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We show that if a developable ruled surface of a curve in complex
projective space has a degenerate secant variety, then the surface already
lies in a P*. This result eliminates a redundancy in the list of Griffiths
and Harris, of surfaces that have degenerate secant varieties.

1. Introduction. A d-dimensional variety X c PY, N > 2d + 1, is
said to have a degenerate secant variety, Sec( X), when dim(Sec( X)) < 24d.
In [1, Results 5.37, 6.16-18], Griffiths and Harris prove the Proposition:
Let X ¢ PV be a surface having a degenerate secant variety. Then either
(i) X € P* (ii) X is a cone, (iii) X is the Veronese surface, or (iv) X is
developable.

It is easy to show that any of conditions (i), (ii) or (iii) implies that X
has a degenerate secant variety. The main contribution of the present
paper is the Proposition (3.5): If a developable surface, X, has a degener-
ate secant variety, then X is contained in a P*,

Combining the above two results, we obtain

THEOREM (1.0). A surface X C PV has a degenerate secant variety
precisely when one of conditions (i), (ii) or (iii) above is satisfied.

It is interesting to note that a developable surface always has a
degenerate tangent variety i.e.

dim(Tan(X)) <3  [1, Result 5.37];

this also follows from our Lemma (3.3).

We will see in §3 that a variety X¢ C PV gives rise to a family of
(N — d) X (d + 1) matrices { A(x)} where x belongs to some polydisc
U c C“ Let| | denote “determinant”. Result (3.2.1) states that

dim Sec( X) < 2d
< rank(4(x) —A(y))<d Vx,yeU
|4(x) — A'(y)|=0 forall (d + 1)-tuples of rows

I=(ig,ip,...,04)-
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The matrix problem inspired by this condition of degeneracy is:
Characterize those 1-parameter analytic families of n» X n matrices
{ A()} (¢ belongs to a disc U < C) such that

(1.1) l4(t) — A(s)|=0 Vs,teU.

We say that such families are degenerate. For n = 1, of course,
“degenerate” is the same as “constant”. Letting s — ¢ in (1.1), we find
that |4’(¢)| = 0 for a degenerate family { A(z)}; however it is easy to
construct examples where this condition alone does not imply degeneracy
of the family. The next result includes the solution for » = 2 of the
degeneracy problem (1.1).

PROPOSITION (4.5). Let { A(t)} be an n X n family such that A'(t) has
rank 1 for allt € U. Then { A(t)} is degenerate precisely when

(1.2) there are constant vectors u, w (u # 0) such that either

A()u=w or u'dA(t)=w' VieUl.

Of course, for any n X n family, if condition (1.2) is satisfied then the
family is degenerate. We call such families trivially degenerate. When the
family arises geometrically, as described in §3, then the two cases (1.2) of
trivial degeneracy correspond, respectively, to X being a cone or X being
contained in a hyperplane.

For n > 3, there are nontrivially degenerate families. The Veronese
surface furnishes such an example:

x2 2x 0
A(x, y)=1y> 0 2y
xy y x

Here, x and y may be viewed as functions of ¢.

I do not know the structure of the general degenerate family for
n > 3. Moreover, surfaces give rise to 3 X 3 families. However, when the
surface, X, is developable, the family is actually of 1 parameter and A'(¢)
has rank 1. We then apply Proposition (4.5) and deduce that X lies in a
hyperplane when Sec( X) is degenerate.

Motivation to study secant varieties of surfaces arose from the Defini-
tion ([2, p. 257)): Let2 C P°® be a smooth quadric hypersurface. A surface
X C 2 is said to have rank r when for generic z € 2 there are precisely r
sets {x;, x,} C X, x; # x,, such that the line through x; and x, passes
through z.
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One can show that rank(X) = 0 precisely when Sec(X) # P>; this
happens exactly when X c P* or X is the Veronese surface. (A cone in 2
is contained in the P tangent to 2 at the vertex of the cone.)

2. Notation. The setting for htis article is N-dimensional complex
projective space, P*; it is the set of all linear 1-dimensional subspaces of
CV*1 The methods we use are local and analytic in nature. For simplicity
of presentation, however, we will consider only algebraic subvarieties of
PV, i.e. Zariski open subsets of closed subvarieties of P V.

A line in PV is a linear P! c P¥. A line is said to be a secant line to a
variety X C P " when the line contains at least two points of X. The secant
variety of X, Sec( X), is the closure of the union of all the secant lines to
X.

Homogeneous coordinates in P” are denoted by (z,.-.,zy)- Let X
be a d-dimensional subvariety of P . The regular (i.e. manifold) points of
X are denoted by X,. Let A C X X X be the diagonal, and X, C X,,, the
open subset lying in {z, # 0}. Let %, = (X, X X,\ A) X P!, and o:
%, - P" the map defined by a(x, y, A, p) = Ax + py, where x, = y, = 1
and (A, p) € P!, Then %, is a 2d + 1 dimensional smooth variety and
o(%,) is a dense constructible subset of Sec( X). Assuming that N > 24 +
1, we say that Sec( X) is degenerate when dim Sec( X) < 2d. Sard’s theo-
rem provides a local criterion for degeneracy.

Sec( X) is degenerate < the differential rank of o is at

(2.0) most 2d at each point of Z,.

Unless otherwise stated, a P” c P " refers to a linear subspace. When
X € X, there is a well-defined P“ tangent to X at x, and we denote it as
P X.

A variety X € P/ is called a cone when there is a subvariety Y ¢ PV
and a point z € P ¥ such that X is the union of all the lines that contain z
and meet Y.

We are mainly concerned with surfaces, i.e. 2-dimensional varieties.
The Veronese surface is a smooth surface in P of degree 4, and isomor-
phic to P2. Up to a regular isomorphism of P>, it is the image of the map
P2 - P° given by (x, y, z) = (x2, y?, 22, xp, xz, yz). A surface is called
developable if there is a curve C C PV such that X is (the closure of) the
union of all the tangent lines to C.

3. Degeneracy and matrices.
(3.0) DEFINITION. A family of m X n matrices { A(x)}, x € U, is said

to be a degenerate family when rank (A(x) — A(y)) < min(m, n) for all
x, y belonging to U.
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In this section we establish the connection between degenerate secant
varieties and degenerate families of matrices. We prove the main result
(3.5), but relegate the matrix calculations to the final section of the paper.

The differential criterion (2.0) for degeneracy translates into

(3.1) Sec(X) is degenerate = P.XNP X + & VX, y € Xy

A proof of this statement is also in [1, §6.2].

Without loss of generality, let U c C¢ be an open set, and U — X a
parametrization of (a Euclidean open subset of) X, given by x —
(1, x, f(x))’, where f: U > CV“ In terms of these coordinates, P X is
the linear space spanned by the columns of the (N + 1) X (d + 1) matrix

Id

X
f(x) 9f/3x

where I, is the identity d X d matrix and df/dx is the Jacobian matrix of
f. Let A(x) be the (N — d) X (d + 1) matrix

VAN |
(f(x) ax ™ : 0x )
so that P_X is spanned by the columns of
Iyin
(32) (A ™
By (3.1) and (3.2),
(3.2.1) Sec(X) is degenerate = 1k(A(x) —A(y)) <d Vx,y€e U,

i.e. Sec( X) is degenerate precisely when { A(x)}, x € U, form a degener-
ate family.

For the rest of this section, let X be the developable surface of a curve
Ccc PV

LEMMA (3.3). For generic x € X, we have that P, X = PC, the 2"
osculating space to the curve C at the point t where the line containing x is
tangent to C.

Proof. Let t = (1, t, g(t))" parametrize a Euclidean neighborhood in
C. So,

(s,t) > (1,2, 8) +5(0,1,g)' =(1,s + 1, g+ sg)°



DEGENERATE SECANT VARIETIES 119

contains a parametrization of an open subset of X, and P, X is spanned by
the columns of

1 0 0
t+s 1 1

’

gtsg g g +sg”
i.e. P X is spanned by the columns of

1 0 O
(3.4) ( t 1/ O,,)

g§ & 8
which also span P,C. O

Assume, now, that Sec( X) is degenerate. We next show

PROPOSITION (3.5). The developable surface, X, with a degenerate
secant variety, is contained in a P4,

To show that X c P*, we may as well assume that X is nondegenerate
inP¥ie. X ¢ PV ! and that N > 5. In fact, we may take N = 5, since if
7 is a projection into P>, then #(X) is the developable surface of the
curve 7(C), Sec(7(X)) = w(Sec( X)) is at most 4-dimensional, and if
7(X)C P*then X c PV1

We now construct the degenerate 3 X 3 family associated to X. By
Lemma (3.3), this is a 1-parameter family; we use the notation of that
lemma and write g(¢) = (a(t), B(t))" where a(¢) € C and B(t) € C3. We
note that if a” = 0 then a = Ar + p and this implies that C, and hence X,
is contained in a P*, viz. z, — Az, — pz, = 0. So, we may assume that
a’’(t) # 0. With this in mind, we define the 3 X 3 matrix

a— ta

A= (B -3 - B B - B (a) B

By performing column operations on the matrix (3.4), we find that the
columns of
I 3
A(t)

span P@C, so that { A(¢)}, ¢t € U, is the degenerate family associated to
X. We differentiate and obtain that

A'(t) = (¢qEpE E) = EP’
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has rank 1, where

(3.6) E = (B”(a”)—l)’, p=ta — a,
' P'=(qp1), g=—d

For a family {w(?)} of 3-vectors, we denote the Wronskian 3 X 3
matrix by w(w) = (w w’ w”). Using (3.6) one verifies that |w(P)| = q'p”
— q"p’ = —(a")? # 0, so by Proposition (4.5) of the next section there is
a constant 3-vector u such that u’4’ = 0, i.e. u’E = 0. Thus

(utB//(a//)—l)/ — 0, utBN — A(l”,
and finally
uB=Xa+put+v

which exhibits a P* containing X, completing the proof of Proposition
(3.5).

4. Degenerate families of matrices. Let { A(¢)} be a 1-parameter
analytic family of » X n matrices. Fix an s and put B(t) = A(t + 5) —
A(s). We will see that

(4.0) IB(t)l = Oo(s)t" + ol(s)z”+1 4 e
The conditions for { A(¢)} to be a degenerate family (3.0), | B(¢)| = 0, are
41 0/(s) = 0,120,

The 1% two coefficients are, as we’ll soon see,
(4.1.1) 00 =|4/(s)] and o, = =L |4(s)|
- - 0 1 2 ds .

Of course, if o, = 0 then also o, = 0. We say that “o;, = 0” imposes no
inductive condition on the family { A(#)}.

Formulas for the other ¢°’s are described by introducing the derivative
operator, D,, where D;B is the n X n matrix whose columns are the same
as those of B, except for the ith column, which is the derivative of the ith
column of B. A well-known formula states

|BI'=Y.|D,B|, i=1,...,n.

42  |B”=XIp,--- D, B=L(¥)ips --- DB
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where the summation is over all n-tuples a = (a,...,a,) of nonnegative
integers such that |a| = &y + - -+ + a, = N. The binomial coefficient is
(]X) =N a!)™' wherea! = ! - a,!.
The coefficients of the series (4.0) are found by evaluating (4.2) at
= 0. But B(0) = 0, so each term on the right side of (4.2) is zero unless
each a; > 1; i.e. the series (4.0) begins at ¢".
We change notation and write N =n + m, 1 = (1,1,...1) and con-

sider indices of the form1 + a, a; > 0. Since

n+m
(n+ m)le, = (%) |B] atz=0,

we conclude that
(4.3) Z ( 1

where the summation is over all a with |a| = m, and D* denotes D1 - - -
DX. We have used the relation D, --- D,B = A'(t + s).

The formulas (4.1.1) are now easy to verify. Using a modification of
formula (4.3), I have written each of the conditions o, = 0, 6; = 0 and
o, = 0 in terms of simple expressions involving A’(s). It turns out that
“o, = 0” imposes no inductive condition on { A(?)}; it also appears that
the odd relations o,,,,; = 0 are implied by 6, = --- =0,, =0, but I
have not verified this.

Let { E(t)} denote a 1-parameter family of n-vectors. We denote the
n X n Wronskian matrix by

w(E)=(EE' --- E")

LEMMA (4.4). The Wronskian satisfies |w(E)| = O precisely when there
is a constant vector u # 0 with u'E = 0.

0]

Proof. The existence of such a u implies that u'w(E) = 0, hence
|w(E)| = 0. Conversely, assume that |w(E)| = 0. For n = 1, the result is
trivial. So, assume that n > 2, and that the result is valid for matrices of
size n — 1. Over an open set in the parameter domain, we may construct
an analytic family of n-vectors { #(¢)} such that

(4.4.1) w'w(E) = 0.

By rearranging the coefficients of E, we may assume that u* = (v’ 1), with
v an n — 1 vector. If v is constant, there is nothing more to prove, so
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assume that v’ # 0. Differentiating (4.4.1), we obtain
(4.4.2) wW'w(E)+ u'w(E) =0.

Let E denote the 1st n — 1 entries of E. From the 1st n — 1 columns of
(4.4.2) we conclude that v"w(E) = 0. Thus |w(E)| = 0, and by the induc-
tive assumption there is a constant n — 1 vector v with v’E = 0. Take
u' = (v'0). a

Recall (1.2) that the family { A(¢)} is called trivially degenerate if
there is a constant n-vector u # 0 such that either A’y = 0 or u’4’ = 0.
We formulate, now,

PROPOSITION (4.5). Let { A(t)}, t € U, be a degenerate family of n X n
matrices for which A'(t) has rank 1 for all t € U. Then { A(t)} is trivially
degenerate. More precisely, express A" = EP', where E(t) and P(t) are
n-vectors defined over an open subset of U. We will see that either (i)
|w(E)| =0, or (ii) |w(P)| = 0, so that by Lemma (4.4) there is a constant
n-vector u # 0 such that in case (1), u'A’ = 0, and in case (i), A'u = 0.

(4.6) For an n-tuple of non-negative integers A = (A,,...,A,), let E®
denote the product EM --- EM), and as usual E? = (d/dt)'E. Let
|E™)] denote the determinant of the matrix (E™Y,. .. EAW),

Claim. The coefficients (4.0) may be expressed
(4.7) 0, = LIED[[PW[(Atp)) '8(X, 1)

where the summation is over all A,p € N” with 0 <A, < --- <A,
0<p, <--- <p, |\l +|p) = m. The coefficient 8(A, p) is the determi-
nant of the matrix (1 + A, + ,uj)*l, i, j=1,...,n, and is essentially the
Cauchy double alternant [3, p. 311] for which the formula is

8(}\, l") = 1:[_()\1' - )\j)(l"i - .uj)li_jl_(l + A+ I"‘j)_l;

see [4, p. 348)]. In particular, the §(A, p) that appear in (4.7) are not zero.

Assume for the moment that the claim is true. Let M = n(n — 1).
The A’s and p’s are strictly increasing, so |A| and || are each greater than
0+1+ ---+n—1=M/2. Thus,

6,=0 form<M,
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while
=|w(E)||w(P)|(01 1! --- (n—1)1)"75,.

Thus, “o,, = 0” implies that |w(E)||w(P)| =0, and this proves the
Proposition.

To prove the Claim, we substitute A’ = EP’ into formula (4.3). The
th column of D4’ is

(EPi)(a,«) — Z(;\x') E()\,)Pi(a,—}\,)

where the summation is over all A, > 0, with the convention that P = 0
when r < 0. Recalling notation (4.6), we may write

[pea|= B[ ) P MIE)

(%)= x] - (x)

and the sum is over all A; > 0. Substitution into (4.3) yields

where

(4.8) 6, = LIEM|(AD 'Y (1 4 @) o — )P
A a

where(1+a) ' = (1 +¢a) - (1 +a,)) "

Next, arrange the A’s into increasing order. For o a permutation of
{1,...,n}, let (A,), = A,;); and sg(o) = *1 is the sign of o. Then (4.8)
becomes

= Z}\:lEml(M)_IZ sg(0) X (1 + a) H(a — A1 "IPEAD

where, now, 0 <A; <A, < --- <A, and o runs through the permuta-
tions of {(1,...,n)}. Letp = a — A . Then

= YIEMANTTZPO(p) Y sglo)(1 + p+ A,) 7

A 7

;lE“’I A)TEP® ()8R, p)

and, upon rearranging the p’s into increasing sequences, we arrive at
formula (4.7). O
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