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This subject is concerned with non-isotropic unitary spaces V over
involutorial division rings D with characteristic not 2 and with non-trivial
non-archimedean exponential valuations w, which are abelian. It will
require a generalized Cauchy-Schwarz inequality relative to w. The
dimension of V over D need not be finite. Treatments of the unitary
module Vo of finite vectors v in v (finite, in a technical sense), the ring Lo

of linear transformations of V that increase lengths, and the unitary
group U yield information on the normal subgroup structure of this group
and the factor group U(r)/U(r) Π Z, where U(r) is the rth derived group
of U and Z is the center of the ground division ring D.

Introduction. From a purely ring-theoretic viewpoint this subject
arose from the treatment of primitive ring with involution L, in which, 2 is
invertible and 1 — k is invertible for every skew-symmetric k in L. These
invertibility assumptions ensure plenty of unitary elements u = w*"1 in L,
via the Cayley transform u{k) = (1 — k)/(l + k) and one is interested in
deciding whether or not the factor group [U,U]/[U,U] Π Z is simple,
where Z = center(L) and U is the group of unitary elements in L.
Another question which is of interest to me is the nature of the ring that is
generated by U. From a more down to earth viewpoint, this subject
specializes to the rings L of the form L = L(F), the full ring of linear
transformations of a certain left vector space V. It will be assumed
throughout that V is a non-isotropic unitary space (in the sense of I.
Kaplansky), where the involutorial ground division ring (£>;*) will be
equipped with a non-trivial non-archimedean exponential valuation w,
which is abelian. In fact, w will be a ^-valuation (in the sense of S. S.
Holland, Jr.). I will require, furthermore,

(1) 2w(u - v) > w(u - u) + w(υ v) -h 2ε0,

where (•) is the form of the unitary space F, < is the ordering in
G, the value group of w, and ε0 is a constant (depending on V) in G. As
shown by a theorem of Kaplansky, if L is as in the outset then L can be
represented as a subring of L(V), where the involution in L corresponds
to the adjoint involution φ ^> φ*, provided L has a minimal left ideal. Of
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course, given the valuation of w and/or assumption (1) are extra assump-

tions.

I shall call V an elliptic space if some inequality (1) holds true. As a

special case of (1), there is, of course, the Cauchy-Schwarz inequality

obtained by setting ε0 = 0 in (1):

(2) 2w(u v) > w(u u) + w(v v).

Readers who are more familiar with (2), which has been dealt with

recently by Holland [11], may stick to (2) throughout this work. My

motivation in (1) will be explained as a concluding remark. I proceed to

the material of this work.

This work is organized in four sections of which the first two were

kept independent. Treatment of the unitary /{-module Fo of finite vectors

cropping up in a given non-degenerate O-elliptic space V (e.g. V satisfies

(2)) occupies §1. Treatment of the ring that is generated by U has been

omitted for reasons of space. Instead I will propose the ring Lo of linear

transformations φ that increase lengths

(3) w{uφ - uφ) > w(u u) (u^V).

The ideal structure of this ring will be investigated in an increasingly

larger way in §§2 and 3. Treatment of the unitary group U of V and

related groups will be done also by stages and exclusively in §4. Now to a

synopsis of the results in the order these results will appear in the work.

Concerning Section 1. By length of v e F, I mean the element w(υ υ)

in the group with infinity adjoined GU {oo}. Those vectors υ having

non-negative lengths, or finite vectors, form an i?-module, where R is the

valuation ring in (D; w). Questions such as when is this module Fo a free

module, when does Fo contain some orthogonal basis and when orthogo-

nal summands of the residue space F (in the sense of Holland) can be

lifted to Vo will be provided satisfactory solutions. In §1, Theorem 1.7 (1)

will establish that if F has a denumerable basis then Fo is free if and only

if Vo has an orthogonal basis, which relates to Kaplansky's [13, Theorems

37, 38, pp. 46-48]. In the cited theorem it will also be demonstrated that

the freeness requirement has a neat number theoretic interpretation,

namely, either the value group G is divisible by 2 or G has a first positive

element ε = 0 + such that one at least of these two elements 0, ε is

represented by the form (e.g. occurs at length) in each one-dimensional

subspace of V. As a corollary if 1 (= unity of D) is represented by the

form in each one-dimensional subspace of F then Fo has an orthogonal

basis. This corollary is due to Holland (see [11, Theorem 5.4]).
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Concerning Section 2. The treatment of the ring Lo of all linear

transformations φ that increase lengths corresponds to several needs. For

one thing, for these spaces V for which the i?-module Vo is free Lo will be

shown to be isomorphic to the full endomorphism ring of Vo (see §3,

Theorem 3.25). For another, in a continuation of this work, I will show to

what extent the ideal structure of Lo is the same as that of the subring of

L that is generated by U. A third need more pressing for this work is to

use the ideal structure of Lo for the normal subgroup structure of the

group U. Last but not least one is interested in finding the analog for L of

the valuation ring R in D. An attempt will be made to keep the treatment

of Lo coordinate-free. Instead of the usual vector valuation of the ring L

viewed as a matrix ring over D, I will propose the notion of *-prevaluation

. . . w > . . . τhχS i s a binary relation between L and G U { oo} whose

restriction to Z and G U {oo} is the same as the binary relation w defined

by

(4) zw > g<=* w(z) > g.

F o r general ψ e i and g ^ G U {oo}, φw> > g is defined by

(5) w(v<p vφ) > w(v v) + 2 g ( y G F ) .

Axioms of a *-prevaluation in general are listed and verifications of these

axioms for the particular *-prevaluation w > are stated without

proofs (or almost). One can view the valuation ring R to be the set of

elements x ^ D such that xw > 0. Likewise, Lo is the set of linear

transformations φ such that φw > 0. Evidently U is the unitary group of

L o so that every 2-sided ideal / of Lo which is *-dosed (e.g. if φ G / and if

φ has adjoint φ* then φ* e /) gives rise to the congruence subgroup

U Π (1 4- / ) . Each g > 0 in G gives rise to the ideal Lg (resp. L*) of

all linear transformations φ such that φw > g (resp. φw > g, that is,

w(vφ - vφ) > w(v - v) + 2g, for every 0 Φ v e V). Among the non-for-

mal theorems in §2, Theorem 2.7, asserts that Lo is a prime ring which is

an order in an overring of all linear transformations of finite rank,

Theorem 2.12, asserts that L$ in contained in the Jacobson radical of Lo

if V is finite-dimensional (or a more general result) and, Theorem 2.19,

asserts that the congruence subgroup [/0

+ = U Π (1 + LQ ) has all its

non-trivial roots of unity (if any) outside U*, for a certain ε0 e G

depending on the characteristics of D and of the residue division ring D

(ε 0 = 0 if charac(D) Φ 0; ε0 = w(p), if charac(D) = 0 and charac(D) =

p Φ 0; ε0 = 0 if charac(ϊ>) = 0).

Concerning Section!. This section corresponds to several needs, (i)

When the coordinate-free contribution of the *-prevaluation w >

as employed in the preceding section is a fact; still, on one or two
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occasions in that section, the matrix delineation of this binary relation is

as I believe, inevitable, (ii) In archimedean matrix representation of the

w-dimensional orthogonal group O(D; «(•))> where D is a field carrying

an archimedean exponential valuation and ( ) is an w-dimensional coordi-

nate orthogonal form on Z), each orthogonal transformation φ viewed as a

matrix over D has all its entries from the valuation ring R in D. In the

considered non-archimedean set up, if (/,) is an orthogonal basis of V and

if φ e U what can be asserted about the matrix of φ relative to the basis

(/,)? (iii) While there is a parallel between R and Lo from the formal point

of view of *-prevaluations can one say something deeper; for instance, is

LQ = Jac(L0) the unique maximal 2-sided ideal of the ring Lo? (iv) What

is the nature of the factor group ί//t/0

+? v) Of the mapping g -> Ug =

(1 + Lg) Π UΊ Taking the situation dealt with in (ii) as a fresh starting

point, I will be dealing with those non-isotropic unitary spaces V (inequal-

ity (1) not required at the outset, ^valuation w required) equipped with

some orthogonal bases (/,) such that

(6) φ e U => w(eatxitJ(φ)) > ελ (all ij),

where εx is a fixed element in G, ελ < 0; the case ελ = 0 being exactly

analogous to the requirement in (ii). In Theorem 3.2, I will show that (6)

implies V verifies some inequality (1); in the case ετ = 0 and 1/2 exists in

/?, I will establish in Theorem 3.10, that V verifies the usual Cauchy-

Schwarz inequality. For general ε1? I will intertwine in Theorem 3.5, the

*-prevaluation w > with its matrix counterpart w defined by

(7) φw > g ~ w(entr/ J(φ)) > g (all ij).

This approximation theorem uses two parameters, namely an index of

ellipticity ε0 and a bound ε2 for the basis (/), that is some ε2 Ξ G such

that \w{ft /,) - w(fj fj)\ < ε2 for all pairs /, j (\g\ = g if g > 0 and

\g\ = — g if g < 0). Both ε0 and ε2 depend fairly sharply on εx; in case

εx = 0 and 1/2 exists in R, I will show in Theorem 3.10 that ε0 = 0 and

ε2 = 0 or else ε2 is the first positive element ε in G. For such a pair

(V; (/,)), I will provide satisfactory solutions to the questions in (iii), (iv)

and (v) (see Theorems 3.13 through 3.23).

Concerning Section 4. I stated in the opening remarks that my initial

motivation for this work can be traced back in the question asking if the

group [U,U]/[U,U]Γ) Z is a simple group. For instance if V is an

Euclidean space (in the sense of E. Artin) of finite dimension > 3 then by

Artin [1, Theorem 5.3, p. 17] the preceding group is a simple group. If,
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contrary to the non-isotropic requirement, Fis any non-degenerate unitary
space with index > 2, where the ground division ring D is deprived of the
valuation w9 but D contains at least 25 elements, then by J. Dieudonne [6,
Theorems 1 and 4], the cited group is again a simple group. If V is any
non-isotropic elliptic space which is orthogonal (e.g. * = identity mapping
of D) and of finite dimension n > 3 then by Artin [6, Theorem 5.8, p. 184]
the group [{/, ί/]/[ί/, ί/] Π Z is not simple. Treatment of the general
projective group U{r)/U{r) Π Z (r = 0,1,2,...) for the considered space
V arises as a conjunction of the cited results for, at least, r < 1. In §4,
Theorem 4.4.7, I will establish that U(r)/U(r) Π Z does not verify the
descending chain conditon for normal subgroups at the exception of the
obvious cases where V is the 2-dimensional orthogonal space or V is
1-dimensional and dimzZ> < 4. As an explanation of this negative fact I
will propose a positive one, namely, the positive cone G+ can be dually
embedded in the lattice of normal subgroups of the group U{r)/U(r) Π Z
for at least r < 1. This is done in Theorems 4.2.2 and Theorem 4.3.5,
under a certain assumption familiar to §3, and a different assumption
about the residue division ring 2), namely, the dimension of D over its
own center exceeds 4. As an application of the foregoing theorems, I will
derive that every torison normal subgroup of U is central; when D is
finite-dimensional or * is of the first kind then the same conclusion will
hold for U replaced by U(r)/U{r) Π Z. (See Theorems 4.4.7 and 4.4.8.)

Concerning assumption (1). In Artin's Geometric Algebra, it is stated
that the old principle valid for Euclidean space F, namely, "small dis-
placements on the unit sphere can be combined to give arbitrary displace-
ments" (local cit. [1, Chapter V, Sect. 3, p. 179]) fails badly when the
ground field D is equipped with a non-archimedean absolute value or,
equivalently, a non-archimedean exponential valuation; it suffices to take
F to be an orthogonal space of finite dimension n > 3 with assumption
(1). The term used by Artin for such a space Fis an elliptic space (see [1,
Def. 5.2, p. 180])—I suggest no explanation of this term. My interest in
assumption (1) arises more specifically from Artin's [1, Theorem 5.6, 5.7,
pp. 18-183] which asserts that assumption (1) implies and is implied by
the requirement some (and, hence, all) congruence subgroup Ug = (1 +
Lg) Π U Φ 1. Loosely speaking these theorems tell us that (1) has thus a
ring-theoretic formulation and, by way of consequence, (1) serves the
function of measuring the ring-theoretic incidence of (2). To close, let me
add that as of the writing of this article no example of elliptic space F not
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O-elliptic is known to me.{1) As a matter of fact, I will establish in a

continuation of this work that if w is of rank 1 then (1) <=» (2), which

yields a full ring-theoretic formulation of (2) for such valuations w.

1. The module of finite vectors. I will begin with: a review of some

of the undefined terms used in the Introduction; the main definitions and

conventions; brief comments about non-isotropy, the valuation w, and

assumption (1) in Introduction. The rest of this section specializes to the

modulo Vo (Definition 1.1 onward).

(a) Involutorial division ring D. Hereafter, D stands for a non-com-

mutative skew-field or division ring with charac(Z>) Φ 2. Let x -> x* be

any fixed anti-automorphism of D of period 2 if D is not a field and

period 1 or 2 otherwise. Let

Z = Z(D) ( = { z <E D\zx = X Z V J C G Z>}),

^(Z>;*) = {κφce= D\xx* = 1),

be the center and unitary group of D respectively. Ifjc E ΰ , denote by x^,

the right translation of D induced by x and let

(0) D^= {X^XΪΞD},

be the division ring of right translations of D {regular right representation

of D). Given the symmetric element s = s* in D, s Φ 0, let {s) stand for

the new involution defined by

(1) x{s) = sx*s~\

(b) Group with oo adjoined G#. Hereafter, G stands for an additive

group, G Φ 0, which is abelian and ordered. Denote the linear ordering on

G by •••<•••. Extend the addition and the ordering to the set

6 * = G U { o o } ( o o ί G)by the laws

(2) g < oo, for every g e G, and

(3) g + o o = o o + g = o o = oo + oo, for every g G. G.

(c) ^-Valuation ([11, Sect. 2, p. 221]). Following Holland, by ^-valua-

tion, I mean a mapping w: D -» G# verifying the following.

(4) UDX= { x e D\x Φ 0}, then w{Dx) (= { w{x)\x e Dx}) = G.

(5) w{xy) = w{x) + w{y) (x, y e D).

1 In a private communication (letter to me of October 3, 1984) H. Gross, University of
Zurich, has elaborated on this matter, where he attributes examples using 2-adic valuation
to his student URS-Martin Kϋnzi (Ph.d. dissertation). He also points out that the
equivalence (1) <=> (2) has been indeed established by his student in a slightly more
general set up.
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(6) w(x + y) > Min(w(x), w(y)).

(7) w(x*) = w(x).

(d) Elliptic space. Let F be any unitary space over the involutorial

division ring D. Hereafter, D carries a evaluation w.

DEFINITION 1.0. I will call Fan elliptic space (resp. 0-elliptic space) if

for some ε0 in G (resp. ε0 = 0)

(8) 2w(u v) > w(u w) + w(v ϋ) -I- 2ε0,

for every pair w, v in F.

(e) Concerning the valued division ring D. By definition, w is a

non-archimedean exponential valuation (in the sense of Jacobson) of D,

which is abelian since G is abelian and w is non-trivial since G Φ 0. Let

(9) i ? = {xeD\w(x)>0};

(10) /= {x^D\w(x) > 0}.

Then R is the valuation ring in D. Indeed, 7? is a subring of D, which is

preserved under conjugation. Every one-sided ideal of R is 2-sided. Every

finite set of ideals of R has a largest member. / = Jac(i?) is the largest

non-zero ideal Φ RinR. For g e G, let

(11) Jg={x<=D\w(x)>g).

Then Jg is an additive subgroup of D; if, further, g > 0, then Jg is an ideal

of/?.

Although 2 is invertible in D it need not be so in R. Of course, 2 ̂  R

since 7? has unity. The factor ring R/J, a division ring by the preceding, is

denoted by D (residue division ring):

(12) D = R/J.

(f) Concerning the ^-valuation w. Inequality (6) carries over to alge-

braic sums:

/ * \
(13) w £ xέ > Min (w^x,)) (strong triangle inequality).

In the special case w(xt) Φ w(Xj) for every pair / Φ j\ one has the equality

/ n \
(14) w\ Σ x / = Min (w(x7)) (special triangle equality),

Law (7) follows automatically from (5) plus D is finite-dimensional over Z

with * of the first kind. This is an immediate corollary to Dieudonne [6,

Theorem 5].
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(g) Non-isotropic form. Hereafter, V stands for any non-degenerate

elliptic space. From the elliptic assumption alone follows that if Rad(F)

= {v e V\υ F=0},then

(15) R a d F = { v\v ι? = 0}.

From non-degeneracy follows thus non-isotropy of the space V:

(16) v v = Q=>v = 0 (ΌGV).

(h) Constant of ellipticity. If V Φ 0 is elliptic then clearly the element

ε0 appearing in (8) is not positive. Hence ε0 < 0. In the sequel, I refer to ε0

as to index of ellipticity without insisting that ε0 be the largest (as a

negative element). Throughout this work V stands for a non-degenerate

elliptic space and from Theorem 1.6 until the end of this section V is

0-elliptic.

DEFINITION 1.1. Call υ & finite vector if for each u e V

(17) 2w(u u)> (u u).

Denote by Vθ9 the set of all finite vectors.

Clearly the linear inequality (17) implies

(18) w(v - v) > 0;

it suffices to set u = v in (17). The quadratic inequality (18) implies back

(17) under the 0-elliptic assumption. For the general assumption (1), the

penalty is the constant ε0:

(19) 2w(u - v) > w(u u) + 2ε0.

Call v ^ Vo infinitesimal, if

(20) 2w(u - v) > w(u u) (u - uΦ 0).

Again, (20) implies

(21) w(v - v) > 0,

which implies back (20) up to ε0:

(22) 2w(u - v) > (u - u) + 2ε0 (u u Φ 0).

In the sequel, the subset of all infinitesimals υ in V is denoted by Fo

+. In

symbols:

(23) v e VJ <*> (v G Foandw u Φ 0 => 2w(u υ) > w(u u)).

THEOREM 1.2. Let Vbe any unitary space over the *-valued division ring

D—ellipticity of Vnot required. Then:

(1) If Vo is the set of finite vectors on V then Vo is a submodule of the

R-module V, where R is the valuation ring in the valued division ring(D; w).
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(2) // VQ is the subset of infinitesimal vectors then Fo

+ is a submodule

ofV0.

(3) Fo F o c R and, hence, Fo can be turned into a unitary module,

relative to the form (•).

( 4) *o> K and / ( = Jac(Λ)) are such that
( i ) / F o c F o

+,

(ii) Fo Fo

+ c /, am/

(iii) Fo

+ Fo c /.

Proof. (1) If ϋ is a finite vecor and λ G i?, then for a given w G F,

2w(w -(λi;)) = 2w((u ι;)λ*) = 2w(w v) + 2w(λ*)

= 2w(u y) + 2w(λ) > 2w(w y) > w(u - u);

as this holds for each M G F, λϋ E F o follows. For u, v as before, if υ' is

another finite vector, then

2w(u '(v + ί/)) = 2w(w ί; 4- u ϋ') > 2Min(w(w ϋ), w(w υ'))

= Min(2w(w t;),2w(w υ')) > w(u u)

implies i + y ' G Fo.

(2) is a trivial adaptation of (1).

(3) If v, v' e Fo, then from i; G F O , and ^ G F O C F, follows

2w(t» υ') > w(v' υ') > 0 so that w(υ υ') > 0 or, υ ι/ G i?, for every

pair ϋ, t;r G F.

(4) (i) If 0 Φ j G /, and 0 # i; G F O , then for every 0 Φ u G F,

2W(M jy) = 2w(w y) + 2w(7') > w(u w) + 2w(j) > w(u w)

placing jv in P^+.

(ii) If v G Fo and 0 # w G Fo

+, then from w G FO

+ C F O follows

2w(w v) > w(u - u). From u G J^+ follows w(w w) > 0.

Equivalently, w(w y) > 0 placing u-vinJ.

(iii) Fo

+ Fo = (Wo - W0

+r c / * = /. D

As a side remark, if F =£ 0 then Fo Φ 0. This follows trivially from the

elliptic axiom. Conversely, in §2 Theorem 2.18 it is shown that if Fo Φ 0

then V is elliptic by parts (e.g. every finite dimensional subspace of F

satisfies some inequality (1)). I turn to questions about the unitary

i?-module F o. As a rule of thumb everything that will follow relies on the

following extra assumption, which necessitates the O-elliptic axiom (2):

(23) ^ o W = {vf=V\w(vv) = 0}.
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Equivalently, (21) asserts that if υ is finite but not infinitesimal then and

only then w(v v) = 0 (medial vector v).

DEFINITION 1.2. The family ( λ / ) / e / , where λ, e D, is said to be a

nullary row vector over D if all λ, = 0 except for finitely many indices

in/.

In the sequel, by basis of V (resp. Vo) over D (resp. R) I mean any

family (/,),<=/ in K(in Fo) such that given y e K(resp. ι ;eK 0 ) there is a

unique nullary vector (λ,-) over D (resp. over /?) such that

(24) v=ΣKfr

Can one say that Vo is a free module (e.g. Fo has some basis)? orthogonally

free module (e.g. Vo has some orthogonal basis)? The following examples

will give some feeling for these questions.

EXAMPLE 1.4. (i) Up to isometry every unitary i?-module Vo where V

is 1-dimensional is of the form

= Λ o = ( x go},

where g0 e w (^(/); *)) and g0 > 0.

(ii) Conversely, for any such g0, the set */go is a left (in fact, 2-sided)

ideal of the valuation ring R, which can be realized as the Λ-module Vo of

some non-degenerate O-elliptic space V.

(iii) To say that JgQ viewed as a unitary ϋ-module (in the sense of (ii))

is orthogonally free it is the same as saying that J^ is a principal left ideal

of the ring R).

Proof. (1). Let V be any non-degenerate unitary space, which is

1-dimensional. Pick any v e V such that υ v Φ 0. If sλ = υ υ9 then
si = si ^ 0 Replacing v by λϋ changes 5X to λ51λ*. It follows that one

can find some 0 Φ s = s* £ 7?, which is represented by the form (e.g.

s = u - u, some u ^ V). Then Kis isometric to the space D relative to the

coordinate form

Here, the valuation w is analytic, that is,

(25) w(v υ) = w(v -sυ)

where v ^ D is defined by the equation

(26) v = vu (u - u = s).
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Since the space DD is evidently O-elliptic relative to ( s) it follows that V
is O-elliptic. Then Vo corresponds to V0(DD; ( s)). Now,

x ε V0(DD; (•,)) «* w(xix*) > 0 «=» 2w(x) > -w(s).

Thus if g0 = - w(s), then g0 ε w(^(Z); *)), g0 > 0, and

(2) Pick any s = s* such that H>(S ) = — g0. Equip DD with the form

(27) JC 5<y = xsy*.

By construction, V = DZ> is a non-degenerate O-elliptic space with Fo = */go.

(3) Since J^ is an i?-submodule of a 1-dimensional non-degenerate
unitary space it is clear that JgQ cannot contain any two non-zero orthog-
onal vectors. Hence, J>^ is 1-dimensional. Equivalently, the left ideal JgQ is
a principal left ideal. D

EXAMPLE 1.5. (a) If (/,) is any orthogonal basis of the space V, then
for every v e V

(28) v-Σ(» ft)τΓfft

(b) If V possesses some orthogonal basis and if every g G G that is
represented by the form (e.g. there is v G V such that v = w(v v)) is
divisible by 2 then the /?-module Vo is orthogonally free.

Proof, (a) For let (λ t) be the nullary vector over D such that
v = Σ λφt. By construction, there is a unique finite subset lx of / such that
λ t Φ 0 for each i G Iλ and y = Σ t e / l λjr If

^'= Σ(o /.)7T7/.

then y — ί;' is orthogonal to each/r Hence v = */.
(b) Let (ft) be any orthogonal basis of V over D. Without disturbing

the orthogonality relations each/can be replaced by gL with w(gt - gL) = 0.
The new basis (g) is in Vo. lί v ^ Vo then by (a),

v= Σ(v-gt)——gt

follows. If y gt Φ 0 then from O-ellipticity follows

2w(v - gt) > w(v - υ) + w(gt - gt) = w(υ v) > 0

giving >v(ί; gt) > 0 or, y gt ^ R. Hence, (gt) is a basis of Vo over jR. D
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The treatment of bases of the i?-module Vo (if any) necessitates, of

course, treatment of those v e Vo such that λv e Vo implies λ e R. Before

I deal with such vectors v let me observe that if in the value group G there

is some g 0 > 0 such that g0 < 2g for every g > 0 then G has a first

positive element ε which is precisely g0. Indeed, if g < 0 but g < g0, then

go ~ g > ° s o that g0 < 2(g0 - g), that is, 2g < g0, a contradiction.

THEOREM 1.6. Let V be any nondegenerate ^-elliptic space, let v e V

and let g 0 = w(v y). The following requirements are equivalent.

(1) g0 < 2g for every gt= G+(= ( Λ G <?|* > 0}).

(2) g0 = 0 or g0 = ε = 1st positive element of G.

(3) g0 > 0 am/ //λί; e Vo, then λ e # ,

(4) g0 > 0 W //we Fo, then w(u w) > g0.

If one (and, hence all) requirements are verified then I will call v a
pseudo-medial vector.

Proof. (1) => (2). If v is not medial then 0 < g0 < 2g for every

g e G+. From this g0 = ε.

(2) => (3) From λv e Vo follows that if g = w(λ) then 2g + g0 > 0 or

ε = g 0 > - 2g; equivalently, - g < 0, that is, g > 0 or λ e R.

(3) => (4) Given w e Fo if wx is the projection of u on v:

uλ = (u - v) υ9
1 v ' v - v

then w(uλ wx) = 2w(u ϋ) - w(ϋ u) > w(w u) > 0 placing wx in v0. If

λ = ( w . ί;)(i; . y) then since λί; = uλ e Fo, λ e i? follows or w(w v) >

w(v v).

(4) => (i) Let g e G. If g0 > 2g then if x e D is such that w(x) =

g then wίjc"1^ ΛΓ1*;) = g0 - 2g > 0 placing x-1ί; in Fo

+ c Fo. Thus

w(x~ιv - v) = g0 - g > w(ϋ v) = g0 or g < 0. The contrapositive of this

is that if g > 0 then g0 < 2g, as desired. •

THEOREM 1.7. Let V be any non-degenerate 0-elliptic space, which has

some denumerable basis. The following requirements are equivalent.

(1) The R-module Vo is a free module (e.g. Vo has some basis over R)

(2) The R-module Vo is orthogonally free (e.g. Fo has some orthogonal

basis over R).
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(3) For every g ^ G which is represented by the form (e.g. g = w(v v)
for some v ^ F) there is gf e G and ε e G such that g = 2g' + ε, where
either ε = 0 or else ε is the first positive element in G.

(4) Given 0 Φ v e F ίΛere is λ ^ D such that λv is a pseudo-medial
vector ( F contains enough pseudo-medial vectors).

Proof. (1) => (2) Evidently the /ί-module Fis an essential extension of
the i?-module Vo in that if v e F there is 0 Φ λ e D such that λv e Fo.
Equivalently, F = D F 0 . Then every basis of Fo is a basis of F over Zλ
Hence Fo contains a denumerable basis, say, (ez)/=i,2,... Now Fis non-iso-
tropic. Thus by induction on n one can define the following sequence

(Λ)I-IA. . . :

(29) Λ- β l , Λ-e.- f* .- .

Put:

UΛ,I = α«,/// K ̂ s t o t>e shown that vni e Fo. For since F is O-elliptic it
follows that 2w(en - f) - w(f • /,) > w(eπ - e n) > 0 (eπ e Fo). Now, by a
straight calculation w(ϋπ>. - υnj) = 2w(ani) + w(/z /,) = 2w(en - f) -
w(fi'fi)> The relations vnι ^ Fo will be used to show that, in turn,
ani ^ R and fn e Fo for every pair i, π with i < π. From the preceding
an Ji = ϋΛ)J. ̂  Fo. By a straight induction on n follows fn = en —
Σ/lllanifi e ϊ^. For the relations ani G i?, where / < /2, use the n — 1
first equations of the^

Λ = *i>

f2 = e2- a2Λfl9

n-2

fn-l = en-\ ~~ 2^ Oίn-\,ifi^

to express the / i? 1 < / < n — 1, in terms of the ^ , 1 <y < n — 1. Since
t h e / with 1 < i < n — 2 evidently do not use en_1Ίi follows that

Λ-l = ̂ 1 + * * + βn-ltn-l + 1 ' ̂ - 1 ?

for some βt < D. In the equation of/„,

fn = €n ~ an,lfl ~ ' ' ' ~ «w>Λ_i/Λ_i»
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substituting for the/, with 1 < i < fn_λ one obtains

where the ^ G ΰ , 1 < i < « — 2. Since e,...,ew,... is a basis of the
i?-module Vo it follows that all coefficients in the preceding equation are
in R, particularly -ann_ι G R. Hence,

fn "*" an,n-lfn-l ~ fn ~ βn~ an\f\ ~ ' ' ' ~ an,n-lfn-2

where /„' e Vo. Repeating the preceding argument for fn replaced by /„'
shows that ocnn_2 G R. Step by step ann_3,... ,αΠ f l G R follow.

Since the ani are all in R it follows that the βj are iί-expressible in
terms of t h e / e Fo. Since the ey span Fo so will be the/ and since the/z

are orthogonal they form hence an orthogonal basis of Vo over R.

(2) => (3). I will first establish the following identity, which was
suggested to me by the referee:

(29)' w(t°i
\ / = i

°]=
(0 ¥= ί;x,..., vr orthogonal vectors in V).

One-half of (22) follows automatically from the generalized triangle
inequality. Conversely, for any fixed i,

2w(vi Vj) = 2wUf - Σ Όj\ > w(vi i?,.) + w Σ ϋj yy

giving after cancellation by w(^ i;,.), w(vt - vt) > w(Σr

J=1Vj - υj). As this
holds for every / it follows that Minz=:1 ^ ( ^ ( ^ v^) > w(Σr

J=ιVj Vj).
Next, I observe that if (/)) is any orthogonal basis of the i?-module Vo

then by a straight adaptation of the preceding if ( λ j is any nuUary row
vector over 2), then

(30) wί Σ Kfi λ,/i) = Minw(λJt λj t ),

((/.) any orthogonal family in F). Now since (/z) is a basis of Vo over i? it
follows that for each fixed / G /, / e Fo and if λ/) e Fo then λ e i?. In
view of Theorem 1.6, / is then a pseudo-medial vector of V for every
i e /. If then oc Φ g is represented by the form, say, g = w(v - v) then for
some 0 Φ X e 2), λ'y G KO. If i;' = λrί; then υ' = Σ λ , / for a certain
nullary row vector (λz) over R. From (30), follows



NON-ISOTROPIC UNITARY SPACES 15

for some i0 e / and some λ 0 e R. Since v Φ 0 and λ' Φ 0 it follows that

v' Φ 0 so that w(ί/ v') Φ oo and, hence, λ 0 =£ 0. Then

g = w ( ^ . Ό>) - 2w(λ>) = w(λo(/ / o -fjλ*) - 2w(X)

= 2w(λoλ"1) + ε

where ε = /j. fio = 0 or else ε is the first positive element in G (Theorem

1.6).

(3) => (4) This is a corollary to Theorem 1.6.

(4) => (1) That V possesses an orthogonal basis as soon as V possesses

a denumerable basis was shown for the i?-submodule Vo itself so, V has

some orthogonal basis. Given any orthogonal basis (gj)ier for the space V

over D, scale this basis to an orthogonal basis of V over Z>, where the new

gz are pseudo-medial vectors. I assert that these g, form a basis of Vo over

R. For to begin with the gi e Vo. They are linearly independent over D

and, hence, over R. To see that the gt span Vo over i? proceed as follows.

Given 0 Φ v e Vo c F, since (g,-),^/ ^s a n orthogonal basis in V, it

follows (Example 1.5) that

where it is understood that all the (υ - ft)(ft */t) = 0 but for a finite

number of indices. Since each g, is pseudo-medial w(v gt) > w{gt gt)

follows (Theorem 1.7, point 4.) or, (v gi){gt - gx) ^ R. Hence the preced-

ing equation shows that v is i?-expressible in terms of the gi9 as desired. D

As stated earlier in Introduction, the equivalence 1 <=> 2 holds for any

unitary iϊ-module Vθ9 where R is any valuation ring containing 1/2 and Vo

is finite-dimensional (cf. [13; Theorems 37, 38]). Note, however, that the

argument as given in [13] makes essential use of these two extra assump-

tions (extra assumptions for Theorem 1.7).

Using arguments similar to the argument in Theorem 1.7 and stan-

dard arguments one can show the following corollaries.

COROLLARY 1.8. Let Vbe any non-degenerate 0-elliptic space. Then:

(1) // V has some orthogonal basis then Vo is orthogonally free if and

only if V contains enough pseudo-medial vectors.

(2) // the subgroup 2G is of index < 2 in G {in particular if G is

isomorphic to the ordered additive group of integers) then given g e G there
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is g' ^ G and ε such that g = 2g' + ε, where either ε = 0 or ε is the first

positive element in G so that V contains enough pseudo-medial vectors.

(3) If V is spanned by pseudo-medial vectors it does not generally follow

that V contains enough pseudo-medial vectors.

COROLLARY 1.9. Let Vbe as in Corollary 1.8. Then:

(1) If VQ is an orthogonal summand in Vo then, in fact, Vo = V$ .

(2) // VQ has denumerable basis as an R-module then so must be Vo.

To find orthogonal summands of the 7?-module Vo less forbidding

than VQ , I will first recall a construction due to Holland of the residue

space F ( [ l l , Theorem 5.4]). Let V = V0/VQ . Then annihilator in R of V

can be turned into a left space over D = R/J. By Theorem 1.2, again,

Vo

+ Vo c /

so that V can be equipped with the form

(31) (i; + Vo

+) .(ιι + Fo

+) = vu + J(v, u e Vo).

Then (V; (•)) is a unitary space over 2), relative to the induced involution

of D. By construction, if v v = 0 then for i; = v + F o

+, v v e / follows

so that v e Fo

+ or i; = 0. Thus ϋ is non-isotropic. This is the

REMARK 1.10 (Holland [11, Theorem 5.4]). Let F b e any unitary space

over the *-valued division ring D. Then the factor i?-module V0/VQ can

be turned into a non-isotropic unitary space over the residue division ring

D (residue space V = ( V0/VQ ( ))), relative to the form

(v+ F0

+) ( t / + V0

+) = v u + J.

THEOREM 1.11. Let V be any non-degenerate 0-elliptic space having

some orthogonal basis. Let K(1) be any non-zero finite dimensional subspace

of the residue space V. Then F ( 1 ) can be lifted to an R-submodule Fo

( 1 ) of the

R-module Vo such that:

(i)
(2) V^ possesses an orthogonal basis formed by medial vectors with

cardinality equal to dim^ F ( 1 ) .

(3) Fo

( 1 ) is an orthogonal summand of Vo with orthogonal complement

V^ mapping onto the orthogonal of F ( 1 ) in V.

Proof 1. and 2. Let / l 9 . . . , / n be a basis of F ( 1 ) over D and let

fl9... ,/„ e Vo map onto fv... Jn respectively. Denote by Fo

( 1 ) the i?-sub-

module of Vo that is spanned by the/;. By construction, V^/Vj = F ( 1 ) .
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Also, the / form a basis of the iϊ-module V£l). For let λ l 9... ,λn e R be
such that ΣλJi = 0. Then Σλ,/ = 0. Thus λf e / for every /. If some
λ, Φ 0 pick one of least value, say, λv Then fλ + Σi>1λ[ιλJi = 0. By
construction, λ^λ, e i?. The preceding argument shows that fλ +
Σ ^ i λ ^ λ ^ = 0, which is nonsense. This shows that all λ; = 0. Therefore
(/) is a basis V^l) over R. I proceed to show that the basis (/) can be
transformed to an orthogonal basis (gf) of Fo

(1), where each gf is a medial
vector. Put:

Si = / i >

ort 7n ^ ^ V7n 6i7 p . p "'"*

I claim that (g7) is the desired basis. The agrument goes by induction on
n. For « = 1, gi = Λ ^ t^(1) c Vo and gx ί Fo

+. Thus gx is pseudo-medial.
Assume that gi? . ,gπ_i are medial vectors. Since for each i < n9

gi is medial and since fn ^ V^l) c ί̂ , it follows by Theorem 1.7, that

(/„ ft Xft ft) e *• Hence, £,<„(/„ ftXV(ft gdgi * ^o(1)) Thus
gn e Fo

(1) c Fo. Assume that gn e Fo +. In the equation

on /w Z^ \Jn °'"' α α '

substituting for all the gi with / < π in terms of the fj will not disturb the
term/rt since each g. is /{-expressible in terms of/ withy < i < n. Going
down to the residue space V, one has

0-Λ+Στι// (Y.e5),

contrary to the fact that the (fj)Jer form a basis over D. This shows that
gM ί F o + and, hence, gn e Fo

(1) c Fo is a medial vector. By construction,
the sequence gx,... ,gn is an orthogonal sequence of medial vectors in Fo

(1).
Since the/ are i?-expressible in terms of the gy and since the/ span Fo

(1) it
follows that g1?... 9gn is a basis of Fo

(1) over i?.
(3) It is to be shown that if V(2) = Fo

(1)± is the orthogonal of Fo

(1) in V
then Fo

(2) = Fo

(1)± Π Vo is an orthogonal complement of V0

(l) in Ko.
Since Fo

( 1 ) ±= {g^. ^ g j ^ it follows that F ( 2 ) θ DF0

(1) = F Since
Fo

(1) has an orthogonal basis g1?... ,gn as an i?-module it follows that the
projection of any given υ e Fo c Fon I>F0

(1) is

^ i = Σ ( » ft)(V(ft ft)ft)-
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Thus

ϋ = t ; 1 Φ y 2 , ( » x <Ξ Z)F 0

( 1 ); ι;2

Now the g are medial vectors and υ e Fo. By Theorem 1.7, again, follows
(» ftXft ft) e Λ. Hence

)

Thus y2 = ϋ - ι;1 e Fo so that y2 e F O

( 2 ) . Therefore Fo = Fo

( 1 ) θ F0

( 2 ).

(4) Fo

( 2 ) maps onto the orthogonal F ( 2 )of F ( 1 ) in V.

Clearly, F ( 1 ) θ F ( 2 ) = F. Since Fo

( 1 ) θ F0

( 2 ) = Fo it follows _that Fo

( 1 )

e po(2^= γ0 = F. By_construction, Fo

( 1 ) = F ( 1 ) . Hence, F ( 1 ) Φ F0

( 2 ) = V.

Then F0

( 2 ) c F ( 1 ) ± = F ( 2 ) forces Fo

( 2 ) = F(2>. D

THEOREM 1.12. Let V be any non-degenerate O-elliptic space, which is

finite-dimensional. Then:

(1) Any two maximal orthogonal families of medial vectors have equal

cardinalities nv

(2) Any two maximal orthogonal families of truly pseudo-medial vectors

have equal cardinalities n2 provided V contains enough pseudo-medial vec-

tors.

(3)nλ + n2 = d im^F.

Proof 1. Let f l 9 . . . , / be any maximal orthogonal family of medial

vectors. Denote by F ( 1 ) the span of t h e / in F. Clearly f v . . . , / is a basis

of F ( 1 ) over Ί>. If Fo

( 1 ) is the span of t h e / over R then by Theorem 1.11,

F o

( 1 ) is an orthogonal summand of Fo. Assume that nλ Φ dim^ F. by the

cited theorem, the orthogonal of V^p in Fo maps onto F ( 1 ) \ Since

nλ < dim^ F and since F is non-isotropic and, hence, non-degenerate, it

follows that F ( 1 ) ± Φ 0 so that F ( 1 ) ± contains some non-zero vector /. If

/ e (ϊ^(1))-1- maps onto / then / is a medial vector. Now fl9... ,/Λi, is an

orthogonal family consisting solely of medial vectors, a contradiction.

This shows that nλ = dim^(F).

(2) Let gv... ,gW2 be any maximal orthogonal family of truly pseudo-

medial vectors. Let F0

( 2 ) be the span of the g, over the ring R. I claim that

F o

( 2 ) is an orthogonal summand of the i?-module F o. For let v e Fo. As a

vector in V, v = vλ Φ v2, where υ2 is the projection of v onto the subspace

£>F0

(2), which has the orthogonal basis gΛ j,... ,gW2. Now,
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Since gt is pseudo-medial it follows by Theorem 1.7 that (v2 gi)(gι gz)
e R. Hence, υ2 e FO

( 2 ). From this υλ = i; - v2 e Fo. Hence Fo

(2) is an
orthogonal summand in ]^. Let t^(1) be its orthogonal complement. Every
0 Φ v e Fo

(1) can be scaled to a pseudo-medial vector λv ^ Ko. By con-
struction, λt; e Fo

(1). By maximality of the family gl9... ,grt2 follows λv is a
medial vector. Therefore, J^(1) possesses an orthogonal basis of medial
vectors fv...Jn*. Going down to the residue space V one finds that

^ V = nv Therefore n2 = n — nv D

2. Ring of linear transformations increasing lengths. The goal of
this section is two-fold. Firstly, a parallel between the valuation ring R in
D and a certain subring Lo of the full ring L of linear transformations of
the space V is drawn. Here V is any non-degenerate elliptic space and the
parallel is obtained by means of a certain binary relation w >
(hereafter called *-prevaluation) between L and the value group G. Sec-
ondly, the ideal structure of the ring Lo is dealt with with a view to apply
the results to the normal subgroup structure of the group U. At the end of
the section certain torsion-free congruence subgroup of U is pointed out. I
will begin with recalling one or two facts about L.

(a) Notation. Members of L generally written φ, σ, T, . . . always
operate on the right of their domain, which is the space V.

(b) Ideal of linear transformations of finite rank. If φ e L is such that
Vφ is finite-dimensional then φ is a linear transformation of finite rank.
Let

(1) &L= { φ e L|dim Vφ < 00}.

Then J^L is a 2-sided ideal of the ring L. By a result of Jacobson, every
subring A of L containing L is a primitive ring A.

(c) Ring of linear transformations having adjoints. For V any non-
degenerate unitary space, the adjoint φ* (if any) of φ e L is defined to be
the linear transformation φ* of V such that

(2) u vφ = wφ v (w, ?; e F ) .

As is well-known, every linear transformation in 3F L has adjoint in !F L.
Generally, if φl9 φ2 e L have adjoints in L, then so must be φf, φL + φ2

and φxφ2. Then:

(3) Φ?* = Φ!

(4) (φj + φ2)* = φί + φ*

(5) (φ^)* = φjφ .

fv*
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Hence, the set of linear transformations φ & L having adjoints is a
primitive subring of L. This ring is the domain of the partial operator
φ -> φ*. I refer to the partial mapping φ -> φ* as to a partial involution
and to (L; *) as to partial inυolutorial ring.

(d) Unitary group U — U(V). The partial involutorial ring (L; *) has a
unitary group (general notation: ^ ( L ; *)), which is the group of elements
φ G L such that (i) φ is invertible (ii) φ* is defined and (iii) φ* = φ"1. This
group I will denote apart by U = ί/(K).

(e) Center of L. Recall that Z = center of D. Then L can be turned
into an algebra over Z, where the scalar multiplication z e Z, φ e L ->
zφ ^ L is:

(6) zφ = ϋ -» z(ι φ).

The algebra L is central in that Z(L) = Zl, where 1 = unity of 2).
Incidentally, if z e Z, then taking * in Z) or * in L agree in that

(7) (z l ) * - * . l .

DEFINITION 2.1. Let 4̂ be any central algebra over the valued field
(Z w). Assume that A carries a partial involution x -> x* (partial anti-
automorphism whose domain is a subring of 4̂ such that x** = JC for
every x G: A and (z 1)* = z* 1). The binary relation 0* between A and
the group with infinity adjoined G # is said to be a (*-prevaluation) (resp.

*-preυaluation) if:
(i) For each pair 0 Φ z G Z and g e G # , z l ^ g <=> w(z) > g (resp.

) > g).
(ii) For each triple x e 4̂, g, g' e G # , if x^g and g > g' then

(iii) For each quadruple x, x' e 4̂, g, gr e G # , if x^g and

(iv) For each quadruple as in (iii), x 4- x^Min(g, g')
(v) For each pair x, g e A, G # with x* defined if x^g then

(vi) x ^ g for every g e G if, and only if, x^* °° if, and only if x = 0.
The following examples will motivate Definition 2.1.

EXAMPLE 2.2. Let A be the Z-algebra D, relative to the ground
involution *. Denote by w > (resp. w > ) the binary
relation between D and G # that is defined by

(8) xw > g <=> w(x) > g

(9) (resp. xw > g <=> w(x) > g).

Then >v > (resp. w > ) is a *-prevaluation (resp. a strict
*-ρrevaluation).
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EXAMPLE 2.3. Let Dm be the division ring of right translations of D

viewed as an algebra over Z, relative to the involution

where 0 Φ s = s* is fixed and x ( 5 ) = sx*s~1. Denote by - - - w > - -

(resp. w > ) the binary relation between D& and G # that is

defined by

(10) x&w > g <=> 2W(M ΌX#) > w(u - u) + W(Ϊ; u) + 2g,

for every pair w, U in D, where u i? = wst;*.

(11) (resp. x^w > g <=> 2w(w w%) > w(w ι/) + w(f v) + 2g),

for every pair u, v in D such that u - u Φ 0 and y y # 0). Then w >

- (resp. w > ) is a *-prevaluation (resp. a strict *-prevaluation).

Example 2.1 is formal. Example 2.2 reduces to the preceding example

since, in effect, xw > g <=> x&w > g and x<%w > g <=» xw > g. Every 1-di-

mensional unitary space V, which is non-degenerate, can be identified to

DD, relative to the coordinate form u v = usv*, where 0 Φ s is any

element that is represented by the form in the sense s = v υ9 some υ e V.

Then L(V) = D^ and the adjoint involution in L is precisely the one in

Example 2.2. By analogy with that example one is led to the

THEOREM 2.4. Let V be any non-degenerate elliptic space and let L be

the ring of linear transformations of V considered as an algebra over the

center Z of the ground division ring. Equip L with the partial adjoint

involution φ —• φ* and Z with the ground valuation w. Then:

(1) The binary relation w > between L and G # that is defined

by

(12) φw > g <=> 2w(u - vφ) > w(u - u) + w(v v) + 2g,

for every pair w, υ e F, is a *-prevaluation.

(2) The binary relation w > between L and G# that is defined

by

(13) φw > g <=> 2w(u vφ) > w(u u) + w(v y) + 2g;

for every pair u,v^ Vwith u - u Φ 0, υ - v Φ 0, is a strict *-prevaluation.

Theorem 2.4 is essentially evident. It is appropriate to add that the

linear inequality in (12) and its strict version in (13) contain as particular

cases the quadratic inequalities

(14) w(uφ uφ) > w(u - u) + 2g,
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(15) w(uφ uφ) > w(u u) + 2g(u uΦ 0),

respectively. Under the assumption Fis O-ellitpic, (14) (resp. (15)) implies

back

(16) 2w(u vφ) > w(u u) + w(v v) + 2(g + ε0)

(17) (resp. 2w(u vφ) > w(u w) + w(y ϋ) + 2(g + ε0),

For future reference notice that (12) (resp. (13)) implies equally

(18) w(u uφ) > w(u - u) + g

(19) (resp. w(u - uφ) > w(u u) + g, w w Φ 0).

DEFINITION 2.5. Let:

(20) L g = Lg(K; w >) = { φ e L|φw > g} (g e G # ) ;

(21) L; = L ; ( K ; W >) = { ψ e L|φw > g} (g e G);

(22) L_O0= ]jLg={φeL3g<Ξ G*\φw > g).

Refer to Lg (resp. L*) as to a congruence ideal if, further, g > 0.

The following results are, again, formal results.

(23) Lg (resp. Lg ) is an additive subgroup of L,

which is closed under *.

(24) g>g'^Lg<zLg,, (resp.L^cL;,)-

(25) f]Lg= Π L+

g = Lx = 0.

(26) L_a0 is a *-closed subring of L containing Z and

evidently Lg for every g

(27) L

g^
Lt (g*G).

(28) zLg = Lg+W(z) (zeZ).

(29) zL+

g = Lg

+

+M;(z) ( g 6 G , 0 # z e Z ) .

(3°) Lg + Lg,c:LMiBig>gΊ.

(31) LgLg, c Lg + ?,.

(32) L + Li c L+ g,g, } (g e G # , g' e G).
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(33) IΛ'c

(34) L;Lg,c

For the rest of this section I will specialize to the congruence ideals Lg

or Lg, where g > 0. They are indeed 2-sided ideals of the ring Lo. By
construction, the members φ e Lo are the linear transformations φ such
that

(35) 2w(u vφ) > w(u - u) + w(v υ).

I refer to such a φ as to a linear transformation increasing lengths. Indeed
as a special case of (15) one has the quadratic inequality

(36) w(uφ uφ) > w(u u) (u e V).

In Lo sits the 2-sided ideal LQ of linear transformations φ strictly
increasing lengths since by construction φ ^ L£ if, and only, if,

(37) 2w(u vφ) > w(u - u) + w(v - v)

for every pair w, υ with u - u Φ 0, v - v Φ 0. Relationship between L$ c
Lo cz L_O0 will follow. Let me first recapitulate some of the facts:

THEOREM 2.5. Let Vbe any non-degenerate elliptic space. Then:
(1) The set Lo of linear transformations φ that increase lengths

2w(u - vφ) > w(u - u) 4- w(v - v) (w, v e V)9

is a subrng of L, which is *-closed.
(2) In Lo sits the 2-sided ideal of linear transformations φ that strictly

increase lengths:

2w(u - vφ) > w(u u) + w(v v) (u u Φ 0, υ - v Φ 0)

(3) For each g > 0, Lg(resp. Lg) is a 2-sided ideal of the rng Lo, which
is contained in LQ , if g > 0.

(4) IfL_o0 = Ug€ΞGLg, then L_oo is a *-closedsubring of L containing Z
and evidently LQ.

A key result for the considered treatment of the tower LQ C L O C L_O0

will be the

THEOREM 2.6. Let (VL)ιGl be any orthogonal decomposition of V and
suppose that (gt) is a family in the value group such that gz > g for every
ί e /. //, further, V is a non-degenerate εo-elliptic space then
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Proof. Let φt Π Lg{VL), i e /. Let φ = Θ t € Ξ / Φ r It is to be shown that

φ e L g + 2 ε o ( F ) . If ϋG F there is (vt) such that v = Σ ϋ, , where all vt = 0

but for finitely many indices. From φt e Lg(VL) follows

= 2(Σ> 4 φ 4 υfo) > Min(ι;4φ4 ϋ4φ4)

> Min(w(ι;t ϋj) - 2g.

Since (vt) is an orthogonal family in V and since F is εo-elliptic it

follows by a trivial adaptation of §1, (29) (Theorem 1.7, implication

2. => 3.) that

so that

w(ϋφ yφ) > w(v y) + 2ε0 + 2g,

for every ϋ in V. From εo-ellipticity of V follows φ G L g + 2 ε o(F), as

desired. D

THEOREM 2.7. // the rng Lo has some one-sided unity then Lo is a

subring of L. Equiυalently, Vis O-elliptic.

Proof. For let φ0 be any right unity of the rng Lo. If φ is any

projection (e.g. φ = φ* = φ2 e L) with Vφ is finite-dimensional I assert

that φφ0 = φ. For to begin with if F ( 1 ) = Vφ and F ( 2 ) = V(l - φ) then

θ F ( 2 ) . From Theorem 2.6 follows

Now F ( 1 ) has some orthogonal basis fi9 i' = 1,...,«. Using this basis one

can turn F ( 1 ) into a bi-space over Z>, relative to the right scalar multiplica-

tion
n n

(38) v = Σ Xifi, λ^D-+vλ=Σ xM

Then L ( F ( 1 ) ) is a right vector space over D, relative to the scalar

multiplication

(39) φ e L(F ( 1 )) λ e ΰ ^ f λ = ̂  (^φ)λ.

If λ = lKi λ, then λ e L(F ( 1 )). I assert that in the ring L(Va))

λw > (2ε0 4- w(λ))
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follows. For if u G K(1), then

i λ-i λ - Σλjλsj(λjλ)* (sj=fj fj).

Thus

w(vλ υλ) > 2w(λ) + Min(w(λy.syλ*)) > 2w(λ) + 2ε 0 + w(t> υ)

giving

2w(w ϋλ) > w(u - u) + w(ϋ ϋ) + 2(2ε0 +

as desired.

Define λφ to be the linear transformation on V

v = vλ θ v2 -> y(λφ) = i^λ θ 0.

For λ ^ O with w(λ) large enough it is clear that λφ
o

L_ 2 ε o (F 2 ) hence, λφ e L 0 (K). Thus (λφ)Φ0 = λφ. Hence if i; = ̂  θ ι;2,

then
ί;(λφ)φo = (

Since λ is evidently an onto transformation of V{1) it follows that
viΦo = vi f°Γ e v e r Y y i e ^ ( 1 ) or, φφλ = φ, for every projection φ of the

space V with φ of finite rank. Now, for every non-zero vector u in F if φ 0 :

F -> F is defined by

(40) vφu=(vu)^u9

then as is well-known and easy, φu is a projection of rank 1. Hence,

φuφ0 = φu or uφ0 = w. As this holds for every w, φ 0 = 1 follows; since

1 G L o , K is evidently O-elliptic. D

THEOREM 2.7. Let Vbe any non-degenerate elliptic space. Then:

(1) L_O0 is a primitive ring since, in fact, L_O0 contains all linear

transformations of finite rank.

(2) // V possesses some orthogonal basis then Lo is an order in the ring

L_0O so that Lo is a prime rng.

Proof. (1) (§3, Theorem 3.5, required). I will assume in what will

follow that if V is finite-dimensional then L_O0(V) = L. For general V

proceed as follows. Pick φ e J^ L. Put: φλ = φ - φ*, φ2 = φ - φ*, VL =

Vφ9 ι = l ,2. Here, I^-L=Ker(φ t) and since Vi is finite-dimensional it

follows that V = VL θ V^. If φa = φJVL and φ ί 2 = 0v± then evidently
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Φι = Φa φ Φβo Since Vt is finite-dimensional it follows that φtw > g for

some g G G (/ = 1,2). By Theorem 2.5 follows φt G L.^ so that 2φ = φx

4- φ2 G L.^. Since evidently 1/2 E L_M, φ G L ^ follows.

(2) Define a right scalar multiplication via the basis (/) of Fby

(41) v = 2 > X λ e Z) -* i λ = Σ *Λ/.

Then define the right scalar multiplication

(42) φ G i λ e Z> -> φλv -* (vφ)λ.

By a trivial adaptation of the calculation in Theorem 2.7 point 2,

follows that if λ = v -> yλ then λw > (2ε0 + w(λ)). Thus

(42)' λw>g^> φλw > (g + w(λ) + 2ε 0).

Given φ e L_O0 thereisge G such that φw > g. Then for g7 large enough

g + g r + 2ε0 > 0. If λ G J is such that w(λ) = gr ¥= oo then λ =£ 0 and

by the preceding φλ G L O . Then for w(λ) large enough follows

φ = (φλ)λ"1

where both φλ, λ e LQ. Hence Lo is an order in L_^ so that Lo is a prime

rng. D

DEFINITION 2.8. Call φ e L medial or say φ preserve lengths, if

w(vφ t φ) = w(ί; Ϊ;),

for every y e F.

EXAMPLE 2.9. Let F be the left space DD, relative to the coordinate

form

x - y = xsy*.

To say that φ E L i s medial is to say that φ = x#, where x is a unit in the

valuation ring R.

THEOREM 2.10. The set M = M(V) of all medial transformations has

the following features.

(1) For each 0ΦZΪΞZ,Z 1<Ξ Mif and only ifw(z) = 0.

(2) M is a multiplicative monoid consisting only of right invertible

transformations φ.

(3) M contains inverses {e.g. if φ e M and if φ is invertible in L then

φ " 1 <
_

(4) For each σ G LQ , ifφ = 1 + σ, then φ G M.
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(5) For each g e G1MLg c Lg (resp. ML+ c L+

g).
(6) Ifφ* exists in M then Lgφ c L^ (resp. L+ c L+).
(7) // V is finite-dimensional then M is a group.
(8) // V is O-elliptic then the group of invertible elements in M is also the

group of units of the ring Lo.

Proof. (1) To say that z 1 is medial is to say that w(zv zυ) = w( v υ)
for each υ e F; if, and only if, 2w(z) = 0 or w(z) = 0 (if v Φ 0).

(2) This is evident.
(3) This is, again, evident.

(4) From σ ^ LQ follows for each 0 Φ υ e V:

w(vσ yσ)£(ι; * v); w(vσ y) = w(ϋ t σ) > w(t> υ).

By the strong triangle inequality follows

w(v i σ) + t σ ϋ +(vσ - vσ) > w(v υ),

and by the special triangle equality follows

w(v e; +(ϋ υσ + yσ ί; 4- yσ ί σ)) = w(v y)

or,

w(f(l 4- σ) y(l 4- σ)) = w(vσ yσ) = H>(t> y),

as desired.
(5) This is the same as showing that

TW > g => ΦTW > g (resp. TW > g => φτw > g)

for every triple r, φ, g e L, M, G. For instance, if TW > g then for every
pair u, v Φ 0,

2w(u y(φτ)) = 2w(w -(ί φ)τ).

If yφ = 0 then vφτ = 0 so that

2w(u - v(φτ)) > w(u u) 4- w(v ϋ) 4- 2g.

If vφ Φ 0 then,

2w(w y(φτ)) = 2w(u -(vφ)τ) > 2(u - u) 4- w(vφ yφ) 4- 2g

= w(u w) 4- w(t? ϋ) 4- 2g

placing φτ in Lg.
(6) Again, if TW > g and φ* ^ M then for wφ* # 0,

2w(u - vτφ) = 2w(wφ* UT) > w(wφ* wφ*) 4- w(y v) 4- 2g

= w(w u) 4- W(Ϊ; v) 4- 2g;
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while wφ* = 0 implies 2w(u vτφ) = 2w(uφ* vτ) = oo > w(u u) +
w(ϋ ϋ) + 2g.

(7) Let φ be any invertible medial transformation. Then for every
v e K,

w(ί;φ yφ) = w(ι; y) > w(v v).

Since Fis O-elliptic it follows that

2w(u - vφ) > w(u u) + w(υφ vφ) = w(w w) + w(v ϋ)

> w(w w) + w(ϋ υ),

placing φ in Lo. Since φ"1 is medial then, again, φ"1 G L O . Hence φ is a
unit of Lo. Conversely, let φ be a unit of the ring Lo. For each v e V9

w(v v) = w^υφ-tyφ -(vφ-ι)φ) > w(υφ~ι - vφ'1) (φ G LO)

>w(vv) (φ"1 e i 0 ) .

Hence w(ι; ι;) = ^(i φ"1 yφ"1). By symmetry, w(v - v) = w(vφ - vφ).

Hence φ and φ"1 are medial transformations, as desired. D

The preceding theorem suggests that the medial transformations
behave as potential units of the ring Lo for, at least, the finite dimensional
O-elliptic spaces V.

THEOREM 2.11. Let V be any finite-dimensional non-isotropic unitary
space over the inυolutorial division ring D with characteristic Φ 2. Then:

(1) Ifφ €Ξ L = L(V) has adjoint φ* and ifφφ* = 0 then φ = 0.
(2)Ifφ = φ* is one-to-one then φ is invertible in L.
(3) Ifφ = - φ * then 1 - φ is invertible in L.

Proof. (1) and (2) are well-known and easy.
(3) Let φ be as in the statement. If v e V is such that vφ = v then

v = vφ2 follows so that

V ' V = Vφ - Vφ = V '(vφ)φ* = y '( — Vφ2) = —V y

giving y y = 0 or υ = 0. This shows that 1 — φ is one-to-one. Repeating
for φ replaced by — φ one gets that 1 -h φ is one-to-one. Hence, 1 — φ2 =
(1 — φ)(l + φ) is one-to-one. Since 1 — φ2 is symmetric it follows by 2.
that 1 — φ2 is invertible and, hence, 1 — φ is invertible. D

THEOREM 2.12. Let V be any finite-dimensional non-degenerate elliptic
space. Then:

(1) The subset M of medial transformations φ having medial adjoints φ*
is a group (medial group) such that Lgφ = φLg = Lg (resp. Lgφ = φLg =
Lg) for every φ e M and g e G.
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(2) If J is any right ideal of Lo which is contained in L£ then

Jac(L0).

Proof. (1) Since both φ, φ* are medial and, hence, one-to-one, it

follows that φ*φ is one-to-one. From Theorem 2.11 follows that φ^φ is

invertible. Then φ is invertible. Similarly, φ* is invertible. Also φ"1 is

medial and has medial adjoint. The rest of the assertion follows readily

from Theorem 2.10.

(2) Let σ e J. Since σ e J c LQ it follows that 1 + σ is medial. Since

σ* is defined, and, hence, σ* G LQ it follows that (l + σ)* = l + σ*is

medial. Thus 1 4- σ e M has inverse in M. If 1 -f σ' is the inverse of

1 + σ then

- σ ' = (1 + σ')σ e (1 + σ')L+ c £+/.

Hence σ ; G LO

+ is a quasi-inverse of σ. As this holds for every σ e , / it

follows that,/ c Jac( Lo). D

DEFINITIONS 2.13. (a) By congruence subgroup of the unitary group I

mean any subgroup N of U of the form

N = un(i +/),

for some 2-sided ideal ./of the rng Lo.

(b) The congruence subgroup

(44) N'= £/n( l + L g) ( g > 0 )

is denoted by £/g.

(c) The congruence subgroup

(45) N"=UΠ{1 + L+) (g>0)

is denoted by U^.

Two important congruence subgroups:

(46) [ / 0 = { φ

(47) ί/0+ = {φ

Evidently, Uo = U if, and only if, υ is 0-elliptic. One can, of course, extend

formulas (45), (46) for g < 0; but, there is only little gain to do so for

what will follow here or elsewhere.

THEOREM 2.14. Let V be any non-degenerate elliptic space. The con-

gruence subgroups Uλ (resp. Ug), g > 0, form a chain of normal subgroups

of the unitary group U such that:

(i) g > g' => Uκ c Π9 (resp. U+ c Ui);
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g g

(iii) [t/g,,ί/g,] c Ug+g, (resp. [ty, U}\ c Ug\g,).

Proof. (0) Ug (resp. Ug) is a normal subgroup of U. For let φ G t/g.
Then φ - 1 E L g c Lo. Since φ has adjoint it follows that φ* — 1 G L g

and since φ* = φ~\ φ"1 G t/g follows. Let φ, σ G £/g. Then

1 - φσ = φ(l - σ) +(1 - φ) G φLg + Lg.

Since φ E U c M, it follows that L g c L (Theorem 2.12, point (1)) so
that 1 - φσ G Lg. Thus φσ G C/g. Let T G [/. Then T L ^ " 1 = Lg (Theo-
rem 2.12, point 1.). Hence τUgτ~ι = ί/g and Ug<U. For the assertion
t/g

+<ί/use similar argument.
(i), (ii) This is evident.
(iii) Let me show, say, that φ E Ug*9 τ G ί/g

+, together imply [φ, r]
(= φ-V^φT) e C/g

+

+g*. Indeed,

[φ,τ] = φ-V-^φr - rφ)

* c

THEOREM 2.15. (i) Each congruence subgroup Ug with g > w(2), con-
sists only of unitary transformations φ that can be Cay ley parametrised.

(ii) Hence no φ e [/g

+ cα« reverse 0 Φ v ^ V and, consequently, Ug

excludes any involution σ Φ 1.

Proof, (i) It suffices to establish the theorem for g = w(2). Given
φ G LΓJ"(2) and v G Fif y(l + φ) = 0 but, t; # 0 then since φ - l E L+(2),

w(v(φ - 1) ϋ(φ - 1)) > w(v - v) + 2w(2),

follows; but, the left member of this inequality is precisely w(2v - 2v) =
w(v - v) + 2w(2). This shows that 1 4- φ is one-to-one. Again φ* e LQ2)
forces 1 4- φ* is one-to-one. By Theorem 2.12, 1 + φ is then invertible.
Let T = (1 — φ)/(l + φ). By construction, r* is defined and r* = — T.
Here, 1 4- T is invertible as this follows from Theorem 2.12. Moreover,
φ = (1 — τ)/(l + T), the usual Cayley parametrisation of the unitary φ.
(ii) This is partly shown in (i) and partly evident. D

The following theorem is technical and will be used here and elsewhere.
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THEOREM 2.16. Let V be any non-degenerate elliptic space. Let Ή be the

partial operator of the ring L which is defined at φ e L if and only ifl + φ

is invertible and then

(48) *<*>- 2fTφ
If Ή ~ι is the partial operator of L which is defined at τ e L if and only

1/1 + τ/2 is invertible and then

(49) t^-TTTΓl

then'.

(1) <g(<g-ι\τ) = τ and V ~\^(φ)) = φ for every pair T, φ with <g ~ι

and ^ ( T ) defined.

(2) <g (resp. V ~ι) is one-to-one.

(3) V is entirely defined at Ug (resp. U*) for every q > w(2) (resp.

g > w(2)) and

where £g(V) = { T = — τ * G L | τ w > g ) provided V is finite dimensional.

(4) Ή ~ι is entirely defined at A (resp. k+) and

where g > w(2) (resp. g > w (2)) provided V is finite dimensional.

Proof. (1) and (2) are formal.

(3) and (4) If g > w(2) then for each φ e ί/g

+ it is clear that φ G U+(2).

From Theorem 2.15 follows that 1 + φ is invertible. Thus ^(φ) is defined.

If

then by construction T* = — T. Also,

1 - φ 1 - φ
τ = 2 :

From φ ε U* follows (φ - 1) ε L+ so that (φ - l)/2 ε L+_w(2) c L+
Thus 1 + (φ - l)/2 e Af so that

and, hence, r e / *
Similarly if g > w(2) then for each φ & Ug, τ = ^(φ) is defined and

Λ

T 8'
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Conversely, if T e /+ where g > w(2) then evidently Ή ~ι is defined

at τ/2. (In fact, 1 + T is invertible for every T = - T * ) . If φ = # ^ ( r )

then by construction φ is unitary and

φ - 1 = * T ^ " * = i ΓT/o G M / * c M L * = L *1 + τ/2 1 + τ/2 8 g s

Thus φ G Ug. Similarly if T e ig where g > w(2) then τ - φ= tf -\τ)

THEOREM 2.17. Lei F 6e <z«y non-degenerate elliptic space, which is not

the 1-dimensional orthogonal space. For every g e G, /Ae congruence sub-

group Ug(resp. Ug) is not the identity subgroup.

Proof. By Theorem 2.16 it suffices to show that £g(V) Φ 0 (resp.

^g(V) Φ 0). As a second reduction, since /+ c 4g it suffices to show that

/ig Φ 0. As a third reduction, still, since from a trivial adaptation of

Theorem 2.6, follows that if F ( 1 ) is any orthogonal summand of V then

one may assume, further, that F is finite dimensional. By the same token

as soon as a given subspace F ( 2 ) of F verifies the theorem so will be all of

F. If then V is not orthogonal, then picking any 1-dimensional subspace

F ( 3 ) of F and observing that / + ( F ( 3 ) ) Φ 0 the theorem follows. If, on the

other hand, F is an orthogonal space one can quote Artin's [1, Theorem

5.7]. To motivate the reader, let me give a direct proof. From finite-dimen-

sionality of F follows that L_QO(V) = L. Pick any 0 Φ r = — T * (possible

since dim D V > 2). Then rw > g for some g0. Choose any 0 Φ z e Z = D

with w(z) large enough so as w(z) + go> g. Then ZT G LgQW(z) c L + . B y

construction, 0 ¥= zτ = — ( Z T ) * . D

THEOREM 2.18. Let V be any non-isotropic unitary space over the

*-υalued division ring (D; *; w), which is finite dimensional but other than

the 1-dimensional orthogonal space. The following requirements are equiva-

lent.

(1) There is 0 Φ v e F and g e G Λ WCΛ //*#/ ifu^V then 2w( v v) >

w(u - u) -\- 2g.

(2) There is some 0 Φ φ ^ L and g e G such that φw > g.

(3) UgΦl for some g G G.

(4) F zs elliptic.

Proof. By Theorem 2.17, (4) => (3). Evidently, (3) => (2) =» (1). As-

sume (1). Quoting [2, Theorem 1] or directly one can show that U acts
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irreducibly on V. Hence there is a basis of V of the form υt = vφn where

Φx = 1, Φ2> »Φw e U- Given u e V there is a unique row vector u =

(JC 1 ? . . .,xn) over D such that u = Σ ^ y,, I proceed to establish that, if

ul9 u2 ^ Fthen

2w(w1 w2) > w ^ uλ) + 2w(u2) + 2g,

where w(x l 9 . . . ,xw) = Min / = 1 ,...,„(^(x^)). For let w2 = (xl9.. . , * „ ) . Then

4- 2w(x/) > w(w^f. WxΦ,) + 2w(xi) + 2g

= w{uλ - ux) + 2w(xf ) + 2g > w(wx uλ) + 2 ( W ( M 2 ) + g) ;

Σ * Λ ) ^ 2Min(w(w1 x.v^)

as desired. It remains then to show that for some g' e G, 2w(w) >

w(w u) 4- 2g r, for every u e K This can be readily seen from the

observations:

( 5 0 ) W = ( x l 9 . . . , x j = (ll ϋ x , . . . , ! ! ϋ π ) Γ ,

where Γ = ( 5 t Γ * ) " 1 ;

(51) W(M) > w(w υl9...9u - vn) + w(Γ),

where vv(Γ) is the minimum value of the entries in T. D

As stated in Introduction, Theorem 2.18 is due to Artin in the

orthogonal case and the proof is inspired by Artin's. The last item for this

section will be the treatment of roots of unity in the congruence subgroup

THEOREM 2.19. Let V be any non-degenerate elliptic space and let P be

the prime sub field of the ground division ring D. Then:

(1) If the valuation w induces the trivial valuation on P, then t/0

+ is

torsion-free.

(2) Ifw induces a non-trivial valuation on P then if p = charac(Z>) then

U+(p) is torsion-free.

Proof. (1) It is to be shown first that if φ e L£ is algebraic over P

then, in fact, φ is nilpotent. For then there is a polynomial p(t) over P

without constant term such that φn = p(φ)φ2n for some n.Iΐ τ = p(φ)φn

then T is an idempotent transformation. Since w(Px) = w{r\0 Φ r e P)

is evidently contained in the medial group M it follows that T G LQ and,
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hence, τ strictly decreases lengths. If now υτ Φ 0 for some v it would
follow

w(υτ - υτ) = w(υτ2 υτ2) > w(υτ υτ),

a contradiction. This shows that FT = 0 so that τ = 0 and, hence, φn = 0.
Let then σ e [/0

+ be any root of unity. If φ = σ — 1 then by construc-
tion φ ^ LQ is algebraic over P. By the preceding φ is nilpotent. Now
evidently w(2) = 0 so that L£ = L+(2) and, hence, σ is Cayley parametri-
sable. If σ = (1 - τ)/(l 4- T) with r = - T * then T = (1 - σ ) / ( l + σ )
is nilpotent. In view of Theorem 2.11, τ = 0 or σ = 1, as desired.

(2) To say that w/p is not trivial is to say that charac(Z>) = p Φ 0
(where D = /?//) but, charac(D) = 0 so that w(p) is a well-defined
element in G.

Claim 1. Let 1 ^ φ E ί/0

+ be any root of unity. The multiplicative
order of φ is a power of/?.

For let m be the multiplicative order of φ. Let// be the highest power
of p dividing m. Then m = /?7, where/? + /. Suppose that / Φ 1. If σ = φp\
then σ =£ 1 and σ has order /. Moreover, σ e C/o

+ for σ is a power of
φ ^ C/o

+. Let T = σ — 1. From the relation σ1 = 1 follows ((σ — 1) + I)1

= (T + I) 7 = 1. Thus there are integers r2, r3,... ,r7 such that

/τ + £ Γ/T' = o.

Dividing through the preceding equation by / this gives after factori-
sation by T

I 1 = 2

Now, from σ e f/0

+ follows τ = σ — 1 e L^. Hence τ / - 1 e L^ (/ > 2).
Also,

Hence, Σ >2r /τ
/ ! E LO

+. From this, if τ0 = Σ > 2 ^τ / \ then 1 + τ0 is
medial. By the basic equation, τ(l + τ0) = 0. Now 1 + τ is one-to-one
and T commutes with 1 + τ0. Hence τ = 0 or, σ = 1, a contradiction. This
shows that the order m of φ is a power of/?, as desired.
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Claim 2. If w/P is the 2-adic valuation then U^(2) is torsion-free.

Deny this claim. Pick 1 Φ φ G U^{2) and let m Φ 1 be the multiplica-
tive order of φ. By the preceding claim, m = 2r for some integer r Φ 0. If
φx = φr ι then φx Φ 1. Hence, φ1 is an involution belonging evidently to
Uw(2)9 contradicting Theorem 2.15.

Claim 3. If w/p is the />-adic valuation with /? odd then Uw(p) is
torsion-free so that U^p) is torsion-free.

Deny this claim. There is 1 Φ φ G C/w(/?) with multiplicative order /?.
If T = φ — 1 and if the (f) are the usual binomial coefficients then from
φp = 1 follows

Since p is prime, /?|(f) follows for / = 2,... ,p — 1. Dividing through
by /? and isolating the last term this gives

V = τ(l + τ0),

where τ0 = — (r2τ + + rp_ιτ
p~2) and r2,...,r/?_1 are integers. Now

w(p) > 0 for w(p) > 0 and w/P is />-adic. Hence, ί/w(/?) c UQ . Thus,
T G LQ . From this τ0 e L^ so that 1 + τ0 is medial. In terms of lengths
the factor 1 + τ0 can be thus neglected, that is,

w(v(τ(l + τ0)) ϋ(τ(l 4- τ0))) = w(ϋτ ^ 0

Since ( l//?)^ = τ(l + τ0) it follows that

w υ — τp - υ — τp\ = w(uτ vr);

or,

^(fT77 vτp) = w(υτ - υr) -h 2w(p).

Restricting the preceding equality to V(l) = Vτ this gives

w(vτp~ι - VΊP~1) = w(v υ) + 2w(p)9

for every v G F ( 1 ) . NOW, the restriction τ ( 1 ) of r to F ( 1 ) is evidently a
linear transformation of V{1). From T G Lw(p) follows τ ( 1 )

 G L M ; ( / 7 ) ( F ( 1 ) ) .

Hence ( r ^ ) ^ 1 e L ^ . ^ ^ ^ F ^ ) (Equation (33)). Thus

w(υτp~ι - vτp~ι) > w(v - v) 4- 2(p - l)w(p)
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for every υ e F ( 1 ) . Hence,

w(v - v) + 2w(p) > w(v - v) + 2(p - l)w(p).

If now v Φ 0,υ ^ V{1\ this gives

2w(p) > 2(p - l)w(p); 2(p) >(p- l)w(p); (p - 2)w(p) < 0.

However p is an odd prime. Thus p — 2 is a non-zero natural number. In
view of the relation w(p) > 0, (p — 2)w(p) > 0 follows, a contradiction.
This shows that F ( 1 ) = 0 or Vτ = 0, that is, T = 0 or, φ = T 4- 1 = 1, a
contradiction. D

Question (open). Must t/0

+ be always torsion-free?

To conclude this section, let me make two side remarks. The informa-
tion about the normal subgroup structure of the unitary group as obtained
in Theorem 2.14 can be carried over (almost verbatim) to the normal
subgroup structure of the medial group M (that is, the group of units of
the medial semi-group M which have adjoints). The only difference arises
in the fact that while σ — 1 nilpotent with σ e L^(2) implies σ = 1, one
cannot decide as neatly in the case σ e M^(2). As a result, in the preceding
theorem, roots of unity in M£ can occur when charac(Z>) = p Φ 0; these
are, of course, p roots of unity. If charac(Z>) = p and charac(Z>) = 0 then
M^{p) is torsion-free. The second remark is of different nature. I stated in
the Introduction that my motivation in the ring Lo arises equally from the
ring A that is spanned by tΛ In a continuation of this work I will show to
what extent A coincides with Lo and/or Lo and A have essentially the
same ideal structure.

3. Bounded orthogonal bases. In this section, the following situa-
tion will be analysed: Relative to a given orthogonal basis (/)) the
non-isotropic space V is such that for each unitary transformation φ the
matrix of φ is with entries from a fixed additive subgroup Jg of the valued
division ring D. Special attention is given to the case g = 0. In that case
and assuming that 1/2 e R the results will be quite complete. I begin
with notations to be used throughout this section.

(a) Row finite matrix φ. All matrices Φ are row-finite matrices.
However, the number of rows of Φ is any cardinal number. Thus Φ =

(0) φ 0 = entrΛj,(Φ) e D;

(1) For each / e /, (φy.) . e / is a nullary row vector over D.
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(b) Matrix of inner products S. Let (/)),<=/ be a fixed orthogonal basis
of V. I will consistently denote the inner product /, ft by st. Thus the
matrix of the inner products/ fj is the diagonal matrix

(2) S = Diag{5,.}/e/ ( J , «/,-/,)

(c) Matrix involutions. The standard matrix involution tr.* is the
partial involution of the ring DlxI of all / X / row-finite matrices Φ =

o v e r D> which is defined at Φ if, and only if, Φ t r e DIXI. Then

The matrix of inner products S = Diag{.st}t€Ξ/ induces a new partial
involution (S) of DIxί which is defined exactly when tr.* is defined and
then

(3) Φ ( 5 ) = SΦtr*Sι.

Explicitly,

(4) entrifj,(Φ<5>) = ^entr^ίΦ) V (ij e / ) .

(d) Matrix preυaluation. Let w > be the binary relation
between the Z-algebra -D / x / and the group with infinity adjoined G # ,
which is defined by

(5) Φw > g <=> entr7 y(Φ)w > g (all /,y e /)

(e.g. w(entr/ty.(Φ)) > g, all ij e / ) .

Then w > is a *-prevaluation relative to the involution tr.*; but,
. . . w > is generally not a *-prevaluation relative to the matrix
involution (5). Hence it is better to refer to this case as matrix prevalua-
tion.

(e) Bounded basis (f). I shall say that the orthogonal basis (/) is
bounded if there is g0 e G, which I call a bound for (/)), such that

(6) w(Ό " w(jy) < g0

for every pair /,y e /—Recall that s = / /. Evidently every finite-dimen-
sional unitary space V over the *-valued division ring D has all its
orthogonal bases bounded, the case ε is the least bound for the given basis
(/) is noteworthy but not required in what will follow (unless otherwise
specified).

(f) Matrix of a linear transformation. Throughout the rest of this
section V stands for any non-isotropic unitary space over the *-valued
division ring. I will assume, further, that V is equipped with the fixed
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orthogonal basis (/,). To the vector υ e V associate the nullary row vector

(7) δ-(*ι)~«>-Σ*./..

T o ψ E L associate the matrix of φ, Mtrx(φ) (or φ) e 2) / x / determined by

the equations

(8) Row,(Mtrx(φ)) = {φu)Jei ~ / , Φ = (Φ o ) y . e / (* e / ) .

DEFINITION 3.1. I will call the basis (/j) ε'0-elliρtic, where CQ G G is

fixed, if

(9) For each φeU=U(V), Mtrx(φ)w > ε'o.

THEOREM 3.2. Let V be any non-isotropic unitary space and let (/,) be

any orthogonal basis of V. The following requirements are equivalent.

(1) (f.) is an elliptic basis (e.g. (/j )ιe//5> ^-elliptic for some ε'o e G)

(2) V is an elliptic space and(f) is bounded.

Proof (1) => (2).

Claim 1. There is ε0 e G such that if (jc#-)/e/ is any nullary row vector

over Z>, then

(10) Minw(xisix*) > w\Σ xjsjxf + εo( i i ) \Σ jsjxf

If (xt) = 0 there is nothing more to show. If (xt) Φ 0 then if v = Σ xji

then v Φ 0 so that v - v Φ 0. Hence, the linear transformation σ = σv

defined by

1
uσ = u v v

v v

is a projection of K(that is, σ2 = σ = σ*). Thus φ = 1 - 2σ is a unitary

transformation of V. Let then ε'o be such that (/)) is βQ-elliptic. By

definition, if Φ is the matrix φ then Φw > 6Q. NOW, Φ = 1 — 2Mtrx(σ).

From this follows

entr/fj,(σ) > β'o - w(2) (1,7 e / ) ,

where σ = Mtrx(σ).

A simple calculation shows that
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If ε 0 = £Q — w(l) then by the preceding,

w(st) 4- w(x,) 4- w(xj) > w(v υ) + εo;

for / = j \ this gives

w(xisιx*) > w(v v) + ε0.

As this holds for every / e /, it follows that

Minw(xιsιx*) > w(v v) 4- ε0 = w\ £ y ^ ε0.

/ra 2. Let ε0 be as in Claim 1. Then Fis εo-elliptic.
Let (x j , (^) be any two nullary vectors over D. For / e / fixed:

Minwίx s JC*) 4- Minwί j i jμ*).
y G / \ J J J ! jς-j \ J J J !

The preceding inequality holding true for every / e /, it follows that

2 Minw(x/s/j>/*)

4- Minwί yjS

Given w, ί; e K it is clear that there are (JCJ, ( J J such that u = (x,),

2 = (Λ) ( e g w = Σ^./ ). Then

2w(u ϋ) = 2 (

> I V ( X I Λ I ; ) 4-

= w(u w) 4- w(t; υ) + 2ε0,

and V is εo-elliptic.

C/<2/m 3. (y)) ι e / is bounded.

For suppose that (/) is εQ-elliptic. Taking up the calculation in Claim
1, in the case v = fι 4 x/., where x is to be fixed later and i,j e / are such
that w(s) < w(5 y), then

w(Si) 4- w(x) > w(xy + X57x*) + ε0 (ε0 = εό -
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Pick εx > |εo|, where as usual |εo | = ε0 if ε0 > 0 and |εo | = — ε0 if
ε0 < 0. Put ε2 = 2εv I claim that oo Φ g > εx implies w(sj) — w(st) < 2g
+ εv For, otherwise, for such a g e G, there is 0 Φ x e D such that
w(x) = — g. Then

) w(*y) - 2g > (w(*, ) + 2g + ελ) - 2g

By the special triangle equality follows

w ^ 4- xsy

Then

w(^ ) + 2(x) > w(st) + εo;

— g = w(x) > ε0. Equivalently, q < — ε0 < εl9 contrary to the relation
g > εv Hence the asserted implication holds. If g = εl9 this gives w(Sj) —
w(Si) < sελ + ελ = 3εx = ε2, as desired. Hence w(Sj) > w(sι) implies
w(Sj) — w(Si) < ε2. Now, if w(Sj) < w(si) it is clear that since ε2 > 0,
w(Sj) — wis;) < ε2. Therefore (/)) is bounded with bound ε2.

(2) => (1). I will establish something more, namely,

(11) φw > g => φw> g H- ε0 - ε\

where: ε' is a bound for (/)), ε0 is an index of ellipticity for V; φ =
Mtrx(φ)—Recall that φw > g' means w(entr,j(Φ)) > g\ for every pair
i, j e /.

/m 1. If F i s ε o -el l ipt ic t h e n for e a c h n u U a r y v e c t o r (x.) o v e r D ,

2ε0 + wί Σ W f ) ^ Min(xΛxt*).

It suffices to apply inequality (22), Theorem 2.6, §2, for υt = xjt (i G /) .

C/α/m 2. w > g => φw > g 4- ε0 — ε'.
Put w; = ftφ. From φw > g follows

w(W/ M|.) = wU& fiΦ) * Hfi'ft) + 2g = w(^ ) + 2g.

Now,
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From Claim 1, follows

w(φi/Sfφ*r) > Minw(φ/Λ<ί>*.) > w(ΣΦijSjΦΐj) + 2ε0

= w(ut wf.) 4 2ε0 > w(^) 4- 2g 4 2ε0,

> -ε' 4- 2g + 2ε0 > -2ε ' + 2g 4 2ε0;

w(φif) > g 4 ε0 - ε\

as desired.

/m 3. If φ G ί/ then φw > 2ε0 - ε'.
Since F is εo-elliptic? it follows that

2w(u - υφ) > w(u - u) 4- w(vφ fφ) 4- 2ε0,

and since φ is unitary,

2w(u yφ) > H>(W w) 4 2(ϋφ vφ) + 2ε0

= w(u w) 4 w(i; ϋ) 4- 2ε0,

so that,

φw > ε0.

By Claim 2,

φw > ε0 4 (ε0 - ε') = 2ε0 - ε'

follows. D

The proof of the preceding theorem revealed few facts that are
appropriate to separate for future reference. This is the content of

REMARKS 3.3. Let (/)) be any orthogonal basis of the non-isotropic
unitary space F. Then:

(a) If Fis εo-elliptic and if ει is a bound for (/,), then

(12) φw>g^φw>(g + ε0- εx).

(b) If Fis εo-elliptic then for every nullary vector (x.) over D,

(13) wl Σxftx
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(c) Conversely, if the preceding inequality holds then V automatically
verifies a generalized Cauchy-Schwarz inequality. In effect, V is (ε0)-
elliptic.

I proceed to a converse of inequality (12) in Remarks 3.3.

THEOREM 3.4. Let V be any non-degenerate εo-elliptic space with
orthogonal basis (f) bounded by ελ. Ifφ^L is such that φw > g, then
φw > g -f 2ε0 — ελ follows.

Proof. As a first reduction, one can replace the asserted relation by
the quadratic inequality

w(υφ - vφ) > w(v v) + 2(g + ε0 - εx).

This readily follows from εo-ellipticity of V. As a second reduction, one
may assume V is finite-dimensional. The argument to that effect runs as
follows. If v is the row vector of υ e V and vφ that of vφ, then for u = vφ
it is clear that

vu = u.

By construction, u is a nullary vector over D. If F(ί-j) is the usual (i9j)
standard matrix in DIXI and φu = entrt 7(φ) then evidently there is a
finite subset Iλ of / such that if Φ' = Σ j V / e / i E(iJ)φtJ then

If φr E L is such that Φ7 = Mtrxίφ'), then vφ' = vφ follows. By
construction, Φ' = φ'w > g. If the assertion can be shown for φ replaced
by φ' then evidently

w(vφ - vφ) = w(vφ' vφ') > w(v v) + 2(g 4- ε0 — εx).

Hence one can replace φ by φ'. If K(1) is the subspace that is spanned by
the ft as / ranges over Il9 then without loss of generality v G F ( 1 ) , by
construction F ( 1 V c F ( 1 ) , and (/ t ) ι e / is, again, orthogonal with bound
εv Since F ( 1 ) is finite-dimensional the asserted reduction follows. Hence in
what follows / can be taken to be a finite set, say, / = {1,2,...,«}. Let
S = Diag{s1,...,s,1}.Then

vφ - vφ =vφS(vφtτ*y

so that

w(vφ vφ) = wίvφS(vφ)tτ*j.
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Observing that if w(Φ) is the minimum value of the entries of Φ then w is

sub-multiplicative one gets

w{vφS(vφ)tr*} = w(vφS(vφ)tτ *) > 2w(vφ) + w(S).

Hence,

w(vφ υφ) > ww(vφ) + w(S) > 2w(v) + 2w(φ) + w(S).

Uυ = Σxtf, then by Remarks 3.3b) follows

Minw(xιsιx?) > w^Σx^^?} + 2ε0 = w((; ι;) 4- 2ε0.

If w(S) is the maximum value of the diagonal entries in S (all Φ 0), then

2w(v) + w(5) > Minw(xt5ixi*) > w(y v) + 2ε0.

Hence,

w(t;φ i φ) > (w(ϋ v) + 2ε0 - ^(5)) + 2w(φ) + w(S)

> w(v ϋ) + 2ε0 - 2(S) + w(S) + 2g

= w(ι; ϋ) + 2ε0 +(w(ιS) - iv(S)) + 2g

> w(υ #) -f 2ε0 — εx + 2g

> w(v ' v) 4- 2ε0 — 2εx -f 2g

= w(ϋ ϋ) + 2(g + ε 0 - ex),

as desired. D

Combining (12) with Theorem 3.4:

THEOREM 3.5. Let V be any non-degenerate εo-elliptic space and let (/).)

be any orthogonal basis, which is bounded by εv Then:

1. φw > => φw > g ( = g + 2ε0 - εx);

2. φw > g => φw > g; where φ is the matrix of φ and φw > g means

w(entτi j(φ)) > g for every pair 1, j ε /.

COROLLARY 3.6. Under the assumptions in Theorem 3.5, // gv g2 G G

are such that \gx - g2\ > 2(ε1 - 2ε0) then Lgχ Φ Lgi.

Proof. Assume, say, g2 > gλ + 2(ε1 — 2ε0). If now Lgι = L g 2 define

gλ = gx — 2ε 0 + εx. If (Jgjrxf is the additive subgroup of / X / matrices

Φ e Z> / x / such that each entry of Φ belongs to Jg then by Theorem 3.5,

point 2. follows Mtrx~ 1 (/^ i ) / x / c L f t . Also, by Theorem 3.5, point 1.
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follows Mtrx^Λ ) D L . Thus
oΊ 62

Hence,

(4)/χ/D(4)/xr

Thus,

4 D 4
From this g2 < gv Recalling that g2

 = g2 +
 2εo ~ εi a n d 81 = 81 ~ 2εo

+ ε1? then

g2- gλ< (-260 + 8!),

which is a contradiction. D

In the course of the proof of the preceding corollary, certain matrix

approximation of the additive subgroup Lg was offered; namely,

(14) Mtrx(Lg) D ( / f ) / χ / (g = g - 2ε0 + ε j .

One can offer related bound for the congruence subgroup Ug of the

unitary group U. For observe that the passage from φ e (L; *) to Mtrx(φ)

e (Drxl; (S)) is an isomorphism of partial involutorial rings. Hence

(15) Mtrx(tf) = *(Dixi;(S)) (= Unitary group of (DIxr; (S))).

Related to the congruence subgroup Ug (resp. ί/g

+) is the additive

subgroup3fg(V) (resp. Jf^(V)) which, I recall, is the set of skew-symmet-

ric transformations ψ = — ψ* such that ψ e Lg(V) (resp. ψ e L g (F)).

REMARK 3.7. In the partial involutorial matrix ring DIXI relative to

(5), the matrix Φ is skew-symmetric if, and only if, Φ is of the form

(17) Φ = SΣ,

where Σ is a row and column finite matrix such that

(18) Σ t Γ * = - Σ .

Proof. From (18) follows

Φ(S) = (SΣ)(S) = SiΣ^ ̂ S-1 = -SΣ.

Conversely, if Φ ( S ) is defined then Φ is both row and column finite

and then

(19) Φ ( S ) = SΦ^ S-1 = - Φ .
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If Σ = SιΦ, then by construction Φ = SΣ and,

Σtr.* = φtr.*5-l = _ £ - l φ ( f r o m ( 1 9 ) ) = - 2 . D

THEOREM 3.9. Let V be as in Theorem 3.5. Assume, further, that V is

not the l'dimensional orthogonal space. Ifgv g2 ^ G are such that \gx — g2\

> 3ελ - 4ε0 and ifgl9 g2 > w(2) then Ugι Φ Ug2.

Proof. Let Jtg(DTXI; (S)) be the additive subgroup of skew-symmetric

matrices Φ relative to (S) such that Φw > g. From Theorem 3.5, point 2.,

follows

(20) ς f

where g = g — 2ε0 + ev From the cited theorem point 1. follows

(21) Mtrx( jrg(V)) c Xs(Dixr; (5)),

where g = g + 2εQ - εv Assume that JTgl(V) = Jfg2(V). Applying (20) to

g = gλ and (21) to g = g2 this gives

J T a ( D / x / ; (S)) c Mtrx( JTg i(F)) = Mtrx( Jfg2(V)) c J f g 2 (D / x / ; (S)).

From Remark 3.7 follows

= { SΣ\Σa * = -

When the ground involution * in D is the identity mapping then by

hypothesis dim^ V > 2. In that case choose Σ of the form

Σ =
0 x

-x 0
θ 0;

where w(sxx) and w(s2x) > gv By construction, SΣ ^Jfgi(DΐxI;(S)).

Hence, SΣ e X°g2(DIXI\(S)) and so, W(^JC) and w(.y2x) >'g2. What I

have shown is that

(22) ί / \ =* ί / \ (* e • ί))

Now Iwίίi) — >v(ί2)| < εv If then x is such that w(x) = gx — ̂ ( ί ! ) + el5

then

and

W(52X) = w(x) + w(ί2) = ft + β! +(w(s2) ~

> g x + β! - εx = g x .



46

From (22) follows

fl

or,

(23) g l

By symmetry,

+ ε1 =

= gl

gi -

4ε0-

gl ~
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+ εx > g2.

2ε0 + 2E l

- 3ε^ g2 -

• g2 ^ 3 ε x -

Hence,

> g2 + 2ε0 -

• gj > 3εα — A

~ 4ε 0,

contradicting the hypothesis |gx — g2\ > 3εx — 4ε0.
When the ground involution * in D is not the identity mapping one

can choose in that case Σ to be of the form

Σ = [x] ΘO,

where x* = — x. By a trivial adaptation of the preceding argument
follows \gλ — g2\ < 2ελ — 4ε0, which contradicts again the hypothesis.
This shows that Jfgl(V) Φ Jtg2(V). Since gl9 ι2 > w(2) it follows from
Theorem 2.16, §2, that Ue Φ UQ. D

The proof of the preceding theorem evidenced the fact that the
smaller the bounds ε0, ε the better the matrix counterparts of Lg, Ug will
be. Hence, it seems desirable to work out still further the special case
where the basis (fL) is O-elliptic which means, I recall, every unitary
transformation φ of V has matrix over the valuation ring R. From
Theorem 3.2, the space V automatically verifies a generalized Cauchy-
Schwarz inequality where the index is not less than — w(2). When 1/2 e I?,
then V becomes O-elliptic and the bound ε for (/t) should be quite small
since by the cited theorem \w(sL) — (Sj)\ < 2g for each positive g e G. In
the theorem to follow it is shown that indeed ε can be taken to be either 0
or else, ε is the first positive element in G. This is the

THEOREM 3.10. Let Vbe any non-isotropic unitary space with orthogonal
basis (/,). If 1/2 e R and if the basis is O-elliptic then:

(1) V is O-elliptic,
(2) The basis (/,) is bounded by ε, where either ε = 0 or else ε is the first

positive element in the value group G.

Proof (of (2)). If the basis (f.) is uniform in the technical sense all the
/. have same lengths there is nothing more to prove. If to the contrary
there is a pair ι, j e / such that f and fj have distinct lengths then
IH^S,) — w(sj)\ Φ 0. Since |w(5f) — w(sj)\ < 2g for every g > 0 it follows
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that if εx = |w(s ) — w{sj)\ then ελ is the first positive element of G if
εx & 2G\ otherwise, l/2ε1 is the first positive element of G. In both cases,
G has definitely a first positive element ε and what is left to show is that
the case εx e 2G can be dismissed. For assume, say, w(Sj) = w(s() + 2ε.
Evidently V has dimension at least 2. Pass to the 2-dimensional subspace
Va) spanned by fj and/-. Then V(l) has orthogonal complement in V. by
standard argument, (fi9 fj) is then a O-elliptic basis for the space V(l\ Put
v = x^. + x2/y, where x1? x2 G D are to be fixed later. Writing out the
matrix of the projection T induced by υ one gets for matrix of τ the
following matrix:

. 1 . 1

(24) Mtrx(τ) =
υ - υ ι ι L v v 2

X SXζ X2
z* v ϋ y ϋ y

Since by hypothesis w(2) = 0 it follows as observed earlier that
Mtrx(τ)vv > 0 and, hence, w(entr12(Mtrx(τ))) > 0. Since Fis a O-elliptic
space one knows in that case that (Theorem 1.7, §1, equality (29)')

w(v v) = H^x^xf + x2SjX*) = Min(w(x15 x1*),w(x2Λ y xj)j.

If xl9 x2 are such that w(xτ) = 0, w(x2) = - ε then one should get for
suchx;, entr 1 2(τ ( 1 )) G R. Equivalently,

w(si) + w(xx) + w(x2) > w(v y).

Now,
= 2w(x2) + 2(jy.) = -2ε + w(sj)

Hence,

Thus,

w(v v) = ^(^j).

Substituting for w(v t;) in the preceding inequality this gives

W(JCX) + w(x 2 ) > 0 or 0 - ε > 0 ,

which is nonsense. Π

THEOREM 3.11. Conuerse/y, teί V be any non-degenerate O-elliptic space

—w(2) need not be 0. //(/i), e/ ^ ^ orthogonal basis with bound ε, wΛm>

ε = 0 or ε is the first positive element in G, then (/ ) / e / w tι O-elliptic basis

forV.
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Proof. It is to be shown that if φ <E U then Mtrx(φ) e RIXI. I will
show something more, namely, if φ is integral (e.g. φ e Lo) then Mtrx(φ)
e Rrxr. For let φ G l 0 , Then φ increases lengths. Hence, foτ each i e J,

If φ.j is the (/, j) entry in the matrix φ of φ then as in the proof of
Theorem 3.2, point 1, Claim 2, one has

= A Σ
Hence,

> W(^)-H>(^) > -ε.

If ε = 0 from 2w(φ/y ) > 0 follows w(φ y) > 0. If ε is the first positive
element of G, then by the usual arithmetic argument from 2w(φ/y) > — e
follows w{φiJ) > 0, as desired.

If now φ is any unitary matrix then from O-ellipticity of V follows
φ e Lo so that Mtrx(φ) e i? / x / . D

To recapitulate the foregoing theorems in the special case under
consideration:

THEOREM 3.12. Let V be any non-isotropic unitary space. Suppose that
1/2 e R and let (/) be any orthogonal basis of V. The following require-
ments are equivalent.

(1) V is O-elliptic and (ft) has bound ε with ε either 0 or else ε is the first
positive element in G.

(2) // φ is unitary transformation then the matrix of φ is over the
valuation ring R in D.

(3) If φ increases lengths (e.g. w(vφ vφ) > w(v - v) for every v e V)
then Mtrx(φ) is over R.

(4) (φw > i => Mtrx(φ)w > g) and (mtrx(φ)w > g => φw > g — ε).
Although Theorem 3.12 point 4. asserts that the prevaluations w

> and w > can be identified up to ε, still, in the inequality

(23) Mtrx(φ)>v > g => φw > g - ε,

it would be wrong to drop the term — ε. For if one neglects it, then w and
w would be isomorphic *-prevaluations. Hence w would be an (S)-preva-
luation; by inspection, this happens exactly when S has all its diagonal
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entries with same values. Equivalently, the basis (/) is uniform (i.e. all/
have same lengths). Because of the residual term — ε one has less control
on the strict prevaluation w > and it is again wrong to infer that
φw > g implies φw > g. The kind of information which is lacking here is
how one can decide whether or not φ e Lo looking at the matrix of φ.
This problem will be solved in what will follow; but, first some additional
notations and definitions.

(g) Uniform and mixed bases.

Without loss of generality the index set / can be turned into a linearly
ordered set such that

(24) i>j=>w(Si)> w(sj).

By construction, if E = {w(.st)}ί€Ξ/, then either

(25) #E = 1 (uniform basis),

or

(26) #E = 2 (mixed basis)

In the case the basis is uniform, put

(27) /0 = J, Iε=0.

In the case the basis is mixed, put

(28) Io = { / e I\w(Si) = Mn(E)}9 Iε={i^ I\w(Si) = Min(E)}.

By construction, / is the ordinal product of the ordered subsets Io and Iε.
As a memonic device for the considered matrix constructions to follow let
me make the

(h) Convention. Given g = — ε, 0, or ε let

R, iίg= -εorO,
jg —

For instance, if G is the ordered additive group of integers then:

and by convention,

J1 = R.

There shall not be confusion in what will follow with inverses of fractional
ideals.
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(i) w-Matrix. By w-matrix, I mean any / X / matrix W over the value
group G such that if wtJ = entr y ( W)9 then:

(i) If G has no first positive element then wtJ = 0 for every pair
Uj E / , ( 0 = zero of G);

(ii) If G has a first positive element ε, then wtj = — ε, 0 or ε, and;
(iii) / >j => wu > 0;
(iv) wjΊ = -Wgj (ijel).

(j) The ring Rw. Given the w-matrix W over G denote by Rw the
subset of matrices Φ = [φ / 7] / y e /such that

(29)
Φefl/x/

By inspection, i?^ is a subring of DrxI, which is closed under the partial
matrix involution (S).

(k) The ideal Jw. Given the w-matrix W, denote by W+ the I X I
matrix over G such that if w^ = entr, j(W) then

(30)
wu,J
WU

Define Jw to be the subset of matrices Φ = [φί7 ] , j € / such that

(31)
Φ E D /x/

By inspection, /^is a (S')-closed 2-sided ideal of the ring Rw.

(1) Illustration. Every orthogonal basis (/,) of the non-isotropic space
V such that (/z) is bounded by the considered ε gives rise to the w-matrix
w = w((/;.)), where
(32) w/7 = w(^) - w ( J y ) (5, =fk fk9 k e 7).

Hence, if / is the ordered segment / = {1,2,3,4}, /0 = {1,2} and Ie =
{3,4}, then:

W =

0
0
ε

ε

0
0

ε

ε

— ε

— ε

0
0

— ε

— ε

0
0

w+= ε ε
ε ε

— ε —ε
— ε —ε

~ε ε~
ε ε

Rw —

R
R
J
J

R
R
/
/

R
n

R
R

R
R
R
R

J w

J
J
J
J

J
J

/
/

R
R
/
/

R
R
J
J



NON-ISOTROPIC UNITARY SPACES 51

That, again, Rw is an (S')-closed subring of Dίxί and Jw is an (5f)-closed
2-sided ideal of R w this is also a consequence of the

THEOREM 3.13. Let V be any non-degenerate ^-elliptic space with
orthogonal basis (/))/G/ and suppose that either (/,) is uniform or (/)) is
mixed {e.g. (/,) is bounded by ε where either ε = 0 or ε — 1st positive
element of the value group G). If W is the corresponding w-matrix {wtj =
entr4f/fF) = w(Si) - w(Sj), sk=fk fk) then:

(1) The ring R w of all row-finite I X I matrices Φ = [φu] with φu e JW'J
is isomorphic to the ring Lo of linear transformations φ increasing lengths.

(2) The ideal Jw of all row-finite I X I matrices Φ = [φu] with φtj e J<
is isomorphic to the ideal LQ of linear transformations φ strictly increasing
lengths.

Proof. Claim 1. Mtrx(L0) c Rw.
From Theorem 3.2 implication (2) => (1), claim 2, follows that if

Φ <Ξ Lo then if Mtrx(φ) = [φu] then 2w(φu) > w(5z) - w(Sj) = wiy

If wi} < 0 then JWJ = R and, hence, φu e JWJ. If wtj > 0 then wi} = ε
so that 2w(φiJ) > ε. From this w(φiJ) > ε and, consequently, φtJ G / =
R W J.

Claim 2. Turn V into a right vector space over the division ring D
using the basis (f) as follows:

Given 0 # λ e D, let λ: F -> Fbe the linear transformation sending v to
vλ. Then w(λ) > g => λw > g.

This was established in §2, Theorem 2.7, point 2. inequality (27)'.

Claim 3. For 0 Φ λ e D, i,y e / fixed let φ0J): V -> Fbe the linear
transformation sending ϋ = Σx t/ t onto yφ(^'7) = xt\fj. Then Mtrx(φ(χy))
= £ ( ί '^λ, and φ£J) e Lo (resp. φ ( i » e L^) as soon as λ e / ^ (resp.
λ e / < ) .

That the matrix of φ^J) is the standard (/, j) matrix £ O y ) times λ this
is formal. Choose λ e Jwo (resp. λ e /wo). The assertion is equivalent to
φ(^'y) increases (strictly increases) lengths. Let then 0 Φ v e V. If v =

>(υ
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w(vdJ) . υ0J)) = w(xi\fj - Xiλfj)

x,) + 2w(λ)

= w ( x Λ x f ) + 2w(λ) + w(sj) - w(Si)

= w(xisixf) + 2w(λ) + wβ > w(υ v) ( 7

From the preceding inequality all that is left to show is that 2w(λ) —
w(j > 0 (resp. 2w(λ) - wtj > 0). Now, in the case λ G JW*J9 wtJ < 0, then

2w(λ) - wu > 2w(λ) > 0;

in the case λ e JW*J9 wtj > 0, then w(λ) > ε so that

2w(λ) - W j > 2ε - ε = ε > 0.

This shows that φ(ιJ) increases lengths. In the case λ G Γ 1 ' when wtj = 0,
2w(λ) — Wij = 2w(λ) follows and then wϊ = ε so that w(λ) > ε, whence
2w(λ) - Wjj > 0; when wtj = - ε then 2w(λ) - wtj = 2w(λ) + ε > ε > 0;
when Wjj = ε, then 2w(λ) — wtj > ε > 0. This shows that <f>(/'7) strictly
increases lengths, as desired.

Claim A.Rwa Mtrx(L0) so that Rw = Mtrx(L0).
Let φ ̂  Rw. There is φ e L with Φ = Mtrx(φ). It is to be shown that

φ e i 0 or, it is the same, φ increases lengths. Put υ = Σ t xjr The
equation υφ = υ\ υ' G V translated into matrix equation is now v = v'.
Since v' is nullary vector over D there is a finite set Iλ of / such that if
Φr = ΣijejEV'rtφ j then vΦ' = v'. By construction, φiJ G /W^, /,7 G /lβ If
φC .7) = Mtrx-H^;/ 1) then φ(ί^> = φ(^>, where λiy. = φtj e / ^ . By the
preceding claim, φ^'^ e Lo. If φ' = Mtrx-HΦ') then φr = Σ ^ e ^ Φ ^ e
Lo. Since ϋ = ι?φr it follows that w(ϋφ υφ) = w(υφ' ϋφr) > w(y ι;), for
every υ e F, as desired.

C/α/m 5. / ^ = Mtrx(L^).

For the inclusion Jw c Mtrx(L^) use a similar argument as in the
preceding claim based on claim 3. For the inclusion Mtrx(Lo) c Jw

proceed as follows. From φ e LQ follows

2w(φij) > w(Si) - w(sj) = wtj.

When Wy = 0 then w(φzy) > 0 follows giving w(φtj) > ε so that φ iy e / =
J<. When wtJ < 0 then φij e R = JWJ = J<. When w/y < 0 then 2w(Φ0)
< w y implies 2w(φij) > 2ε so that w(φiJ) > ε whence φ/y G / = / ^ =
/<. D
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DEFINITION 3.14. (Residue matrix module W.) Let Wbe any w-matrix
over G. Given Φ e i ? / χ / denote by Φ^ the I X I matrix over the residue
division ring D such that

(32)
ifwtJ Φ 0.

\ entr, y = entr, y(Φ) + /, if wtJ = 0.

I refer to Φ w as to residue matrix modulo W.
For instance, if W is as in Illustration (/), then if Φ =

then

Φll Φl2

Φ21 ^22

0 Φ33 Φer

^43 ^44

where φ/y = φtJ 4- /. Hence,

(33) {R^r)

D

Ί>
0

D

D

D
D

0

D
D

= D2X2 Θ D2X2

where θ is the block diagonal sum and Diag2(D) is the ring of 2 X 2
diagonal matrices over D (= R/J).

THEOREM 3.15. Let V be as in Theorem 3.13. Denote by Dw, the block
diagonal sum of the ring Dr xf of row-finite Io X /0 matrices over the residue
division ring D, and the ring DΊ x / of row-finite Iε X Iε diagonal matrices
over D (iflε = 0 then discard the right summand Diag7(/))). Then:

{Y)RW/JW={R/J)W = Ί)W.

(2) Lo/Lo

+ = D w

Proof. Given φ e L O define φ ̂  to be the residue matrix modulo W of
the matrix of φ. As φ ranges over Rw the matrix of φ ranges over i?^
(Theorem 3.13)). Hence ~φw ranges over Dw. Now, φw = 0 <=> Mtrx(φ) G

phism
(Theorem 3.13). Since φ w is a ring homomor-

follows, which also shows that Rw/Jw= Dw, as this can be checked
directly. D
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From the preceding theorem one can deduce several new facts about

the pair L o

 D LQ, some of which are of global meaning. Here are some.

COROLLARY 3.16. (i) LQ is an intersection of maximal ideals in Lo and,

consequently, L£ z> Jac(L0). (ii) Hence, L^ Π &Se= Jac(L 0) Π ^ " L .

Proof, (i) by Theorem 3.15,

Lo/L+ = Rw/Jw = (R/J)W=DW= DIQXIO Θ DrxI

Now Dj XI is primitive and so is Dr XI. Thus Dw is semi-primitive.

Hence L0/LQ is semi-primitive. Equivalently, L^ is an intersection of

maximal ideals, (ii) follows from the preceding and §2, Theorem 2.12. D

COROLLARY 3.17. LQ is a prime ideal if, and only if LQ is primitive.

Equivalently, some (and, hence, all) orthogonal basis of V which is bounded

by ε is uniform.

Proof. If LQ is a prime ideal then L0/LQ is a prime ring. Hence,

Dw = £>/oχ/o X
 Diεχrε i s prime; if, and only if, Iε= 0. Equivalently, (/,)

is uniform. D

COROLLARY 3.18. LQ is a maximal ideal if and only if V is finite-dimen-

sional and every orthogonal basis of V which is bounded by ε is uniform.

Proof. If LQ is maximal then Dw = DIQXIQ = DίxI is a simple ring.

Hence, / is finite so that Fis finite-dimensional. D

COROLLARY 3.19. (i) // V is finite-dimensional then LQ = Jac(L 0). (ii)

Conversely, if LQ = Jac(L0) and if V possesses a uniform basis necessarily

V is finite-dimensional.

Proof, (i) follows from Corollary 3.16. (ii) From the equality LQ =

Jac(L 0 ) and the isomorphisms Lo = RIoXrQ, L+ = JIQXIO = Jac(Λ) / o X / o

follows the equality Jac(i? / o X / o) = Jac(i?) / o X / o. Since evidently R contains

no nilpotent elements it follows by Patterson's [14, Theorem 1] that Io is a

finite set. Equivalently, Kis finite-dimensional. D

Question (Open). If LQ = Jac(L0) must F b e finite-dimensional?
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COROLLARY 3.20. Let V be any non-degenerate O-elliptic space with
some orthogonal basis (/)) which is bounded by ε, where as usual ε = 0 or
else ε is the first positive element in the value group G. Then the prime ring
Lo contains in its lattice of 2-sided ideals an isomorphic copy of the positive
cone of G.

Proof. When the basis (/,) is uniform the result is evident. Assume to
the contrary that (/)) is mixed so that ε is the first positive element in G.
Extend the convention about Jε to Jgy specifically, put:

(34) J8

0 = J;' = Js, J* = Jg+ε ( g > 0 ) .

Define (Jg)w (and (Jg)w) similarly to Rw (and Jw respectively). Thus

Φ = [Φij] ̂ (Jg)w if> a n d

( '

Exactly as for the case g = 0 one can show that Mtrx(Lg) =
(/gV(Mtrx(L+) = {Jgyw). Since {Jg)w= {Jg>)w~ g = g' this makes it
clear that g ^ G+-> Lg is a dual isomorphism of ordered sets from G+

into Lat.(L0). D
Since this section began with an assumption about the unitary group

U = U(V) it seems appropriate to close it with information that can be
derived about this group. In what will follow I will deal with a certain
matrix representation of U over the residue division ring D = R/J, where
I will assume that, again, V has some orthogonal basis (/)), which is
bounded by ε with either ε = 0 or ε = 1st positive element of G. The
unitary version of Corollary 3.22 will be left to upcoming §4.

THEOREM 3.21. Let V be any non-degenerate O-elliptic space possessing
some orthogonal basis (/4), which is bounded by ε, where either ε = 0 or ε is
the first positive element in the value group G. If W is the w-matrix
associated to (/)) and if Jt*\ U -* Dwis the mapping sending φ E ί / onto
Mtrx(φ)^, the residue matrix modulo W of the matrix of φ relative to the
basis, then Jί* is a representation of U over D such that:

(2) I m ( ^ x ) is a subgroup of unitary matrices of the unitary group of
Dw, relative to the partial matrix involution (S) of Dw induced by (S).

Proof (1) Recall that σ -> ow = Mtrx(a)^ is a ring homomorphism
from Lo onto Dw with kernel precisely LQ (Theorem 3.15). Since V is
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O-elliptic, it follows that U c L o so t h a t ^ x is the restriction of σ -> σ^

to U and, hence, ̂  x is a group homomorphism from U into the group of

invertible matrices in Dw. Now

K e r ( ^ x ) = (1 + Ker(σ -> σ^)) Π [/ = (l + L+) Π ί/ = C/o

+.

(2) The ring L o carries a partial involution * which can be identified

to the partial matrix involution (S) of the ring Rw. Since / ^ is (S')-closed

it follows that Dw= Rw/Jw carries a partial involution (S). By construc-

tion Jί* takes U onto ^ ( i ? ^ : S)) and ^ ( J R ^ ( S ' ) ) is mapped onto a

subgroup of <^(Z>^; (S)) under the residue homomorphism Φ -> Φ ^ . D

The following theorem is fairly formal.

THEOREM 3.22. The unitary group of the ring Dw relative to the induced

involution (S) is of the form

®{DW; (S)) = ®(DroXίΰ; (s0)) X ^(D^ (S.)),

where (So) takes Φ ( 0 ) = [φ ί y + J]iJtΞlo onto Φ$>> = [s^sj1 + J]tJsio

(when Φo is both row and column finite) and, similarly, (Sε) takes Φ ( 1 ) =

[Φfj + J],j*i, onto Φ^ = [stf s;1 + J

THEOREM 3.23. Let V be any non-degenerate O-elliptic space and

suppose that the R-module Vo has an orthogonal basis (f) all of whose

members are medial vectors. If, further, 1/2 e i?, then the normal subgroup

^^(U) of unitary transformations φ such that φ — 1 is of finite rank maps

onto the corresponding subgroup ^^{U) of D.

Proof. It is to be shown first that the group homomorphism φ e U ->

φ G U extends to an onto homomorphism σ ^ L 0 - * σ G L = L(V). For

if σ E L o it is clear that Voσ c Vo and F0

+σ c Fo

+. Hence if

(43) σ = v + Fo

+ -> υσ + Fo

+

then σ -> σ is a ring homomorphism from Lo into L with correspondence

of the adjoint involution in Lo and L respectively. To show that σ -> σ is

onto proceed as follows. I f σ e L then using the basis (/) = (//+ V£) of

K lift σ to a linear transformation σ0 of the i?-module Vo sending f onto

/ σ . By construction σ0 maps Fo

+ into Fo

+. Extend σ0 to a linear transfor-

mation σ of F by the rule

(44) (λί )σ = λ(ϋσ 0 ) (λ e 2), ϋ e F o ) .
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Given any u ^ F, there is λ 0 e D such that λow is medial (§1, Theorem
1.7). Then (λot/)σ e Fo so that

w((λoι/)σ (λ o w)σ)>O

or,

w(wσ wσ) > — 2w(λ0) = w(u w).

Thus σ e Lo. Hence σ -> σ maps Lo onto L, as desired.
Next I will show that each φ e <g&(U) maps onto φ e <&&(ϋ).

Indeed, φ maps onto φ e t/. To say that φ e ^^(U) is to say φ — 1 is of
finite rank. Equivalently, Mtrx(φ — 1) has all its entries zeros but for a
finite subset of / X I (finite matrix). Relative to the induced basis (/) it is
clear that Mtrx(φ -1) is, again, co-finite. Thus φ e <g&(U).

It remains to show that each φ e ^J^(ί7) lifts to a unitary transfor-
mation φ e «^J7) .

Let K(1) be the image of φ — 1. By construction, F ( 1 ) is a finite-dimen-
sional subspace of V. By §1 Theorem 1.11, F ( 1 ) lifts to a finite-dimen-
sional orthogonal summand Fo

(1) of Fo. Denote by V(2) the orthogonal
complement of F ( I ) and by Fo

(2) the orthogonal complement of Fo

(1) in Fo.
By the cited theorem F0

(2) maps onto F ( 2 ) . I distinguish two cases.

Case φ is a symmetry. Here φ2 = φ implies

φ — — lp(l) θ lp<2).

If φ 0 = — l^i) θ lKo(2) then φ 0 extends in a unique way to the symmetry φ

of F. Hence φ has been lifted to the symmetry φ in L o . By construction, φ

is co-finite.

Case 1 4- φ is non-singular. Here, φ can be Cayley parametrized. If

f = (1 - φ ) / ( l + φ), then

F τ = V — ^ r 1(1 - φ ) = F ( l - φ) = F ( 1 ) .

Then f = f / F ( 1 ) θ 0F(2). Repeating the argument to the effect L0(V)

maps onto L(V) for Freplaced by £>F0

(1) one readily gets that f / F ( 1 ) lifts

to a skew-symmetric transformation τx of DV^L\ If 1 = ^ 0 0 then

r = — T * e L o maps onto f. By construction, Vτ = DF 0

( 1 ) is finite-dimen-

sional. If φ = (1 — τ ) / ( l + T) then φ e [/maps onto φ and

F(l - φ) = v[y^y-2τ) = F(2τ) = FT =

Thus φ is co-finite.
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For general φ e ί/, by standard argument φ = φλφ2, where φλ is a
symmetry and φ2 is such that 1 + φ 2 is non-singular. One can, further,
choose both φv φ2 to be co-finite. It suffices then to lift separately φl9 φ2

to φl9 φ2 co-finite. Then φ is lifted to the co-finite unitary φl9 φ2. D

COROLLARY 3.24. // V is as in Theorem 3.23 then Mx: U -*Ί)wis a

matrix representation of U over the residue division ring D = R/J with the

following features.

( l ) K e r ( M x ) = Uo

+

(2) If M^is the restriction of Mx to the normal subgroup ^^(U) of

co-finite unitary transformations in U then

Ker(M**) = <€&{υ) n ( l + Jac(L0)).

(3) ^^{U) maps onto ^^{Dj x / (SO)), the normal subgroup of unitary
matrices Φ in Dr x / such that φ — 1 is a finite matrix.

Question. (Open.) What is the status of Corollary 3.24 in the case of
mixed basis? Also, if U maps onto the unitary group of Dw must V be
finite-dimensional?

4. Normal subgroups of the projective group. Let V be any finite-
dimensional non-degenerate elliptic space. Denote by t/ ( 0 ) the unitary
group, U9 by C/(1) = [U, U]9 the derived unitary group and by £/ ( r ), the r th
derived unitary group

(1) U^= [ l / e - ^ I / C - 1 ) ] ( r > l ) .

Let PU(r) stand for the factor group U{r)/U{r) Π Z. I refer to PU(l) as to
the projective derived unitary group, in short, the projective group of V.

Let lat . (Pί/ ( r ) ) stand for the lattice of normal subgroups of the group
PU(r).

Given g e G, associate to g the normal subgroup Ug of U. To Ug and
r > 0 correspond the normal subgroup Ug

(r) = [Ug

{r~ι\ Ug

{r~l)] if r > 1
and Up = Ug. To Ug

{r) corresponds the normal subgroup PUg

(r) =
Ug

{r)/U(r) Π Z of PU(r). This section is concerned with the nature of the
mapping g -> PUg

{r\ where g ranges over a suitable open segment of G.

Of particular importance is the special case r = 1. The work is organized
as follows.

4.1: Equalizers of the mapping g -> Ug and of related mappings.
4.2: The mapping g -> PUg

(l) for dimD V > 1.

4.3: The mapping g -> PUg

{1) for dim^ V = 1.

4.4: The general mapping g -> PU£r\
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4.1. Equalizers of the mapping g -» U and of related mappings.

Throughout the rest of this section the mapping g -> Ug and the

derived mappings g -* PUg

{r\ will all be restricted to the open segment

(w>(2), ->) of G. To simplify the writing let me make the

DEFINITION 4.1.1. (1) The mapping g e (w(2), ->) -> Ug from

(w(2), -») into lat.(ί/) is denoted by ττ0

(2) The mapping g e (w(2), ->) -> P£/g

( r ) e lat.(P*7 ( r )) is denoted by

Pττr.

(3) The mapping g e (w(2), ->) -> ί/g

(r) e lat.(ί/ ( r )) is denoted by

The equalizer of, say, τr0 is the subset of pairs (g1 ? g2) such that
πo(Si) = ^0(82)- F a c t s about the equalizers of ττ0 and ^ will be collected

in this subsection with a view to apply the results to subsections 4.2 and

4.3. One more mapping is in order.

DEFINITION 4.1.2. Let Σ o : (w(2), ->) -» lat.((F)) be the mapping

sending g e (w(2), ->) onto the additive subgroup

As observed and established in §2, Theorem 2.16:

Facts 4.1.3. (a) Let # b e the partial operator of L = L(V) which is

defined at φ e L if and only if 1 -f φ is invertible and then

ί?(φ) = 2(1 - φ ) / ( l + φ) .

Let # - 1 be the partial operator of L which is defined at φ e L if and only

if 1 4- σ/2 is invertible and then

Then ^ , ^ - 1 are one-to-one and V ° % ~λ = 1 L = # ~x o ^

(b) ^ i s entirely defined at πo(g) and ^ ( ^ 0 ( ? ) ) = 2 0 ( g ) for every

g > w(2)

(c) «7-1 is entirely defined at Σ 0 ( g ) and ^ ^ ( Σ o ί g ) ) = ττo(g) for

every g > w(2).

4.1.4. 7r0 as well as the derived mappings πv pπ0, pπl9... are

dual order homomorphisms of ordered sets.

Facts 4.1.3, points (b) and (c) tell us that ττ0 factors through ¥> ~ι,

π0 = & ~ι o Σ o . Hence π0 and Σ o have the same equalizers.
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Question. (Open.) If Σx: (w(2), ->) -> lat(X) is the mapping sending g

onto (Σ 0 (g), Σ0(g)), the Lie commutator subgroup of Σ 0 (g) and if

7rx = g e (w(2), ->) -> [πo(g), πo(g)], the commutator subgroup of the

unitary subgroup πo(g), does it follow that πx — Ή ~λ ° Σx? that πλ and Σx

have same equalizers?

I do not know general answers to the preceding questions. Some

partial results tending to affirmative answers will be established.

Recall that if M is the set of medial transformations φ of V such that

φ* exists and φ* is medial then M is a group {medial group of V) all of

whose members φ are such that

(3) φLg = Lgφf=Lg (geG).

Equivalently,

(4) ψ e L <=> g e G; ψw > g <=> φψw > g <=> ψφw > g.

DEFINITION 4.1.5. I will say that ψl9 φ2 ^ L = L(V) are equivalent

(notation: Φ1 = φ2) if

φ 2 = μ1φ1μ2,

for some μt ^ M (i = 1,2).

As a corollary to the preceding definition:

4.1.6. If φλ = φ2 then for every g e G, φxw > g <=> φ2w > g.

4.1.7. If σ, σr e ττo(g), then for [σ, σ'] = σ ' V ' W and for

(φ, φr) = φφ' - φ'φ where φ = ^(σ), φr = #(σ') :

Proof. (1) I will show more generally that if σ e wo(g), then σ — 1 Ξ=

σ) or, σ — 1 = φ, where φ = #(σ). By construction,

By construction, g > H>(2). From σ e ττo(g) follows φ = ^(σ) e Σ 0 (g)

and, hence, φ e L g so that φ/2 G L g_ g ( 2 ) c L^. From §2, Theorem 2.10

follows that 1 + φ/2 is medial. Since φ/2 has evidently adjoint which

must be in L£ it follows that (1 + φ/2)* is medial. Thus 1 + φ/2 e M.

Then



NON-ISOTROPIC UNITARY SPACES 61

with -1/(1 + φ/2) e M for - 1 e M and 1 + φ/2 e M. Hence, σ - 1

= φ.

(2) [ σ , σ ' ] - l = σ-V-1(σ,σ') = (σ,σ') ( t fcΛf)

= - 1 +

= 4

= 4

= 4

1 + φ/2'

1 1

φ'/2

1 + φ/2 Ί + ψ'/2

1 1 Φ
1 + φ/2 \ i + φ '/ 2 ' 2 / 1 + φ/2

1 / 1

1

= 2

l + φ / 2 \ i + φ ' / 2 ' Y j l + Φ/2

1 1 I f l+φ'\ 1

1 + φ/2 i + φ'/2

1 1
1 + φ/2 i + φ ' / 2

2 / 1 + φ/2 i + φ'/2

1 1

L + φ'/2 1 + Φ/2 "

As before, from φ, φ' (Ξ Jfg, g > w(2), follow 1 + φ/2, 1 + φ'/2 e M, so

that

Thus

as desired. α

Fact 4.1.8. Let (g l9 g2) be in the equalizer of mx (e.g. [Ugι, Ugi] =

[t/g2, t/gJ). If Σx = g e (W(2), ->) -> (Σ0(g), Σ 0(f))(= ( ^ . j ς))Λeή

Σ 1 ( g 1 ) c Σ 0 ( 2 g 2 ) ; 2 , ( g 2 ) c Σ 0 ( 2 g l ) .

Proof. Let φ, φ' e Σ^gJ. If σ, σ' = V ~\φ), <€ ~\φ') then σ, σ' e

WoίgO Thus [σ, σ'] e τro(g l) e wo(gl) = ^ ( g ^ = [ί/&, UJ c t/2ft. (§2,

Theorem 2.14, (iii)). Equivalently, [σ, σ'] - \w > 2g2. By Fact 4.1.7,
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(φ, φ') = ([σ, σ'] - l)>v > 2g2 giving (φ, φ')w > 2g2, so that (φ, φ') e
Σ 0(2g 2). As this holds for every pair φ,φ' e Σ^gJ, it follows that
2X( gθ c Σ0(2g2). By symmetry, Σx( g2) c Σ 0 (2 g l ) . D

Fact 4.1.9. Let σ, σ' e C/,,%. If

and if φ, φ' = #(σ), ^(σ'), then

γ - 1 = μι(φ, φ')μ2(φ, φ')μ3 + μ4(φ, Φ')μ5(φ, φ')μ6

+ μΊ{(φ,φ'),φ')μ%,

for some ju, e M.

Proo/. Since [σ, σ'] e [ί/+(2), ί/+(2)] c LC(2) it follows that

where //2 = (1 - [σ, σ'])/(l + [σ, σ']). If tx = 1 - [σ, σ'], then

(5) ^

From Fact 4.1.7 applied to [σ, σ'] and σ' follows

γ

where

Now,

1 - »,/2 ( ' " •') 1 - t,/2
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From tλ = 1 - [σ, σ'] and [σ, σ'] <Ξ lζ+2) follows tx/2 e L+. Since tx/2
has adjoint it follows that 1 — tλ/2 e M, giving

Here,

= (φ', σ-V'-^ίσ, σ') + σ^σ'-^φ', (σ, σ'))

Since φ' evidently commutes with σ'"1 it follows that

(ίi, Φ') = (Φ', σ-χ)σ'-(σ, σ') + σ^σ'-^φ', (σ, σ')) = τx + τ2>

where τx = (φ', σ-^σ'-^σ, σ') and τ2 = σ^σ'-^φ'^σ, σ'))
Now,

From Fact 4.1.7, (σ, σ') = (φ, φ') follows. Thus

where μ[, μ'2 ^ M. Since 1/(1 — ε/2) and σ ' G M i t follows that for some

Also,

(continues)
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1 (1 + Φ\ 1
1 + Φ/2 \ 2, φ' / 1 + Φ/2

1 1 / Λ

' ) ( φ ^T

Therefore (φ\ (σ, σ')) can be written in the form

(φ\ (σ, σ')) = μ4(Φ> <t>')Vs(<t>> Φ')f*6 + MvίΦ', (φ,

where the μ. E M, which completes the proof. D

Recall that if DnXn is the ring of n X n matrices over D, where n is a

finite integer, then if w: DnXn-> G* is the mapping sending Φ =

[ΦίJ]ι<ίj<n onto w(Φ) defined by

(6) w(Φ) = Min (w(φu))9

i,j = 1,... ,n

then iv is a vector valuation of DnXn over D, which verifies the submulti-

plicatiυe property

(7) w(ΦiΦ2) * κ(Φi) + w(Φ2) (Φ l 5 Φ2 e i) r t X J .

Evidently, for every Φ E ΰ n X f l and g ^ G#,

(8) Φ w > g « w ( Φ ) > g ,

where w > is the usual matrix prevaluation on DnXn (Φvv > g

means w(entrt 7(Φ)) > g for every pair /,y' = 1,...,«). By standard argu-

ment w verifies the generalized triangle inequality

(9) wl ΣΦ ( )> Min (w(Φt)),

and w verifies the special triangle equality

(10) w(Φi) ̂  w(Φ2) =* *Kφi + φ2) = Min(w(Φ1),ίv(Φ2)).
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Fact 4.1.10. Let V be any ^-dimensional non-degenerate O-elliptic

space and let (/)) be any fixed orthogonal basis of V, which is bounded by

some ε' in G. Given φ e L, let

(11) w(φ) = vv(Mtrx(φ)).

Then:

(1) If φ s φ\ then |w(φ) - w(φ')\ < 2ε\

(2) If σ, σ' e £/+(2) and if φ, φ' = < (̂σ), #(σ') are such that

2w(φ,φ/)>

then if γ = [[σ, σ'], σ'], then

Proof. 1. Since Fis 0-elUptic it follows that if τw > g then Mtrx(τ)w

> g — ε and that if Mtrx(τ)w > g then τw > g — ε (§3, Theorem 3.5). In

terms of the vector valuation w(τ) this means that

(12) τ w > g = > v v ( τ ) > g - ε ' (g^G).

(13) w(τ) > g => TW > g - ε' ( g e G ) .

Let then φ s φ'. If g = π (φ), then

w(φ) = g>g=*φw>g-ε'.

Since φ' = Φ it follows that φ'w > g — ε' so that w(Φ') > g — 2ε7 or,

^(φ') + 2ε' > w(φ). By symmetry, w(φ) + 2ε' > w(Φθ Thus |w(φ) -

w(φ')| < 2ε\ as desired.
(2) From the preceding fact follows

γ - 1 = (T l + τ2) + τ3,

where

τ3 = μ7((φ,φ /),φ /)μ8

with all the μ, in M. Thus from (1) follows

(14) \w(y - 1) - κj((Tl + τ2) + τ3)| < 2ε'.

Now,

Thus from, again, (1)

w(Tl) > w{φ, φ')μ2{φ, φ') - 2ε' > 2w({φ, φ')) + w(μ2) - 2ε',
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and, since, μ2 is medial and, hence, μ2w > 0 it follows that w(μ2) > —ε'

so that

HKTJ > 2w((φ, φ')) " 3e' > κf((φ, φ'), Φ') + 5β' - 3ε'

By the same token,

By the generalized triangle inequality follows

(15) w(r1 + τ2)>w{(φ,φ')9φ') +

Now, from

τ3 = μ 7 ((φ,φ'),φ')μ 8

follows

(16) w(τ3) < w((φ, φ'), Φr) + 2ε' < w{τ

By the special triangle equality follows

w((τi + τ2) + τ3) = w(τ3).

In view of (14)

| w ( γ - l ) - w ( τ 3 ) | < 2 ε /

follows. Thus

as desired.

< |w(γ - 1) - w(τ3)| + |w(τ3) - w((φ, φ'), φ')

< 2ε + 2ε = 4ε,

4.1.11. (a) If (g l 9 g2) is in the equalizer of P π 0 then (g l 9 g2) is in

the equalizer of mv

(b) If (g 1 ? g 2) is in the equalizer of Pπx then:

(i) K ( g l 9 WoίgO)] c ττo(2g2 + gx);

b(«2)] c

Proof, (a) To say that Pπo(gλ) = Pπo(g2) is to say that
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Then

(b) To say that Pw^) = P«i(g2) is to say

7r1(

Then

Similarly,

[ ] i -f g2).

Fact 4.1.12. Let Kbe any non-degenerate O-elliptic space and let V
be any orthogonal summand of V. If J^ is one of the mappings τr0 = τro( V),
Pπ0 = Pπo(V), PΊΪ1 = Pπλ = (F), 77^..., and if &' is the corresponding
mapping relative to the space V\ then the equalizer of J^is contained in
that of S*'.

Proof. ( J Γ = 7r0, Pττ0.) Assume that iro(ί?i) ^ ^0(^2)- Since V is
O-elliptic it follows by §2, Theorem 2.6 that if g e G, then

Thus

Then

ug(v) Θ 1 = (ί/(F0 Θ 1) n t g

From ^(gx) = ^0(^2) follows

) ( ( ' ) Θ 1) Π

and, consequently, ^όίgO = <(g 2 )
Assume that F ' # Fand that P^ig^ = Pwo(g2) T i l is means that

ί / g i . ( z . i n ί / ) = ί / g 2 . ( z . i n ί / ) ,
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where 1 = identity mapping of V. Denote by Γ the identity mapping of
V, It is to be shown that

ugi(v) . (z i ' n u(v')) = ujv) •(z i n u(y%

Let σ' <= ί/ f t(F') and let z e Z be such that z 1' e £/(F') Equivalently,
z is a central unitary in the ground division ring (D; *). If σ1 = σ' Θ 1",
where 1" = identity mapping of F / X , then σ! e ^ ( F ' ) Φ 1" c ί/ft(F).
Thus σx(z • 1) e l/ft(F) (Z 1 Π U) = 1/&(K) (Z Π t/). This means
that for some σ2 e ί/g2(F) and some z2, a central unitary element in
(D; *),

σx(z 1) = σ2(z2 1).

From the preceding equation follows

V'σ2 = z2V'σ2 = F'σ2(z2 1) = VΌλ{zx • 1) = z γ \ = V

and

Thus σ2 = σ2 θ σ2', where σ2 = σ 2 /F ' and σ2 = σ 2 /F" . Moreover, if
V" e F'- ' .then

y"σ2" = t/'σ2 = z?v"zp2

= zlxv"zax = zjW'σ! = zj W .

This means that σ2 = z2

ιz 1", where 1" = identity mapping of Vr±.
Therefore,

zax = z(σ' Φ 1") = z = (σ' Φ l")(z 1)

= σ2(z2 l) = z 2 (σ 2 'Φz 2

1 zl")

Then zσί = z2σ2, and, hence

where σ2

r e [/g2(Fr) for σ2 G ί/g2(K) and σ2

r = σ 2 /F r , and z2 is a central
unitary. Thus

As this holds for each pair σ{ e Ugi(V) and z 6 ^(Z); *) Π Z it follows
that

ugi(V)(zn u(V)) c ί/g2(F') . ( z n

By symmetry,

ι/fc(F')-(z n u(v')) c ί / a ( F ' ) -(z n u(v')).



NON-ISOTROPIC UNITARY SPACES 69

Therefore

as desired. D

4.2. The mapping g -> PUg

(1)for dim^ V > 1.

Generally the mapping Pπλ = g e (w(2), ->) = Pt4 ( 1 ) e lat(Pt/ ( 1 ))

has a non-trivial equalizer even when d im Z ) F> 1. Here is an example

where PT^ is constant.

REMARK 4.2.1. If Fis the 2-dimensional orthogonal space then P<nx is

the constant mapping. In fact, mλ is the constant mapping.

Proof. Pick any orthogonal basis fl9 f2 of V. If si = / fι9 i = 1,2, and

λ = sλs2

ι then by inspection, ψ e [/ «=> φ = Mtrx(φ) is of one of the

following types.

a b(A) φ

(18) Φ =

-λb a

a b
λb a

(detφ = l ) ;

(detφ= - l ) .

Thus 1 4- φ is invertible if and only if det φ = 1. Since the set of matrices

φ as in (17) form an abelian normal subgroup of invertible matrices and

since 1 4- φ is invertible for every φ e Ug where g > w(2), it follows that

Ug is abelian so that ̂ ( g ) = 1 for every g > w(2). D

THEOREM 4.2.2. L^/ V be any non-degenerate O-elliptic space with

dimension > 1. Assume that V is of one of the following types.

(1) V is a non-orthogonal space containing some non-zero orthogonal

vectors fx andf2 such that

(19) K/i Λ)-w(/2 /2)|<πε,

where n is any fixed natural number and ε is either the zero of or else the first

positive element in G.

(2) V is an orthogonal space containing a triple of non-zero orthogonal

vectors fl9 / 2, /3 such that

(20) Hfrf,) ~ Afj fj)\ * «* (U = 1.2,3),

where n and ε are as in 1.

Then:

(3) There is an isomorphism y of the chain G+ into G+ such that γ ° Pπ2

( = g e G+^> [Uγ{g)9 Uγ{g)]/[U9 U] Π Z) w Λ dual isomorphism from G+

into lat.(/>[£/, ί/]), /Λβ lattice of normal subgroups of the projective special

unitary group.
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Proof. Case where V is as in 1. To say that V is not orthogonal is

evidently to say that the ground involution * is not the identity mapping.

Thus if 0 Φ s = s* & D then the co-gredient involution sending x e D

onto JC(5) = sx*s~ι is, again, not the identity mapping. Without loss of

generality one may assume that if st = ft fi9 i = 1,2, then w ^ ) < w(s2).

Since 0 Φ sx = sf it follows that (sx) is not the identity mapping. If

0 Φ k e D is such that k e j T i D ; ^ ) ) then so are 2k and k~ι in

X(D\ (sλ)). Hence one can find kx G Jf (Z>; (sτ)) such that if g0 = w(kλ)

then oo Φ g0 > w(2). Let γ: G+-+ G+ be defined by

(20) γ(g) = go + 2mg,

where m > 1 is a natural number to be fixed later. If g e G and xf e Z) is

such that w(xr) = g then

g0 + 2g = w(kλ)

where x'kλx'(Sι) Π JΓ(i); (^J). Thus

go + 2 g e w

Therefore

and by construction,

Thus γ o Pπλ is a well-defined dual homomoφhism from G+ into

lat.(P[t/, t/]). It remains to show that γ ° Ptπι is one-to-one. In view of

Fact 4.1.12 one may assume that Fis the subspace that is spanned by/x

and / 2 . Hence (fv f2) is an orthogonal basis of V, which is bounded by

ε' = nε.

Let then gl9 g2 G γ(G+) be such that PTr^g!) = Pπ1(g2). It is to be

shown that for m large enough (m depending only on («, e))g1 = g2

follows. Pick J C G D such that w(x) = gλ + nε = gτ + ε' and J f= -A:(5)

such that w(k) = gx 4- 2εr (possible since

g l + 2ε' = g l + 2«ε e γ(G + ) + 2G > 0 c g0 + 2G c )

Define φ, φr G L(F) by the matrix equations

(21) Mtrx(φ) =
-s2x's{1 0

(22) Mtrx(φ') = k 0
0 0
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By construction, φ and φ' are skew-symmetric transformations and by
inspection,

w{φ) (= w(Mtrx(φ))) = g l + ε'

From the preceding relations follows that

in fact, φw > (gx + ε') - ε' and φ'w > (gx + 2ε') - ε' = gx + ε' > gx.
Since gx > w(2) it follows that if σ, σ' = ^~\φ\ ^~\φf) then σ, σ' are
well-defined unitary transformations of Fand that σ, σ/ e [/ (F).

Now, by inspection

(23) κ?((φ, φ')) = w(φ) + w{φ') = 2gι 4- 3ε',

(24) w((φ, φ'), Φθ = w(φ, φθ + w(φ') = 3 g l + 5ε'.

To ensure the inequality

it suffices then to ensure that

4gx + 6ε' > 3gλ -f

or,

gx > 4ε' — Anε.

If ε = 0, then gτ == g0 + 2mg > 0 will follow for g > 0 and g0 > w(2)
> 0.

If ε is the first positive element in G then gλ = g0 -f 2mg > Anε as
soon as

gi + 5ε'2>g2.

By symmetry, g2 + 5ε' > gv Thus

ISi - gJί Z 5ε'

If ε = 0 then ε' = wε = 0 giving gx = g2. If ε is the first positive element
in G then since gv g2 e γ(G+) = g0 + 2mG+ it follows that gx — g2 Φ 0
implies |gx — g2 | > 2mε > 6nε = 6ε', contradicting the preceding
inequality. This shows that gx = g2, as desired. Therefore γ ° Pπx is
one-to-one as soon as γ = γm = g -> g0 + 2mg is such that m > 3n.

Case V is an orthogonal space as in 2.
Take γ = yn = g >-> w(2) -f 2wg (g e G+). This is an isomorphism of

G+ into G+. It is to be shown that γ <> P7ΓX is one-to-one.
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Now, from g > w(2) follows - l ί ί/g and, consequently, - l ί

*7g. Thus ^ ( g ) Π ([[/, ί / ] Π Z ) D ^ ( g ) Π {1, -1} = (1). From

this ττι and Pπλ have same equahzers. Thus γ ° τr1 and γ ° Pπλ have same

equalizers. It remains then to show that γ ° πλ has trivial equalizer. In view

of Fact 4.1.12, one may assume that F i s spanned by the vectors ft as in

the statement of 2. Without loss of generality if st = fL fi9 then w(sλ) <

w(s2) < w(s3).

Pick any x G ΰ such that w(x) = gλ + e' (ε' = nε). Determine φ, φ'

e L ( F ) by their matrix equations

(25)

(26)

Mtrx(φ) =

Mtrx(φ') =

0

0

0
0

— s s'K

X

0 !
J

0 '

0
0

z 0

ϋ
0

0

! x

i °
0

By inspection, φ, φ' are skew-symmetric transformations of V such that

(27) w(φ) = g l + ε',

(28) w(φ') = g l + ε',

and

(29)

0

0

0

0

0

s.s^x2

0

-s s~ιx2

0

Since the basis (/ l 5 f2, /3) is bounded by ε' = nε it follows that φ, φ'

X~V(V). In view of Fact 4.1.8, (φ, φ')w > 2g 2 follows, and, consequently,
Si

w((φ,φ /))>2g 2-ε / .

Thus

2gi + ^ ( ^ Γ 1 ) = Uί((φ, Φ')) ^ 2g2 - β'

or,

ε7 > 2g 2; g ι g 2.r\ , ^ / ^ r\ , / - 1

By symmetry, g 2 + ε7 > gx. Thus \gι - g2\ < ε'. If ε = 0 then ε' = «ε = 0

follows giving gλ = g2. If ε is the first positive element in G then gλ Φ g2
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implies \g1 — g2\ > 2nε = 2ε' > ε\ contradicting the inequality \gx — g2\

< ε'. This shows that yn <> Pπτ is one-to-one, which concludes the proof. D

COROLLARY 4.2.3. If Vis as in Theorem All then the positive cone G+

of the underlying value group G can be dually embedded in lat.(P£/(1)), the

lattice of normal subgroups of the projective derived unitary group PU^ =

[t/, U]/[U, U] n z .

Proof. For γ ° Pπλ is a dual homomorphism of ordered sets.

COROLLARY 4.2.4. // V is as in Theorem All then γ ° Pπ0 is a dual

one-to-one homomorphism from G+ into lat.(P£/(0)), the lattice of normal

subgroups of the projective unitary group Pί/ ( 0 ) = U/U Π Z.

Proof. For the equalizer of γ ° Pπ0 is contained in the equalizer of

γ © πv The latter is contained in the equalizer of γ ° Pπv D

4.3. The mapping g -> PU^l) for dimD V = 1.

Will the restriction dim^ V = 1 make the treatment of the mapping

e -> [Lf UΛΛU, U]Π Z easier? As it turns out it is the reverse that
o o

happens to be true. I suggest as an explanation the following. Theorem

4.2.2 was established by making explicit use of skew-symmetric transfor-

mations φ and φ" with prescribed values relative to the vector valuation w

and such that

(28) w(φφ' - φ'φ) = w(φ) 4- w(φ').

(See equations (21)-(26), (29)). In dealing with the simplest instance of

1-dimensional space V, namely the space DD, relative to the form x y =

xy*, (28) means that for certain skew-symmetries φ,φf in (Z>;*) with

prescribed values w(φ) = g, w(φr) = g',

(29) w(φφ' - φ'φ) = w(φ) + w(φ').

I do not know of any standard construction of such pairs φ, φ' for the

given *-valued division ring D As a matter of fact there is a clear-cut class

of division rings D possibly infinite dimensional, in which, equality (29)

never occurs even if φ, φ' are any elements in D (see [10] or [4]).

Such division rings D have commutative residue division rings D.

Reversing the trend, I will assume in what will follow that dim^D > 4,

where Z = center(D) and 1/2 exists in D.
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THEOREM 4.3.1. Let (D; *; w) be any *-valued division ring. Assume

that 1/2 exists in the valuation ring R and that the residue division ring D is

of dimension over its center exceeding 4. For each pair of skew-symmetries σ

and T one can find symmetric units u and v in R such that if σ' = uou and

τ' = VTV then

w(σ'τ - τ'σ') = w(σ') + w(τ').

Proof. Deny the conclusion of the theorem. In particular,

w(στ — Tσ) Φ w(σ) + w(τ).

Thus σ Φ 0 and τ Φ 0. Then

w(στ — Tσ) = w(στ(l — [T, σ]))

= w(σ) + w(τ) + w(l - [ τ , σ ] ) Φ w(σ) + w(τ)

so that w(l — [T, σ]) Φ 0. Since [T, σ] is in R, it follows that w(\ — [T, σ])

> 0 and, hence,

(30) [τ,σ] = l (mod/) .

I proceed to show that

(31) (uuσ)τ = uuσ (mod/),

where u is any symmetric unit in /?, and ah = Z r 1 ^ (α, b e Z)). By

standard properties of group commutators, if u is any symmetric unit in

i?, then

[wτw,σ] = [w,σ]"[τw,σ] = [w, σ] ™[τ, σ] u[u, σ] .

Since (•)": x e i? -> x" is an inner automorphism of the ring Λ preserving

evidently / it follows that

[ τ , σ ] " Ξ V = l ( m o d / ) ,

giving

By (30) applied to the pair uru and σ it follows that

[w,σ]™[w,σ] = 1 (mod/).

Conjugating by u~ι the preceding congruence:

[ i ^ σ Π ^ σ ] " " 1 = 1 (mod/).

Equivalently,
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Thus

Here
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[σ, u]u = w[σ, u] u~ι = uσ~ιu~ιouu~ι

= uo~ιu~ισ = [u"1

9 σ ] .

[w,σ]τ = [u~\σ] (mod/).

75

[ t / ,σ] τ = [w τ,σ τ] = [t/ τ ,σ[σ,τ]]

= [u\[σ,τ]][u\σ][<"]= [u\l][u\σ]1 = [u\a]

and, consequently,

[uT,a] s [ ^ σ ] (mod/),

or,

(w-^'ίσ-Vσ) s ^(σ-^^σ) (mod / ) .

Left multiply the preceding congruence by u~ι and right multiply the

resulting congruence by (σ^iΓσ)"1. After replacing u by u'1 one gets

precisely (31).

I proceed to show that the inner automorphisms (σ) and (T) induce

equal automorphisms on the residue division ring D. Congruence (31) is

evidently true if u is a symmetric in /. Thus (31) holds true for u any

symmetric in R and, consequently, (31) holds true if u is replaced by

1 + u. This substitution gives

((1 + w)(l + uo))r = (1 4- u + uσ + uu°Y

uσ)= 1 +(u + uσ)τ +(uuσ)τ (1 + w)(

= 1 +(u + uσ) +(uua)

so,

(32) w + u° = (u + uσ)\

Reversing the roles of σ and T in (32):

(33) w + uT= ( ι ι + w τ ) σ .

Now, from [σ, T] = 1 follows wστ = wτσ. Subtracting (33) from (32) and

eliminating congruent terms, it follows that
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Since 1/2 exists in /?, it follows that uσ - uτ = 0 or ua = wτ, for every

u = u* in R. Since D is of dimension exceeding 4 over its own center it

follows by a well-known theorem of Dieudonne that D is generated by its

symmetries. Thus xσ = xτ for every X G Λ .

I will show next that ( ) σ is of period 2 (or less) modulo / and that

(34) uuσ = uσu (u = u* e R).

Indeed, in (33) replacing ( ) τ by ( ) σ this gives

u°2: u = uσ\

Same substitution in (31) gives

wuσ= (uuσ)σ = uσuσ2 = u° u.

I proceed to show that ( ) σ is, in fact, the trivial automorphism

modulo /.

Replacing u by u + υ in (34) where u and v are symmetries in /? and

eliminating congruent terms it follows that

(35) uυσ + υuσ = uσv + vσu.

Now,

(</>)* = ( σ " W ) * = σί;*σ"1 Ξ= σ"Vσ = σ^ί σ = vσ.

Thus ι;σ is symmetric modulo /. Thus one can replace v by vσ in (35). Then

uυ + υσuσ = wσi;σ + Ϊ W;

equivalently,

(36) uυ — υu= {uυ — υu)°\

for every pair of symmetries u and υ in R. Since the residue division ring

D is of dimension over its center exceeding 4 it follows by a well-known

theorem of I. N. Herstein that D is generated by Lie commutators of

symmetric elements in D. From (36) follows that ( ) σ is the identity

automorphism modulo J.

It is now easy to reach a contradiction. For let w, υ be symmetric units

in R. By the preceding

υσ = υ.

If σ is replaced by uou this gives

υ = Όuau = ( y W ) - = ((v-yyw = v«2.

Thus υu2 = u2υ, for every pair of symmetric units u and υ in R. A final

linearization on u shows that the symmetries in D commute contradicting

thus the dimension of D (Dieudonne). D
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THEOREM 4.3.2. Let (/);*; w) be as in Theorem 4.3.1. For each pair of
non-zero skew symmetries σ and τ as in the conclusion of Theorem 4.3.1
there is some symmetric unit u of the valuation ring R such that if τ' = uσu
or TU and σ' = στ — τσ? then

w(σ'τ' - τ'σ') = w(σ') + w{τ').

Proof. Deny the conclusion of the theorem. Repeating the argument
in the proof of (30) for σ replaced by σ' and τ replaced by T' it follows
that

[σ',τ'] = 1 (mod/).

By construction, τ' can be replaced by σ as well and by uτ'u for every
symmetric unit u in R. Repeating the argument in the proof of (31) for σ
replaced by σ' and T by UΊ'U it follows that

(37) uuσ' = (uuaY ( T ' = σ o r r ) ,

for every symmetric u in R. Denote by c the element u ua' and by c the
image of c in D. I proceed to show that c £ Z, the center of D, for some w.

For if c always belong to Z then replacing u by 1 + w and eliminating
gives w + wσ/ e Z. From the identity

(38) w2 - w(w 4- wσ) + uuσ' = 0

follows that ΰ is quadratic over Z for every symmetric w in D. By standard
argument D would be 4-dimensional (at most) over Z, which is ruled out.

Pick any c = uuσ such that c & Z. For each symmetric unit v in R,
the inner automorphisms ( ) v σ v and ( ) y τ ι ; preserve c modulo /; it suffices
to choose T' = υσv, υτυ successively and to quote (37). It follows that
(ί ' V ' V 1 ) , (υσ~h))9 (v^τv'1), (vσv) all preserve c modulo /. Thus the
product of these automorphisms preserve c modulo /. Since

( υ ~ ι τ ~ ι υ ~ ι ) ( υ σ ~ ι υ ) { υ ~ ι τ υ ~ ι ) { υ o υ ) = υ ~ ι [ τ , σ ] v

it follows that (-)υ~1[τ'σ]υ preserves c modulo/.
I will show next that [T, σ] maps onto a central element in D. For

[σ, σ] is a unit in R. Thus if 8 is the image of [r, σ] in D then the relation

cv~ι[τ,σ]v

implies

for every non-zero symmetric ΰ in D. Equivalently, δ commutes with cv for
every non-zero symmetric v in D. By I. N. Herstein's [10, Theorem 6.1.1]
follows that 8 e Z; in view of the fact that c £ Z.
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Now 8 = [T, σ] Φ 1, the unity of D. For if 8 were the unity of Z>, then

[T, σ] = 1, so that

w(σ') = w(στ — Tσ) = w(στ(l — [T, σ]))

= w(στ) 4- w(l — [T, σ]) > w(σ) + w(τ),

contrary to the equality w(σ') = w(σ) 4- w(τ). Thus 1 = [T, σ] is a unit in

R and evidently 1 = [T, σ] maps onto a central element in D. If x ^ R,

x & J it is to be shown that

For

- 1
= ( l - [ τ , σ ] ) 3c( l-[τ,σ])

Since 1 - [T, σ] G Z it follows that (1 - [T, α ] ) " 1 * ^ - [T, σ]) = x giving

equivalently

(39) x^>«mχ.

From the preceding congruence follows that for each symmetric unit u

inR

In view of (37),

= uτ\uστ-τσY uT(uστ)T' = (uuστ)τ\

Since the preceding congruence holds for both cases T' = σ or r ' = T it

follows that if γ = σr then

(40) uuΎ
 ΞΞ (wwψ.

In the preceding congruence replace u by 1 4- u and eliminate con-

gruent terms. This gives w4-wγ = (w + w γ) γor, u = uyl. Returning to

(40) and replacing uyl by u, one has uuy = wγw. Exactly as in the proof of

Theorem 4.3.1, argument following (36) one deduces from the preceding

congruence that γ induces the identity automorphism of D. Thus from

(37) follows
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By one more linearization argument follows that u = uΊ"'. Since T' can be
replaced by vσv one deduces that the symmetries in D commute, which is
a contradiction. D

THEOREM 4.3.3. Let (D; *; w) be any *-valued division ring such that
1/2 exists in the valuation ring R. Let φ1? φ2, φ3 be three non-zero
skew-symmetries such that

(i) w(φx) = w(φ2) = w(φ3) > 0, where if g = w(φx), then g Φ oc;
(ii) H>(φxφ2 - φ ^ ) = 2g;

(iii) w(φ xφ2 - Φ2Φ!)Φ3 - Φ3{ΦXΦ2 - ΦiΦi) = 3g.

Pwί σ,. = (1 - φi/2)/(\. + Φi/2) (i == 1,2,3). Then the oi are unitaries in D
such that

(iv)w(σ,) = g(/ = 1,2,3);
(v) w([[aly σ2], σ3] - 1) = 3g.

Proof, (iv) At the risk of repeating slightly the calculations in Fact
4.1.7, point 1, one has

0 —
1 + φx/2 1 + φ/2 >

giving

H,(σ. _ i) « w (φ.) + w(l + φ/2) = w ( φ f ) ,

for since w(φ,) > 0 and w(l/2) = 0 it follows that w(l + φ/2) = 0.
(v) Represent [σv σ2] in the form

Indeed, the preceding equation can be solved for t/2 provided [σx, σ2] Φ
— 1. If [σv σ2] were central then (iii) would be obviously violated. Thus
[σv σ2] Φ — 1. If /x = 1 - [σv σ2] then

From trivial adaptations of Facts 4.1.7 and 4.1.9 follows that if γ

[|>i> σil σ 3 l t h e n

w(γ - 1) = w

Now,

1-
1σ2-

1(φ3, (σ l 5 σ2)) = ^ τ 3 ,
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where

τ i = (*3» oϊ1)σz1(σi> σi)> τ2 = o^iΦί, σϊ1)^!, o2),

τ3 = σ{1σ21(φ3,(θi,σ2)).

Now

w(τi) = w(φ3, σf1) + w((σl5 σ2))

= w((φ3>Φi))+ *((<*>!, Φ 2 ) ) > 4 g ;

w(τ2) > 4g. Also,

w(τ3) = w(φ 3 ,( σ i ,σ 2 ))

and

(φ 3, (σx, σ2)) = (φ3, j _ ^ / 2 τ _ \^2 (Φj, Φi) χ ^

τ2' + τ3' + τ4' + τ5',

where

( φ ' ( φ 2 ' Φ l ) )
1 - φ1/2 1 - φ2/2 I - φ2/2 1 - φx/2

has value w(φ3,(φ2, Φi)) = 3g and all other terms T/, i Φ 3, have values at
least 4g. By the special triangle equality follows

ί JL -l -1/ \\ / Λ ^

so

THEOREM 4.3.4. Let (D;*; w) be any ^-valued division ring such that
1/2 exists in the valuation ring R in D and the residue division ring D has
dimension over its own center exceeding 4. Denote by °U the unitary group of
D, PQl(1) the factor group [<%, <%]/[<%, <%]C\Z and PUg

{1) the subgroup

[*s> **]/ [*> * ] n Z> where ®g= {u<ΞW\w(u-l)>g}. Then g ->
Ptfl ^ is a dual embedding of the positive cone G+ of G into the lattice of
normal subgroups of the group P°U (1).

Proof. By inspection, <%g is a normal subgroup of °ll which decreases
as g increases. Hence g -> PWg is a dual homomorphism from G+ into

( 1 ) ), the lattice of normal subgroups of the group ^ ( 1 ) / ^ (1) Π
(1) = [^, <2φ—One can also observe that ^ is of the form UΛV) for

an appropriate space V.
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I proceed to show that if g > 0, then the subgroup [[< ĝ, °ttg\ <%g]
contains some unitary γ such that w(y - 1) = 3g. To begin with, I assert
that <%g contains some unitary σ such that w(σ - 1) = g. Since g > 0 =
w>(2) it suffices to find some skew-symmetric φ in D such that w(φ) = g.
For then if σ = (1 - φ/2)/(l + φ/2) then w(σ - 1) = w(φ) = g. Deny
the assertion about φ. This means that w(φ) Φ g for every skew-symmetric
φ in Z>. Pick a ^ D such that w(α) = g. Since w(α — α*) = w(α) +
w(l — a^a*) and since α — a* is skew-symmetric it follows that
w(l - α"1^*) # 0. Since 1 - a~ιa* e i?5 it follows that α^α* = 1
(mod / ) , for every α 6 ΰ such that w(a) = g. If t is any unit in R then
w(έtf) = w{a) = g. Hence, (αί)" 1 ^*)* Ξ * ( m o d ^ T h e n

Left multiplying the preceding congruence by t this gives

a~1t*a* = t (mod/).

Thus

a^fa = a-ιt*a*{a*-ιa) = ̂ -1/*«*(fl-1^*)"1 s /I = *.

Changing / to r* this gives a~ιta = t* or ta = ί*. If a is replaced by αίl9

where tλ is another unit in R then

/* = ta = /Λ/l = (ί*1)'1 Ξ ί*'1.

As this holds for every pair of units t' and tλ it would follow that
R/J = D is commutative, which is nonsense. This shows that there is
φ = _ ψ* such that w(φ) = g. Apply Theorem 4.3.1 to the pair σ1 = φ l 9

τλ = φ2. There are w and v symmetric units such that if φ± = uφu and
φ2 = yφί; then w((φ1? φ2)) = w(φ2) 4- w(φ2). By construction φλ and φ2

are skew-symmetries and w(φλ) = w(φ2) = w(φ) = g. Apply now Theo-
rem 4.3.2 to the pair σ2 = φl9 τ2 = φ2 to get a third skew-symmetric φ3

such that w((φ1? φ2), φ3) = 3g, where φ3 = ufφλu or i;^^7 f° r some sym-
metric units u' and v' in R. Again, w(φ3) = w(φλ) or w(φ2). Since
w(Φi) = w(Φi) = S ̂  follows that w(φ3) = g. If

σ, = (1 - φ/2)/(l + φ/2)

then by Theorem 4.3.3, the σf. are all unitaries such that w(ox) = w(σ2) =

w(σ3) = ,? a n ( i ^([[σi9 °i\
 σ3 ~ 1]) = 3g, as desired.

It is now easy to establish the one-to-one requirement about the
mapping g-*P<ίl£\ For if PtyV> = pqι<to t h e n [[Φ&, Φ&], Φ&] =
[[^ g 2, ^ g 2 ] , Φ & ]. If the σ7 are chosen as in the preceding then since
Y = \[σl9

2σ2], σ3] e [[Φ&, 4r&], Φ J it follows that γ e [[Φ&, 4r&], Φ f t] c
*2s2+sr T h u s w ί γ "" ^ - 2^2 + ίi» a n d ^ consequently, 3gλ = w(γ - 1)
^ 2 g 2 + ft S i v i ng 28ι ^ 2^2 0 Γ Si ^ g2-

 β y symmetry g2 > gx and,
hence, gx = g2, which completes the proof. D
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Theorem 4.3.4 can be put to work for the considered 1-dimensional
spaces V. At no extra cost in the arguments the results apply to any
O-elliptic space V. This is the

THEOREM 4.3.5. Assume that (/);*; w) is such that (i) 1/2 G D and (ii)
dim^D > 4. If V is any O-elliptic non-degenerate space over D then
Pπx = g G (0, ->) •-> [Ut9 ug]/[U9 U]Π Z is a dual isomorphism from G+

into lat.(Pί/ ( 1 )), the lattices of normal subgroups of the projectiυe derived
unitary group of V.

Proof. By Fact 4.1.12, it suffices to establish the theorem in the case
dimD V ~ 1. As a second reduction, to show the theorem in the latter case
it is the same as showing Theorem 4.3.4 for * replaced by the co-gredient
involution (s), where s is any non-zero element in D which is represented
by the form. Indeed, for such an s it is clear that V' = DD (up to isometry),
relative to the form x y = xsy*. Here L = LD(D) = D#9 x% = x^} and
x&w > g <=> w(x) > g. From this πo(g) = {°llg{D\ (s))). Since x -> x@ is
an isomorphism from (D;(s)) onto (L; *) with correspondence of the
subgroups πo(g) and Φg(Z); (s)) it follows that the relations

[fli(g), ^o(gι)] = [^i(g2)5 Mg\)l a n d [^1(^2)' ^0(^2)] = [πiigi), πo(gi)]
are equivalent to the corresponding relations where πo(g)9 ^(g) are
replaced respectively by <Vg(D\{s)\ [<&g(D9(s)),<tίg(D;(s))]. Since the
former relations follow from the relation Pπι(gι) = Pπ1(g2) (Fact 4.1.11)
and since gx = g2 follows from the former relations (see the proof of
Theorem 4.3.4) it is now evident that Pτr1 is one-to-one provided
(D;(s); w) has the same qualification as (D; *; w). Indeed, w remains an
(s ̂ valuation and the residue division ring has not changed. D

Question. (Open.) Is g -> PU^r) again one-to-one where g > 0 and
(D; *; w) is such that 1/2 G Ί> and άim^D > 4? If yes, what if Ί) Φ Z?

The assumption D Φ Z cannot be dropped if one is to establish that
g -» ί^ is one-to-one—let alone g -» Pu(

g\ This is underscored in the

REMARK 4.3.8. Let D be any finite-dimensional-valued division ring
such that D is the real field and G is the ordered additive group of
integers. Assume, further, that D carries an involution of the first kind.
Then (D; *; w) is a *-valued division ring for which g -> <%h(D; *) is not
one-to-one on each open segment (n, ->).

Proof. The involution * automatically verifies the assumption w(x*)
= w(x) as this was observed earlier in §1 (Dieudonne). Since D is the real
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field it follows that the induced involution of D is the identity. Equiva-
lently 0 έ w(Jf(D\ •)), where w(Jf (£;(*))) = {w{x)\x = - J C * e !>}.
Since w( Jf(D; *)) + 2z c w( Jf (D; *)) it follows that w(X(D\ *)) con-
sists only of odd integers. If r0 is the least positive integer then
w( JΓ(JD; *)) = r0 + 2Z. If (π, ->) is any open segment then for some m
large enough rλ = r0 4- 2m e w(Jf (D; *)) follows. By construction, if
J ^ = Jfrι(D; *) and J^2(Z); *) t h e n ^ = «̂ 2>

 w h e r e xi = r i + !• Hence,
^rr2 = Φ where rx Φ r2 and rv r2 G (Λ, ->). Thus g -> ^ g is not one-to-
one, where g e («,->). D

4.4. ΓΛ̂  general mapping g e PU£*h Denote by τrr the mapping
sending g e (w(2), ->) onto ί/g

(r) and by P7rr the one sending g onto
PJ7g

(r) = wr(g)/C/(r) Π Z. Only a scratch of results will be offered here.
Yet, I will have to rely on my work [5], which deals with the normal
subgroup structure of Pl/ ( r ) , where V is any non-isotropic unitary space
over a division ring D containing at least elements. I will begin with a list
of exceptional cases labelled cases (A) through (C):

Case (A). Fis a unitary space of dimension 1, dimz£> < 4 and (D; *)
is commutative.

Case (B). Fis 2-dimensional orthogonal space.

Case (C). Fis 1-dimensional and dimz2) = 16.
There follow results established in [4].

Fact 4.4.1 ([4]). Let F be any non-isotropic unitary space over a
division ring D containing at least 7 elements and suppose that F is not as
in cases (A) or (B). If N is any normal subgroup of the unitary group U of
Fthen:

(1) If JV is abelian then, in fact, N c Z.
(2) If N is not abelian then the centralizer of JV in L is precisely Z.

Fact 4.4.2 ([4]). Let Fbe as in Fact 4.4.1. If JV is any normal subgroup
of U such that [JV, JV] c Z then, in fact, JV c Z.

Fact 4.4.3 ([4]). Let Fbe as in Fact 4.4.1 and suppose, further, that F
is not as in Case (C). If JV and JVr are normal subgroups of U such that
JV ΠN' a Z then JV c Z or JV' c Z.
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Fact 4AA ([4]). Let Fbe as in Fact 4.4.3. If N is any normal subgroup
of U not contained in Z and if N' is a normal subgroup of a normal
subgroup of U such that [N\N\<z Z then N' c Z.

If V is any non-degenerate elliptic space it is clear that V is non-iso-
tropic and that the ground division ring D contains at least 7 elements. In
fact, since the valuation w is not trivial it follows that D cannot be
algebraic over a finite field. Thus Facts 4.4.1 through 4.4.4 will apply. To
apply them to the congruence subgroups Uh one is hinted (see Fact 4.4.1)
to find the centralizer of Uv in L. From Fact 4.4.1, C(Uσ) = Z unless

o 5

Ug c Z. By an adaptation of §2, Theorem 2.17, one can show the first part
of the

THEOREM 4.4.5. Let V be any nondegenerate elliptic space, which is not
as in Cases (A) or (B). Then:

(1) The mapping Pπ0 = g e (w(2), ->) -> lat.([/g/£/ Π Z) assumes
non-trivial values.

(2) The mapping Pπr = g -» Ug

(r)/U(r) Π Z w as in 1 (r > 0)
(3) The range of PITr is an infinite chain oflat.(PU^).

Proof. (1) To say that PUg Φ 1 is to say that Ug <£ Z, which holds for
every g e G.

(2) To say that PUg

(r) = 1 is to say that Ug

(r) c Z. By Fact 4.4.2
follows Uy~1} c Z. Step by step ί / c Z follows, which is ruled out.

(3) By construction Range(Pττr) is a chain in lat.(P£/(r)). I claim that
the infimum of Range(Pττ,.) is the identity subgroup of PU{r\ For let PN
be this infimum. Then

7V= Π ί/g

(r) ( Z Π ί / ^ ) .
g>w>(2)

Now,

[TV, N] c Π K ( r ) ( z n c/('>), £/g<'>(z n t/<
g>w(2)

= n [ug

(r\uy}= n t/g

( r + 1 ) c π
g>w(2) g>w(2)

= Π uβ-i.

Thus N is abelian. Since TV is a normal subgroup it follows from Fact 4.4.1
that J V c Z s o that PN = N/U{r) Π Z = 1. If now Range(iχ) were
finite then since Range(P7rr) is a chain it would follow that this set has a
first member, say, PU£p = PN = 1, contradicting 2. D
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THEOREM 4.4.6. Let V be any non-degenerate elliptic space other than in

cases (A), (B) or (C). IflΦPN is any member o/lat.(P£/ ( r )) and if PX is

any member o/Range(ττr) then PN Π PX Φ 1.

Proof. Deny the conclusion of the theorem. For some normal sub-

group N of U(r\ N <£. Z, and some g > w(2), PN Π PUg

(r) = 1. Equiva-

lently, [N, ί/g

(r)] c Z. Now C ( ί £ r ) ) = Z and N<Uir)<U. From Fact 4.4.4

follows JV c Z, a contradiction. D

As an application of the foregoing theorems:

THEOREM 4.4.7. Let V be any non-degenerate elliptic space other than in

cases (A), (B) or (C) and assume that one at least of the following require-

ments hold true.

(1) * is an involution of the first kind.

(2) The restriction ofwonZ is the trivial valuation.

(3) D is finite-dimensional over its center.

Then for every natural number r Φ 0 the projective group PU(r) contains

no torsion normal subgroups Φ 1.

Proof. It suffices to find some torsion-free member of Range(π r)

(Theorem 4.4.6). Define g 0 to be the element 0 in G if charac(Z)) Φ 0; if,

to the contrary, charac(D) = 0, let g 0 = w(g), where p = charac(Z)). If

gλ > max(g 0, w(2)) then by §2, Theorem 2.19, Ugi is torsion-free. It is to

be shown that PU^p is torsion-free, where r Φ 0. For let <f> e U^p be such

that φm e Z.

Case 1. Here ί / Π Z = { l , - l } so that φ is a root of unity. Thus

φ = 1. Thus PLς ( r ) is torsion-free.
51

2. If φ w = z e Z then since φ m e ί/ft it follows that (z - l)w >

gx > 0. Equivalently, w(z - 1) > 0 (§2, Theorem 2.4.2.). Thus z - 1 = 0

or z = 1. Thus φ = 1 and, hence, P£4 ( r ) is torsion-free.4

Case 3. By standard argument J7(1) Π Z consists only of roots of

unity. From φ m Ξ C/^r) c £/(1) follows that φ is a root of unity. From this

φ = 1 so that Pu[r) is torsion-free. D

THEOREM 4.4.8. Let Vbe any non-degenerate elliptic space other than in

cases (A) or (B). Every torsion normal subgroup of U is central.
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Proof. For let N be any torsion normal subgroup of U. If gλ is defined
as in the proof of Theorem 4.4.7, then U is torison-free. Thus N Π U = 1
and, hence, N c C(Ugι) = Z. D

Question. (Open.) Does Theorem 4.4.7 carry over for any ground
division ring DΊ What about the case r = 0?

To close let me add one more question.

Question (Open.) Is the range of πr large enough so as for every
Z<£N < ί/(r), PN D PUg

(r\ some g > w(2) (r # 0)?
The preceding question can be answered in the negative in case r = 0.

This uses a counterexample in [3].
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