in C and has a Maclaurin series expansion

(a) f(z) = i
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whose radius of convergence, r, is positive. Furthermore we also require
that the coefficients c,, satisfy the condition

(© lim R™c, = oo foreveryR > r.
m— o0

It was proved in [11] that (C) holds if

() f has exactly one pole on the circle |z| = r, or if
(C) lim R™¢, = co foreveryR > r

where f(z) = X®_,¢,z™ is any rational function which has the same
poles and the same singular parts as f on A,. It is clear that not every
meromorphic function satisfies (C) (for instance, if f is even then it does
not satisfy (C)).

We use P to denote the set of poles of f.

If 4 =(a,,)is a row finite summability method then (o,(z)) will
denote the sequence of A-transforms of the nth partial sums of the series
in (4), thatis, forallz € Candn = 0,1,...

) k
) ()= £ ane| T eui”

k=0 m=0
We now establish the existence of ‘a regular universal weighted means
method’ D for the function f.

THEOREM. There exists a regular weighted means method D with the
following property:

For every triple (G, L, g), where

(1) G is any simply connected region that contains A, but no pole of f,

(ii) L is any compact set which does not separate the plane and contains
no point of PU G U A,

(ii1) g is any function in A(L),
there exists a subsequence (6,0) of (0,”) such that

{f(z) compactly on G,

6 li D =
(©) im o, (2) g(z) uniformly on L.

n— 00

REMARK. The weighted means (o,”) converge to f compactly on 3,.
This follows directly from the fact that D is regular (see [6]).

Before proving the theorem we draw two corollaries that give further
properties of D (cf. Theorems 4 and 5 of [11]).

COROLLARY 1. There exists a subsequence of (0,°) which converges to f
on all of C\ P.
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Proof. Let E = {Az|z € P,A > 1} and G = C\ E, the Mittag-Leffler
star of f. The set E\ P consists of countably many open line segments.
Let K, be the set of all points in G whose moduli do not exceed » + 1 and
whose distance to the complement of G is at least 1/(n + 1) and let L, be
the set of all points in E\ P whose moduli do not exceed n + 1 and
whose distance to P is at least 1 /(n + 1).

In view of the theorem we can find for every n > 0 a subsequence of
(6,2) tending to f uniformly on K, U L,. By choosing a suitable diagonal
sequence we obtain a subsequence (o,fn ) such that

(7) lo2(z) = f(z)|<1/(n+ 1) forallz€ K, U L,.

Since every point of C\ P belongs to K, U L, for large n the sequence
(o, ) does the job.

COROLLARY 2. The method D of the theorem has the following property:

If () A, € G, and G,, G,,... is a finite or infinite sequence of disjoint
simply connected regions that do not contain a pole of f, (i) f, = f and, for
each v > 1, f, is holomorphic on G,, then there exists a subsequence (op? ) of
(6,2) such that for every v > 0

(8) nli_)n:g o (z) =f,(z) compactly on G,.

Proof. We define a holomorphic function g: U, . ; G, = C by setting
g(z)=f(z) ifzeG,,v=1.

For every fixed » > 0 and n > 0, let K, , be the compact set consisting of
all points in G, whose moduli do not exceed (» + 1) and whose distance
to the complement of G, is at least 1/(n + 1). It is easy to see that K, ,
has a connected complement and the sets

Kn = Kn,0> Ln = U Kn,v
v=1

do not separate the plane. Applying the theorem to the triples (G, L,, g)
we obtain from (6) that, for every fixed n > 0, there are infinitely many
indices p > 0 such that

IopD(z) —f(z)| <eg, forallz € K,
and

|0'pD(Z) - g(z)| <eg, forallze L,
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where (¢,) is an arbitrary sequence of positive numbers tending to zero.
We can rewrite the last two inequalities in the form

'opD(z) —f,(z)l <eg, forallze€ K, ,where0 <» < n.
Thus we can choose an index p,, such that
lo2(2) = fo(2)| < &, forallz € K,

and then inductively determine indices p, such that p, > p,_, for n > 1
and

(9) lo2(z) — f.(z)|<e, forallz e K,,, where0 <» < n.

Since, for each » > 0, every compact subset of G, is contained in K, U L,
for large n the result follows from (9).

3. Proof of the theorem. The weights (d,) of the method D will be
constructed from the coeffients of a sequence of polynomials whose
existence is guaranteed by the following result in [11].

THEOREM A. Let G be a simply connected region which contains A, but
no pole of f (where f, r are as defined in §2). Suppose that K is a compact
subset of G and that L is a compact set which does not separate the plane and
contains no point of G U P U A,. Then, for every g € A(L) and for every

e > 0, there exists a polynomial p(z) = L¥_, a, z* with the following proper-
ties:

(o) )ay| < efork =0,1,...,N,

(B)p() =1,

(v) Zioola <1 + e,
(8) ERoar(Xh_ocnz™) —f(2)| < eforallz € K,
(&) o0 ar(Xhogcnz™ — g(2)| < eforallz € L.

We need the following topological result as well as Theorem A to
prove the theorem.

LEMMA. There exists a non-empty, countable collection € of pairs of
compact sets (K, L) with the following properties:

(a) For every (K, L) € €, L does not separate the plane and contains
no pole of f.

(b) For every (K, L) € €, there exists a simply connected region H that
does not contain a pole of f and satisfies the conditions K U A_c H and
LN(HUA)= 2.
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(c) Given (i) any simply connected region G containing A, but no pole
of f,
(11) any compact set A that does not separate the plane and contains
no point of G U A, U P, and
(i11) any compact subset ¥ of G,
then there exists a pair (K, L) € €suchthat ¥ € K C Gand A C L.

Proof. Let X" be the collection of all sets of the form S; U S, U --- U
S, where Si,...,S, are compact squares with complex rational® vertices
and horizontal sides. Let & be the collection of all sets that do not
separate the plane, contain no pole of f, and can be written in the form

(S;U ---US)I\(B,U ---UB,)
where B,,...,B, are open discs with complex rational centres and rational
radii. Clearly the product /"X . is countable. Hence we obtain an at most
countable set by defining % to be the set of all pairs (K, L) in "X Zfor
which there exists a simply connected region H that does not contain a
pole of f and for which the conditions K UA, c Hand LN (H UA,) =
& hold.

From the definitions of £and ¥ it’s clear that ¥ satisfies (a) and (b).
To prove that (c) is also satisfied, suppose that G, A, ¥ are as in (i), (ii),
(iii). It is easy to see that there is a K € J'satisfying ¥ C K C G and the
most intricate part of the proof is to find an L such that A C L and
(K,L)E &.

We first construct a simply connected region H such that K U 5, -
Hc G and ANH= &. It can be shown by the Riemann mapping
theorem that there is a connected compact subset F' of G that contains
{0} UK. (In fact, if ¢: A — G is a conformal mapping then we can
choose F = ¢(A)) for some p < 1.) From (ii), it follows that A is a
positive distance, e, from F U A, and so the set B = {w + z: z € A,
|w| < e/2} does not meet F U A,. Since G is a simply connected region,
C,, \ G is connected and so B U (C_ \ G) is a connected closed set. Its
complement is G \ B, an open set, the components of which have con-
nected complements in C_, and hence are simply connected. Since F U Z&,
is a connected subset of G\ B, we can pick H to be that component of
G\ B which contains F U A, and so ensure that KU A, ¢ H ¢ G and
AN H= @ (since A C B).

We now constructan L € Lsuchthat A C LandLN(HUA,)) =@
which will show that (K, L) belongs to € and thus prove that (c) holds.

Te., complex numbers whose real and imaginary parts are rational.
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We know that A is a positive distance 8 from P U H. Consider a grid on
C made up of squares with horizontal and vertical sides such that the
corners of the squares are complex rational numbers and the length of the
sides is less than 8/ v2 . We can pick four vertices of this grid to obtain a
rectangle R with horizontal and vertical sides containing A. Let
S1, S,,...,S,, be all the compact squares of the grid that intersect A. Thus
AcS,USU - ---US, and (S,US,U - S)YN(PUH)= & be-
cause of the size of the squares.

(S;US,U ---U S, )¢ may be disconnected, but it consists of the
union of R¢ and finitely many line segments and interiors of squares and
so has finitely many components. We pick one point from each of these
open components and join it to a fixed arbitrary point of R by a path
which lies entirely in the complement of A. Denoting the union of these
paths by I', we see that (S; U S, U --- U §,)°U I is connected and does
not intersect A. Since I' is compact, it is a positive distance from A, and
so can be covered by finitely many open discs B, B,,...,B, that have
complex rational centres, rational radii and do not intersect A. Thus,
defining L = (S; U S, U --- U S )\(B; U B, U ---U B,), we find that
L=(S;UuS,U ---US)U(B,UB,U ---U B)) is connected and
LN (PUH)= @. Hence we have that L€ ¥, AC L and LN (H U
A,) = &, which shows that (K, L) € € and completes the proof of the
lemma.

We come now to the proof of the theorem.

Proof. Let € be a countable collection of pairs of compact sets which
satisfies the conditions (a), (b), (c) of the lemma. Denote by £ the set of all
polynomials with complex rational coefficients. Since 2 is countable, the
set 2 X ¥ is also countable and so the elements of 2 X % can be enu-
merated by an infinite sequence (£2,),.,, say, in such a way that every
element of 2 X % occurs infinitely often among the €2,,.

Let (¢,),., be a sequence of positive numbers, and define for every
n>0

f(z) forzeKk,,

8.(2) = qg,(z) forzelL,.

Let A: N, —» N, be a function (to be specified later). Since, for every
m=0,(K,, L,) € %, it follows from condition (a) and (b) of the lemma
that X,, and L,, satisfy the topological hypotheses of Theorem A. Thus we
obtain polynomials p,(z) = £7_a, ,z* where a, , = 0 for k > [, say,
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such that the following conditions hold for every n > 0:

(10) la, J<e, fork=0,1,...,
l"
(11) Z an,k = 1’
k=0
I’l
(12) lan,kI < 1 + En’
k=0
I, k
(13) kzoan’k( Y cmz’") ~ &m(2)| <&, forallze€ K, UL,,.
= m=0

For reasons that will become apparent later we define the sequence
(€,) >0 and the function 4 inductively as follows. Let ¢, = 1, 2(0) = 0 and
supposing that ¢, ¢,,...,&, and h(0), 2(1),...,h(n) have been defined set

(14) £y = 27" ML, + 1)
where
I, h(n)
M, =1 +max{ le.z™:z€ {0} u U (K,U L)
m=0 v=0
and
h(n) if |gy(m (2)| +14,(2)] > Vn
(15) hin+1) = for some z € K,,(,, U L,

h(n) +1 otherwise,

where, in the notation of (5), 4,(z) = ZI_(0,(2) = g,,(»(2)).

It is important to note that A: N, — N, is a non-decreasing surjection.
To see this, since £(0) = 0 and h(n + 1) € {h(n), h(n) + 1}, if hisnot a
surjection there exists a non-negative integer N such that h(n) = h(N) for
all n > N. Thus for every n > N and every z € K, U L,,, we would
obtain from (13) the inequality

A=)+ B (52) = g1 (2)

n

<SUnl+ T 160) = () <)+ 3 s

Since ¢, < 27* by (14), this would imply that |g,.,,(2)| + |4,(z)| was
bounded by |g,)(2)| + |4x(2)| + 27" on K, U L, ,, which would
contradict (15).



UNIVERSAL APPROXIMATION BY REGULAR WEIGHTED MEANS 451

Also note that the sequence (/,) is strictly increasing because, by (10)
and (14), we have forn > 0
l

n

Ll L, 417 =1

k=0
Thus /, , must be greater than /, as otherwise (11) could not hold.
Since |a, | < 27" (from (10) and (14)), we obtain a well-defined
sequence of weights (d, ) by setting

o0
(16) dy=YYa,, fork=0,1,.

Now consider the numbers D, =d,+d, + --- +d,. We can as-
sume, without loss of generality, that for n = 1 the conditions (10)
through (13) hold with ¢, replaced by & = ¢, /2. Then there is a positive §
such that for every polynomial p,(z) = X4_, &Lkzk satisfying p,(1) =1
and |a, , — &, ,| < for k =0,1,...,/;, the conditions (10) through (13)
are satisfied with n» = 1 and a, , replaced by &, ,. Making the correspond-
ing changes in the series

o0 00
dy = Z%,o: dy = Z%,b--w 11 1= Z%/,—1
p=0 p=0

we can always ensure that Dy, D;,...,D, _,; are non-zero. Hence, without
loss of generality, we can assume that p,(z) = p,(z) and D, +# 0 for
n <.

We now show that D, # 0 for n > [,. To this end, suppose for some
m=11l,<n<l, sothat D, =X} X% ga,,=X>  Xi_ o4, Now

[ee] n [’} —
s (1, +1)27*
Y Yla s Z Ylal< X =2
p=m+2 k=0 mk pmks2 k=0 * p=m+2 M, 1(lu , + 1)

by (10) and (14) so that form = 1,2,...

) n 0 2R
(17) Y Ylau< X <1.
p=m+2 k=0 p=m+2 " n—1
Hence
m+1l n 0 2-H
D,— Y Yaul< XL —
p=0 k=0 p=m+2 " w1

and since a, ;, = 0 for k > /, and (/,) is increasing this can be written as

n

m b
- Z Z Ak~ Z A1,k
p=0 k=0

k=0

<ZM

p=m+2 " p-1




452 B. THORPE AND L. TOMM

which by (11) is
[o o] 2—,‘,

Dn_(m+1)— Zam+1,k < Z
k=0

p=m+2 p-1

Using the triangle inequality and (12) gives

D, ~(m+ 1< ¥ 2-

p=m+2 " p-1

+(1 + em+1)

and (14) gives

i —H
(18) |ID,—(m+1)|<1+ ) 2"

p=m+1 " "p—1

Thus D, # 0 for n > /; and we have a well-defined weighted means
method D = (d,, ;) defined as in (1).

To show that D is regular we first note that (2) follows directly from
(18). To show that (3) holds, if /,, < n </, then by (17)

m+1 l

éows S Ylad< ¥ Y lal+1

p=0 k=0 p=0 k=0

and by (12),

m+1

Yldd< X (1+e,)+1.
k=0 p=0
Thus, by using (14) we get
m+1
|D,| < 2|de< Y +2%)+1<m+5,
k=0 p=0

and this together with (18) gives lim,_, _|D,| 'L} _,|d,| = 1, which cer-
tainly implies (3). Hence, D is regular.
Before attempting to prove the universal property of D we first show

that there is a subsequence (g,”) of (o,”) such that

h— oo

(19) lim max |oD( ) — g,,(z)'= 0
v—oo0o z€K,U
In fact, we choose j, = /,,, where n(v) = max {n € Ny|h(n) = r}. It
follows from (15) that (n(»)),., is a strictly increasing sequence and
hence also (j,), ., is strictly increasing. Moreover, it follows from (15) and
the definition of n(») that A(n(v)) = v and forallv > 0

(20) 18, (2)] +]4,,,(2)| < /n(v) forallze K, UL,.
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We can easily verify the identity
(21)  Dy(02(2) ~8,(2)) = (n(v) +1 = D,)g,(2) + 4,,(2)
00 Jy k
+ Z Z a, k Z c, 2z
p=n(»)+1 k=0 m=0

By (18) and (20) we see that forall» > 0
(n(») +1- Djy)gy(z) + An(y)(z)l <2yn(v) forallze K,UL,.

The modulus of the third term on the right-hand side of (21) does not
exceed

B Sl E e

M
< Z Z "™ forallz€ K, U L,
p=n(»)+1 k=0 (l + 1) Mﬂ-*l

by (10) and (14) (noting that 2(n(v)) = »). Hence we get
o0 J k 00
Y Ya,Yczm< Y 2*<1 forallze K, UL,
=0

p=n(r)+1 k=0 p=n(r)+1
Inserting these estimates into (21) we obtain for all » > 0
D, | lojf’(z) - g,,(z)l <2/n(v) +1 forallze K, UL,
so that

max ]oD(z) g,( )I_(2W+1).

z€K,UL, IDj,,l

Since n(v) tends to infinity as » tends to infinity and (18) holds, (19)
follows easily.

To complete the proof of the theorem, suppose that (G, L, g) is a
triple satisfying (i), (ii), (iii). By Mergelyan’s approximation theorem [8]
there exists a sequence of polynomials (7,) . o such that

(22) lim max]w (z) — g(z2)|=

n—>o00 z€

and we may assume, without loss of generality, that every =, € 2 i.e. 7,
has complex rational coefficients.
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For every n > 0 let ¥, be the compact set consisting of all points in G
whose moduli do not exceed (n + 1) and whose distance to the comple-
ment of G is at least 1/(n + 1). The sequence (¥,),., exhausts G i.e. for
every compact set K C G there is an index n, (depending on K') such that

(23) Kc V¥, foralln > n,.

To prove (6) we now apply (c) of the lemma to the~ triple (G, L, ¥,),
for every n > 0, and hence obtain sequences (K,) -, (L,),o such that

(K,,L)e¥%, ¥,cK,cG andLc L, foreverynz=>0.

Since (7,, (Ko, ZO)) belongs to Q X ¥ there is an index », such that

q,, = 7, K, = K, and L, = L,. Moreover, we can inductively choose
indices v, (n > 1) such that (»,),.. , is strictly increasing and

(24) q, =m,, K, = K,, L, = L, for everyn > 0

(since (q,, (K,, L,)),., represents every element of 2 X % infinitely
often.) Substituting », for » in (19) and writing &, for j, we obtain

lim  max IokD(z)—g,,(z)|=0.
n—>ow z€K, UL, " "

But for every n > 0, ¥, C K, = K,, LcC L = L, and m, = g, so that

using the definition of g, we get

(25) lim max|0”(z) — f(z)|=0

n—oo ze€Y,

and
(26) lim maxlokD(z) - ﬂn(z)' = 0.
n—oo z€L "
If K is any compact subset of G then (23) and (25) imply that
lim 6,’(z) = f(z) uniformly on K,
and (22) with (26) gives

lim 0(z) = g(z) uniformly on L.
Thus (6) holds and hence the result.
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