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Suppose that

x'(t)+Ax(ί) = / ( * , * ( < ) ) , ί > 0 ,

is a semϋinear parabolic equation, e~Al is bounded and / satisfies the
usual continuity condition. If for some 0 < ω < l , 0 < a < l , aωp > 1,

γ > i ,

| | / " ^ e - / " | | < C, ί > 1,

whenever ||Λαjt|| 4- ||x|| is small enough, then for small initial data there
exist stable global solutions. Moreover, if the space is reflexive then
their limit states exist. Some theorems that are useful for obtaining the
above bounds and some examples are also presented.

1. Introduction and the Main Theorem. Assume that A is a sec-
torial operator [2] on a (real or complex) Banach space X and that there
exist Mx > 1, 0 < ω < 1 such that

(i) I k - ' l l * ^ forί>0

(ii) \\Ae'At\\ <MλΓ
ω ίoτt> 1.

Some theorems useful in determining ω are presented in §4, and an
example is given in §5. For β > OletJ^ = D(Aβ) and \\x\\β = \\(A + l)βx\\
for x e χβm

Assume that 0 < α < 1 and that V is an open set in Xα. Suppose that
/: [ 0 , o o ) x K ^ I is such that for every t > 0, x e V there exist
ε, c e (0, oo), 0 < v < 1, for which

Il/(*i> xι) - f(s2> xi)\\ * c(\sλ - s2\" + \\xx - x2\\α)

whenever si > 0, xi G Fand \st - ί| + \\xi - x\\α < e for / = 1,2.
For 0 < T < oo let S(τ) be the set of continuous functions

JC: [0, T) •-» X which satisfy

(i) *([0,τ)) c Kand/( ,x(0) e C([0,τ), X)
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(ii) x\t) exists (in X)9 x(t) G D(A) and x\t) + Ax(t) =/(/, *(/))
for 0 < / < T.

Solutions defined in this way have many known nice properties (see
Appendix 2).

Suppose that μ > 0, p > 1/αω, γ > 1, M2 > 0, M3 > 0 are such that
i f x G Γ and ||^lax|| + ||JC|| < μ, then jcGKand

(2) \\f(t, x)\\ < M2\\A«x\f + M3c*(0, / > 0,

where c(t) = 1 if 0 < / < 1 and c(0 = /~x if t > 1. A theorem useful in
establishing bounds of this type is given in Appendix 1; an example is
analyzed in §5.

In §3 it is shown that if 0 < p < 1/αω then there do not need to exist
global solutions for all small initial data.

Observe that there exists M4 > Mλ such that

(3) \\A*e-A'\\ < M4b(t)> t > 0,

where b(t) = Γa for 0 < t < 1 and b(t) = Γaω for t > 1. For β > 1
define

(4) B(β) = suplc-"ω(t)f b(t - s)cβ(s) ds\t > θ}

and note that β/(β - 1) < B(β) < oo.

M A I N THEOREM. Suppose that x0 ^ XΛ, IN < μ and

Np-1pM2M4B(aωp) < 1, wΛm?

JV = ( |M%| | + ||xo|| + M3B(y))pM4/(p - 1).

Then
(a) There exists i E S(OO) such that x(0) = x0 and, for t > 0,

(b) For each ε > 0 there exists δ > 0 such that if y0 ^ Xa and
\\y<> ~ xo\\« < ^ then there exists^ e S(cx)) with j(0) = ̂ 0 and

(c) If X = N(A) ® R(A) then there exists >> e iV(̂ 4) such that
^^Hxί/) ->; | | α = 0. (JV(̂ 4) is the null space of A, R(A) is the range

of A.)

REMARK 1. If JΠs reflexive then X = N(A) θ R(A) [5].
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REMARK 2. Consider the Navier-Stokes equation in an exterior do-

main. According to [9], A can be taken to be a nonnegative self-adjoint

operator, so that ω = 1, and the nonlinear part satisfies

||/^*)||<cJ^/2x|||MV4*||<(

Hence, all conditions can be satisfied. See also [3].

2. Proof of the Main Theorem.
Part (a). We may assume that in (2), M2 > 0, M3 > 0. Observe that

\\Aax0\\ -f ||JCO|| < μ. Let 0 < r < oo, x e S(τ) be as in Theorem A2.3 of

Appendix 2. Let τλ be the biggest number such that 0 < rλ < r and

||^4αjc(/)|| + ||JC(OII < μ for 0 < t < τv In the following, assume that

0 < t < τv

Observe that

(^λ \\Aap~Atx II < M (\\Aax II 4-Hr \\\raω(Λ = M raω(t\
V / \\J^ O N 4 V I OΠ II O i l / V / — 5 V /

Define

(7) h(t) = sup g(s)c-«ω(s).
0<s<t

Since

(8) x(t) = e~A'x0 + f *-*'-'>/(*, x(s)) ds

we have

g(t) < M5c
aω(t) + [' M4b(* ~ s){M2g(s)p + M3c"(s)) ds,

equations (4), (6) and (7) imply that

(9) h(ή < ch(t)p

where c = M2M4B(aωp). Set L = (pc)'1^^^. Since 0 < N < L there

exists 0 < Lo < N such that

s < &' + N(p - \)/p f o r O < ί < L 0 ,
{ ' s > csp + N(p - \)/p for L0<s < L.

Since Λ(0) = \\Aax0\\ < N we have by (10) and (9) that h(0) < Lo and

since h is continuous we have that h(t) < Lo < N. Therefore, by (6)

and (7)

(11) IMβ*(0ll < L0c
aω{t) < Ncaω(t).
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From (4) and (8) it follows that

| |JC(O|| < M4\\x0\\ + M2M4L$B(aωp) + M3M4B(y),

and from (10) it follows that

| | * ( / ) | | < Λ Γ .

This and (11) imply that

(12) \\A°x(t)\\+\\x(t)\\<2N<μ.

Therefore τλ = T. Since

\\f(t,x(t))\\<M2N? + M3,

(12) and Theorem A2.4 imply that τ = oo.

Part (b). Let Nτ > N be such that 2Nτ < μ and N{'1pM2M4B(aωp)

< 1. Let δ0 > 0 be such that if z0 e Xa and ||x0 - zo | |α < δ0 then

( μ % | | +||zo | | + M3B(y))pM4/(p - 1) < Nλ.

Suppose that z0 G Xa and ||x0 — zo | |Λ < δ0. By Part (a), there exists

z G S(oo) such that z(0) = z0 and, for / > 0,

Fix any t > τ + 1 > 2. Then

z(t) - e~A^z(τ) = y' e-^-j)/(j, z{s)) ds

and, hence,

||z(/) - ^ ( ' - τ ) z ( τ ) | | < M4Γ (M2N{s-«ωp + M3s~v) ds = g(τ).

Similarly we obtain

μ ^ « » ' + M3τ^) + g(τ)

Theorem Al.l of Appendix 1 gives us a constant c such that

\\z{t)-e-«'-Mτ)\\a<ch{τ).

Since z could also be x, it follows that

\\z{t) - x{t)\\a < 2ch(τ) + MM*) ~ x(τ)h
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Therefore,

sup ||x(,s) - z(s)\\a < 2ch(τ) + Mx sup \\z(s) - x(s)\\a.
s>0 0<s<τ+l

This and Theorem A2.5 imply Part (b).

Part (c). If z e D(A) then by (1), \\e~AtAz\\ -> 0 as t -> oo. Therefore,
if z e JR(̂ 4) then llέΓ '̂zH -> 0 as ί -> oo, and if z e N(A) then έT '̂z = z
for t > 0. Define Px = l im,.^ έΓ^'x e JV(4) for x e X

Fix any ^ > / > T > 1. Then

(13) He-^-'MO - e-^"-τ>x(τ)||

< Mj Γ (M2iV's-β ω ' + Λf35-γ) ds = | ( τ ) .

Therefore

\\Px(t) - Px(τ)\\ < g(τ)

and, hence, there exists y ^ N(A) such that | | j; — Px(τ)| | < g(τ). This
and equation (13) give us

11̂ (0 -y\\ * 2g(τ)+\\Px(τ) - β-^-')x(τ)||.

3. Counterexamples. In this section assume that A is a sectorial
operator on a Banach space X. Suppose also that e~At is bounded for
/ > 0 , O < α < l , / > > 1 and/(x) = p β x | |^xforx e D(Aa).

Clearly, f:Xa*-*X is locally Lipschitz. Define S(τ) as in the Intro-
duction.

Suppose that x0 e D(^[α). Define g(ί) = \\Aae'Atx0\\p for ί > 0, and
let 0 < T < oo be such that /o

r g(s) ds < 1/p for all 0 < t < r. For
0 < / < T, define

(
l -

~A'

A simple computation shows that x e 5(τ). Suppose also that x0 is such
that /0°° g(t) = oo, therefore, for no ε > 0 exists xε € 5(00) for which
xε(0) = εx0. Now, to see that in the Introduction we cannot allow
aωp < 1, we need to find an A that satisfies (1) and x0 as above. Take
X = Lι(09 00), ω e(0, l ] , h(s) = s + wω for 5 > 0 and let ^ = h—the
multiplication operator. Assuming that aωp < 1 we can find β > 0 such
that (a + jβ)ω/? < 1. Now, let the above JC0 be (xQ)(s) = sβω~ιe~s for
s > 0. This is the counterexample in case/? > 1; in case/? e [0,1) replace
the above/by f(x) = ||i4e/?x||x for x e



204 MILAN MIKLAVClC

Suppose that JC0 e X, g(t) = \\Aae'Atx0\\p f or / > 0 and // g(s) ds

oc as t -* 0+. Define x(0) = 0 and

= \l+p] g(s)dsj e~A'x0,

Then x * 0 and

(b) JC(O e D(A), x'(t) exists, x'(t) + Ax(t) = f(x(t)) for 0 < t < 1.

(c) For every 0 < δ < 1 there exists c such that for all t, s e (δ, 1)

))\\ds< oo.

To see that such x 0 and Λ exist, take X = L^O, oo), h(s) = 1 if 0 < s < 1,

/2(Λ ) = J if J > 1 and A = h. Assume that ap > 1 and 0 < /? < α — 1/p.

Define (JCO)(J) = 0 if 0 < s < 1 and (xo)(s) = .y"1"^ if s > 1. Therefore,

in the class of solutions that satisfy conditions (a)-(d), one does not need

to have uniqueness, stability, etc. [2].

4. The linear operator. In this section assume that X is a complex

Banach space. Proofs of the following lemmas are presented at the end of

the section.

LEMMA 4.1. Suppose that δ > 0 and that f: S = {z <= C|δRe(z) >

|Im(z)|} •-> Xis holomorphic. Suppose also that β > 1, Mλ > 0, M2 > 0 are

such that

| | / (z ) | |<M i e χp \M:

\

Im(z) β

Re(z)
Re(z) forz^S.

If M2 = 0 set ω = 1, and otherwise ω = 1 — 1/β. Then for some c

Using this lemma and the Hille-Yosida Theorem for eiφA, φ small and

nonzero, one can easily obtain necessary and sufficient conditions for (1)

to hold. Instead of this theorem we shall, following [8, 10], present more

illuminating and more useful sufficient conditions.

For/: R -> [0, oo],/(0) = 0, define Lf: R >-* [0, oo] by

)= sup { « -
s

Lfis called the Legendre transformation of/.
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LEMMA 4.1. Suppose that

(ii) A: D(A) cz X ^> Xis a linear operator,

(iii) λ 0 > 0 andR(A + λ0) = X;

(iv) for every x e D(A) with \\x\\ = 1 there exists I ^ X* such that

\\l\\ = l(x) = 1 andf(lm[l(Ax)]) < Re[l(Ax)].

Then

ia)A+(Lf)(a) + z)-L\\<l/Re(z)

wheneverz e C, Re(z) >O,αeRand{Lf)(a) < oo.

Using this lemma one can immediately obtain the following two

theorems.

THEOREM 4.1. Suppose, in addition to the assumptions of Lemma 4.2,

that

(ϊ) 0 < φ < ττ/2, 0 < b < oo, are such that(Lf)(x) < b for \x\ < tgφ

(ii') τr/2 - φ < a < π/2.

Then

1

\ξ + 6|cos(τ7 - a - φ)

whenever ζ e C, ξ Φ —b and a < |arg(f + b)\ < π.

THEOREM 4.2. Suppose, in addition to the assumptions of Lemma 4.2,
that

(ϊf)f(x)=f(-x)forallx > Oand(Lf)(8) < oo for some 8 > 0;

(ii") A is densely defined.

Then A is a sectorial operator and

f Re(z)

whenever z e C^«J|Im(z)| < δRe(z).

Proof of Lemma 4.1. Define μ = 8/2 and

\\x\-iμx i f ~ l < x < l ,
z\x) = \ -ι/β

\ \x\ — iμx\x\ if |JC| > 1,
and note that for / > 0,

/ ( ί ) = 2Ϊ7.Γ Λc.
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Hence, for some ct and all / > 0, | | / ' (0 | | ^ co(Λ(O + hi*))* where

(( 0 { μ ) γ d x <

If M2 = 0, take z(x) = |JC| - iμx for x G R.

Proq/* o/ Lemma 4.2. We may assume that X # {0}. Suppose x e
D(v4), ||x|| = 1 and 0 < s < 1. Let / be as in (iv). Observe that (Lf)(as) <
s(Lf)(a) < oo and.

(Lf)(as) > aslm(l(Ax)) -/[lm(/(^jc))],

0 < (Lf){as) + Re(/[(1 + ias)Ax]).

Hence, for every z e C,

Re(z) < Re(/([(1 + ias)A + z + ( L / ) ( O S ) ] J C ) ) .

Therefore, for every z ^ C , X ^ / ) ( V 4 ) , 0 < Λ < 1 ,

Re(^)IWI <||((1 + ias)A +(Lf)(as) + z)x||.

In particular, if Re(z) > 0 , J c E ΰ ( 4 0 < ί < l , then

where

g(s) = ((Z/)(β5) + λ o ( l - s)

and

*(*) = (1 + ( « ) 2 ) 1 / 2 ( λ 0 ( l - 5) + , R e ( z ) Γ \

Now, increase s from 0 to 1.

5. Examples. By AC we will denote the set of complex-valued
functions which are absolutely continuous on [ — a, a] for all a > 0. Fix
1 < p < oo and define

Γo/ = /', / E ΰ ( Γ 0 ) ={g(=Lrn AC|g'

Define T = - Γ0

2. L^ will stand for

THEOREM 5.1. Suppose thatp > 1
(i) g2: R -> R, g2 = Λx 4- h2 for some hλ ^ L^ αra/A2 G L00.

(ii) g l : R ^ R , g l 6 A C Π L00 α«rf/?g2 > g[ a.e.
Set A = Γ + g ^ + g2
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Then
(di)A is sectorial and if \Im(z)( p -2)\<2{p- l ) 1 / 2 R e ( z ) then

Ik^'l l ̂

(b) sup/^1 | |ί
ω-4e~/ l r | | < oo where ω = 1 if gx = 0 and ω = 1/2 other-

wise.

Proof. It is clear that A is sectorial and that (b) follows from (a) and
Lemma 4.1. Suppose that / e D(T) and that \\f\\p = 1. Let / = \f\p/f.
Hence f fl = 1 = \\l\\q where \/q = 1 — \/p. Let c = f lAf. Integrations
by parts give that Re(c) > 0 and

|Im(c)| < \\2-p\{p - l ) " 1 / 2 Re(c) +| | g l | | o o (Re(c)) 1 / 2 .

An application of Theorem 4.2 completes the proof.
For the operator T + gτT0 -f- g2, we now present some bounds similar

to those in equation (2).

LEMMA 5.1. Suppose that p < r < oo and θ = (1/p - l/r)/2. ΓAe«
Meΰ(Γ),

\\f%*

Proof. Choose any z > 0. Hence

/ = (l/2z)((z - ΓoΓ 1 +(Γ 0 + z)- 1 )(Γ/+ z2/)

and

Since ||(z ± Γo)- 1 ^, < z2β~ι\\g\\p for g e L^ we have

Theorem A1.2 implies the following lemma.

LEMMA 5.2. Supposep < r < oo.
(a) //2γ > \/p - l/randa = (1/p - l/r)/(2γ), then for some c,



208 MILAN MIKLAVClC

(b) 7/ 2γ > 1 + \/p ~ \/r and a = (1 + \/p - l/r)/(2γ), then for

some c,

Holder inequalities imply

LEMMA 5.3 Suppose that

(i) ?, ί e [/>, oo] W 1/p = 1/? + l/t.

(ii) r, s e [0, oo), r 4- s > Oand(r 4- s)ί >j9.

(iii) 7/Λ > 0 /Λe« 2γ > 1 + 1/p - 1/ϋ, w/ẑ r̂  y = max{ p9ts}.

(iv) Ifs = O then 2γ > 1//? - l/(ri).

Then for some c and allf

Ikl/Γl/Ίl ̂  ^
where ay = (s + (r + s — l)/p + l/q)/2.

LEMMA 5.4. 5e/ σ = 1 - 1//? α ẑJ assume that

(i) α1 ? α 2 , iδl9 j 8 2 e C are 5WcA /Λ̂ / //

(λ2 + axλ + α 2 ) (λ 2 + ^ λ H- /32) = 0

and Re(λ) = 0, then λ = 0. Define gn(x) = al9 g2ι(x) = aifor ^ > 0
gu(x) = βl9 g2ι(x) = β2forx < 0.

(ϋ) £i2> ?22: R ^ C «r^ Λ WCA //?«/ both x *-> (1 + |jc|)σg12(jc)

x -> (1 + \x\)σ+1g22(x) are in Lp. Define gλ = g n + g12, g2 = g2 1 + g2 2.

(iii) There is no c e C ̂ wcΛ /Λβί gi( ^) = (c — .x)g2(x) β.^

(iv) 7//? = 1 ίλeΛ gx e AC.

(v) 7// e AC,/' e AC, supx(l + | J C D " Ί A ^ ) l < «> ^ ^ Γ + Si/' +
g 2 / = 0, the f is a constant.

Then for some c and all f e D(T),

\\Tf\\p < c\\Tf - glTof - g2f\\p.

The obvious consequence of this lemma is

THEOREM 5.2. Suppose that the assumptions of Lemma 5.4 are satisfied

and that T — gxT0 — g2 is a generator of a bounded strongly continuous

semigroup. Then Lemma 5.2 and Lemma 5.3 hold with T replaced by

- g2.
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Proof of Lemma 5.4. If one expresses f" in terms of /(0), /'(()) and
f" 4- gnf 4- g21/then a direct computation shows that

Cl. (i) implies that for some cτ and all/ e D(Γ),

11/11, < ̂ ( n r + gu/' + g2ιfl + i/'(o)i +(ι«2 | + ι
On the other hand, one can show that

C2. (i), (ii), (iii) imply that iffn e Z)(Γ), w = 1,2,... and

|, + | | / ; + gXfn + glfnWp) < <*>>

then for some c2 and all n, |/Λ'(x)| < c2(l 4- |x|)σ a.e. Moreover, if g2 # 0
a.e., then for some c3 and all «, |/n(x)| < c3(l 4- |x | ) σ + 1 a.e.

Suppose that the conclusion is false. Then there exist /„ e D(T),
n = 1,2,... such that | |/- 4- g l / ; 4- g./J), < 1/n and \\ff\\p = 1. We
shall distinguish four cases: Case 1 (p > 1, g2 # 0 a.e.), Case 2 (/? > 1,
g2 = 0 a.e.), Case 3 (p = 1, g2 # 0 a.e.), Case 4 (/? = 1, g2 == 0 a.e.). Since
in all cases one arrives at the contradiction in a similar way, only Cases 1
and 4 will be analyzed here.

Case 1. Since \ft(x) - fή(y)\ <\x ~ y\σ we have by Ascoli's Theorem
that there exists / e AC such that / ' is continuous, and for all x e R,
|/(x) | < c3(l + \x\)σ+\ \f\x)\ < c2(l + \x\)σ. Moreover, for some subse-
quence {nk} and all x e R, fΛk(x)-* f(x), fήk{x) ^ f\x) as A: -* CXD.
Therefore as /: -> oo,

and

: fήk + SlJnk + gl2/' + g22/||, "* 0.

Therefore all x j e R ,

/ (^) - / (^) + Γ (gπ/; + g2iΛt + gnf + Snf) - 0 (k - oo),

which implies that / ' e AC and / " 4- gx/' 4- g 2 / = 0. Hence / is a
constant and since g2 Φ 0, we have / = 0. Cl implies that \\fή'k\\p -* 0,
contradiction.

Case 4. Define hn{x) = /(fΛ' By Ascoli's Theorem there exist z e C,
a continuous function/and a subsequence {w }̂ such that/,' (0) -> z and
hΠk{x) -* f(x) for all x. Since for all x, n,
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we have that/ e AC,/' e AC and/" + g j ' = 0. Since/(0) = 0 we have

that / = 0 and hence /^(x) -» 0. Therefore | | /^ + gn/Λ'J|i -> 0 and since

a 2 = β2 = 0, Cl leads to a contradiction.

Appendix l In this appendix we present a precise definition of the

fractional powers, some of their properties and a (possibly) new result

(Theorem A1.2). A very thorough analysis of fractional powers was done

by H. Komatsu in a series of papers [5,6...]. Details omitted here can be

found in [5, 6].

Throughout this appendix it will be assumed that A is a generator of a

strongly continuous semi-group on a (real or complex) Banach space X

and that \\e~At\\ < M < oo for all t > 0.

For λ > 0, a > 0 define (A + λ ) " α by

(A + λ)~αjc = - ^ r Γ ta-xe-Xte-Atxdt, x e X.
Γ(a) JQ

Hence \\{A + λ)~α | | < Mλ~α, (4 + λ)~α is one-to-one and its range is

dense in X. (A + λ) α is defined to be the inverse of(^4 + λ)~α and

(A + λ)° is the identity map.

Let a > 0. It was shown in [5, 6] that D((A + λ)α) is independent

of λ > 0 and that limλ_>0*(A + λ)αjc exists (in norm) for all x e
D((A + l) α ). Define Λαjc = l i m λ _ 0 ^ ^ + λ)"x for x

1)").

THEOREM A l l . Suppose that either α, ]8, γ G R α«d λ > 0 or α, β, γ

[0, oo) andλ = 0. 7%^:

(1) J/α w α« integer then (A + λ) α agrees with the usual definition.

(2) (A + λ)a is closed and densely defined.

(3) Ifx e D(,4 + λ)α andt>0 then

(4) 7/0 < a < β then D(Aβ) c D(Aa).

(5) 7/x e 7)((^ 4- λ)^) Π D((A + λ) α

(^ + λ)α(Λ + λ)^x = (A

(6) If a < β < y and θ = (β — ά)/(y — a) then there exists c such

that

for all x e Z)(̂ 4 + λ)\
(7) 7/α e [0,1], t > 0, x e D(Aa), then

\\x - e~x'e-A'x\\ < 2(M + l)2ta\\(A + λ)ax\\.
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(8) // λ > 0 and a e [0,1] then there exist cv c2 such that for all
x e D(Aa),

\\Aaχ\\ +IWI * ciU* + λ)βχ| | * c

(9) //α e (0,1) ίλen ίΛβ //mi/ (in norm) of

as ε -> 0 + exists if and only if x e D(Aa). The limit is (A + λ)αx.

The following theorem is very useful in getting control over nonlinear
terms in semilinear parabolic equations and it is well known when ||e~y4ί||
decays exponentially in / [7,4, 5,1, 2].

THEOREM A1.2. Suppose that
(i) Y is a Banach space with the same scalar field as X.

(ii) B: X -» 7, D(A) c D(B) and B is a closable linear operator. Let
B be a closed extension of B.

(iii) β e(0,1] and c > 0 are such that \\Bx\\γ < c\\Ax\\β\\x\\1~β for all
x e D(A).

(iv) 0 < a < β < y_andθ = (β - α)/(γ - a).
Then D(AΎ) c D{B) and there exists cx such that for all x e D(Ay),

\\BX\\Y < CiWAtxlfWA xW1'*.

Proof. If /? = 1 then the conclusion is obvious. Assume that β < 1.
Choose δ so that β<δ<(β-a + <xβ)/β and δ < γ. Choose λ > 0 and
x e D{Aδ). Then

where /(/) == t8~2(e~Xte~At - 1)(A - λ)8'^. Note that / and Bf are
continuous on (0, oo) and

\\Bf(t)\\γ<c(M+l)2βtδ-2\\(A+λ)8χ
δ \\β

Two bounds on the last term lead to

||Λ/(/)||r < c2r^\\(A + λ)δχ\f\\(A + λ)axtβ,
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where c2 = 2c(M + I ) 2 and μ = β - a + aβ - δβ. Therefore for all
ε > 0,

Γ
λ)δx\\ + ±

hence x ̂  D(B) and,

where η = (β - α)/(δ - α). Now, let λ -> 0 + and bound \\A*x\\ by p α

Appendix 2. Our approach to semilinear parabolic equations is
similar to the one used by D. Henry [2]. However, Henry's definition of a
solution [2; 3.3.1] needs a minor modification (see a counterexample in
§3), otherwise one does not need to have uniqueness of solutions, which in
turn messes up many other theorems (e.g., stability). Almost all of his
proofs apply unchanged under the new definition of a solution. Here we
shall present theorems needed in the main part of the paper.

A linear operator A in a complex Banach space is said to be a
sectorial operator if it is a closed densely defined operator and if there
exist flER,M>0 and 0 < φ < π/2 such that z £ σ(A) and

\\(A-zYl\\<M/\a-z\

whenever z e C, z Φ a and φ < |arg(z — a)\ < π.
A linear operator A on a real Banach space X is said to be sectorial if

the natural extension of A on the complexification of X is sectorial.
Assume that A is a sectorial operator on a Banach space X. Fix an

β G R s o that HέT ÎI < Me~{a+8)ΐ for some M > 0, δ > 0 and all t > 0.
F o r β > 0define** = Z>((4 - ά)β)anά\\x\\β = \\{A - α)^x||forjc e Xβ.

Fix 0 < α < 1, - o o < / 0 < / 1 < o o and assume that Fis open in Xa.
Assume that/: [ ί 0 Ό x V *~* X i s s u c h that for every t0 < t < tl9 x G V
there exist δ, M G (0, oo) and v G (0, l] such that

| | /(s 1 ? Xl) -f(s2, χ2)\\ < M(\sλ - s2\
V + \\Xι - x2\\a)

whenever tQ < st < tl9 xt G Fand \st — t\ 4- ||xf. — x\\a < δ for / = 1,2.

For every t0 < τ < tv let S(τ) denote the set of continuous functions

x: [to,τ) •-> Xsuch that

(i) x([tφτ)) c Fand/( , x(-))
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(ii) x\t) exists (in X), x(t) e D(A) and x\t) + Ax(t) = /(*, x(t))
for t0 < t < T.

THEOREM A2.L Suppose that to< τ < tv Then x e 5(τ) if and only if

(i)x([to,τ))^Vandf(-,x( ))tΞC([to,τ),X)

(ϋ)

) ~ ^ - ^ ( / ) + J' r^('-s )/(s, *(*)) ώ /or /0 < / < T.

THEOREM A2.2. Suppose that t0 < τ < tλ andx e 5(τ).
(a) /(•, x( )), Ax, x, x': (t0, T) ̂ > X are locally Holder continuous

functions.
(b)//α < β < landx(tQ) e Xβ then x

THEOREM A2.3. Suppose that x0 e F. 7%e« ίΛ r̂β ĴCW/.S1 ^0 < T < /x

that
(a) ΓAere w an x & S(τ) such that x(t0) == x0.
(b) // /0 < ί* < /l5 >; e S(ί*) andy(t0) = x0 ίΛ̂ w /* < T and y(t) =

x(t)fort0 < / < / * .

THEOREM A2.4. Suppose that t0 < τ < tv x <E S(τ) and
sup{||/(j, Jc(j))|||ί0 ^ ^ < T} < oo. JΆe« /Aere exw/Λ1 jμ e XΛ

^τ-||x(r) - 1̂1̂  = 0 for all 0 < β < 1. Moreover, if y e F
T < TX < /X ΛWJZ G S ^ ) Λ WCΛ that z(t0) = x(/0).

T H E O R E M A2.5. Suppose that t o < τ* < τ < tx and x e S ( τ ) .

ex/.y/ μ > 0, c > 0 ŵcΛ rΛα/ //>0 e Xα

exists t > τ*,y G S(t)for whichy(t0) =

for to<s< T*.
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