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In this note, we give a necessary and sufficient condition on φ:
X -* Y for υφ to be an open perfect mapping of vX onto vY and other
related results.

Throughout this paper, by a space we mean a completely regular
Hausdorff space and mappings are continuous and we assume familiarity
with [1] whose notation and terminology will be used throughout. We
denote by φ: X -> 7 a map of X onto 7, by βX (vX) the Stone-Cech
compactification (Hewitt realcompactification) of X and by βφ (vφ =
(βφ)\vX) the Stone extension (realcompactification) over βX(vX) of φ.

Concerning clopenness of υφ of a clopen map φ: X -* Y the following
results are known.

THEOREM A (Ishii [4]). Ifφ:X-+ Y is an open quasi-perfect map, then
vφ is an open perfect map ofυX onto vY.

THEOREM B (Morita [8]). If φ: X -> Y is a clopen map such that the
boundary of each fiber is relatively pseudocompact, then υφ is also a clopen
map ofvX onto vY.

In §2, concerning Theorem A we give a necessary and sufficient
condition on φ for uφ to be an open perfect map of vX onto vY without
using the theory of hyper-spaces (Theorem 2.3 below) and a necessary and
sufficient condition on φ for uφ to be an open 2?C-preserving map of vX
onto vY under some condition (Theorem 2.6 below).

We use the following notation and abbreviation: C(X) is the set of
real-valued continuous functions defined on X, C(X; φ) = {/^ C(X); f
is φ-bounded}, Bd A = the boundary of A, use = upper semicontinuous,
lsc = lower semicontinuous and ω (cox) = the first infinite (uncountabel)
ordinal, clopen = closed and open.

1. Definitions and Lemmas.

1.1. DEFINITION. Let φ: X -> Y. f e C( X) is said to be φ-bounded if
suρ{|/(jc)|; JC e φ " 1 ^ ) } < oo for everyy e Y. Whenever/is φ-bounded,
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we put

fs(y) = sup{/(x); x e <p~\y)} and

= mf{f(x);χtΞφ-1(y)} for eachy^ Y.

A subset A of Xis relatively pseudocompact if f\A is bounded for each

/ e C{X). φ: X -> Yis said to be

(1) WZiίz\βx^-χy = (βφyιy for eachy e Y[5].

(2) WriV if c l^φ" 1 ! ? = (βφ^^clβyi?) for every regular closed set R

of Y [3].

(3) *-0pέ>« (JP'-O/WΪ) if int(cl φ£/) 3 φU (int(cl φί/) # 0 ) for every

open set U of X [2, 7].

(4) β-open if φ is * -open and WrΛf.

(5) a d*-mαp if ΠclφZ r t = 0 for any decreasing sequence {Zn} of

zero sets of X with empty intersection [6].

(6) RC-preserving (an RC-map) if φR is regular closed(closed) for

every regular closed set R of X [2].

We note that (1) a closed map is a Z-map and a Z-map is WZ [5], (2)

an open map is *-open and a *-open map is W*-open [7], (3) a space Y is

cb * iff any d*-map onto Y is hyper-real, i.e., vφ is a perfect map onto υY

[6], (4) an /?C-preserving map is RC and (5) an open WZ-msφ is β-open

by 1.2 (1, 5) below. Thus it is easy to see that if φ is β-open, then (βφ)\Z:

Z -> (βφ)Z is β-open for each Z with I c Z c β X Y D 5 is said to be

φ-d* if (βφ)~ιB c υX By 1.2(4) below, φ is a d*-map iff Yis φ-d*.

LEMMA 1.2. Let φ: X -> Y.

(1) //φ w ϊΓZ, ίΛβ« φ w ope« ///"iβφ is open [5].
(2) // φ is open (WZ), then fι is use (Isc) and fs is Isc (use) for every

f e C(X: φ) (for example, see [5]).

(3)Ifφisopen WZ, then fι and fs ^ C(Y) for every f e C(X;φ)[5].

(4) φ w α ί/*-mφ iff(βφ)-ιY c υX[6].

(5) φ w β-open iff βφ is open [7].

(6) J/φ w α« RC-map, then ψ is WZ [3].

(7) φ w RC-preserving iffφ is a W*-open RC-map [2].

2. Main Theorems.

LEMMA 2.1. Let φ: X —> Y. T7ze« the following are equivalent:

(1) φ is WZ (open).

(2) fι is Isc (use) for every f e C(X φ)

(3) / J w W5c (Isc) for every f<=C(X;φ).
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Proof. (2) «* (3) is evident. (1) =* (2). From 1.2(2).

We will prove (2) => (1). Suppose that φ is not WZ. Then there are
y e Y and p ^ βX with p e (βφ)~ιy — c\βXφ~ιy. Since p & olβxφ~1y,
there is g e C(βX) such that/? e i n t ^ Z(g) and g = 1 on c l ^ φ " V Let
us put / = g\X. Then / e C(ΛΓ), f\y) = 1, Λ = Z(/) # 0 and p e
c\βxA. On the other hand, cl^φΛ = c l ^ β φ ) ^ = (βφOcl^^ B (βψ)p
= j>. This shows j^ ^ cl ψA and hence for each neighborhood Fof y9 there
i s z E V with/'(z) = 0, i.e.,/' is not lsc.

Now suppose that φ is not open. Then there are a point x and an
open set U ̂  x such that V — φU Φ 0 for every open set V 3 y = φ(x).
Let /€Ξ C ( * ; φ) such that x e int Z(/) c [/ and / = 1 on Jf - tΛ
Obviously/'(.y) = 0 and/' = 1 on V — φU. This shows that/' is not use.

Using 2.1, it is easy to see the following:

THEOREM 2.2. φ: X -> 7 w ope« HKZ ήjr/1* α«J/ 5 e C(Y) for every
; φ) equiυalently,

THEOREM 2.3. φ: Jf -> y w ̂  β-open d*-map iff υψ is an open perfect
map of υX onto υY.

proof. «=) From 1.2(1,4,5) and {βψ)~ιY c (jβφ)-1υy = vX. =>) By
1.2(5), βφ is open. We will prove that vφ is a perfect map ontoυy. To do
this, it suffices to show that (βφ)p = q e βY - vY for every p e jSZ -
υX Let p ^ βX- vX. Then there is / e C(iSJT) with /? e Z(/) a βX-
vX. βφ being open WZ by 1.2(5), it follows from 2.2 that/ ' e C(/?7),
/'(g) = 0 and / ' > 0 on y. This shows q G jβy — υY, so υφ is a perfect
map onto vY. Since β(vφ) = ̂ 8φ and jβφ is open, υφ is open by 1.2(1).
Thus υφ is an open perfect map of vX onto υy.

2.4. EXAMPLE. Let X = [0, <oj2 - {(ωv a); ω < a < ωx}, y = [0, ω j
and φ the projection of X onto y. It is obvious that φ is not WZ and
hence not closed and φ~1(ω1) is not compact. On the other hand βφ:
βX = vX = [0, ω j 2 -» y = υy = βY is open perfect (compare with the
assumption of Theorem A).

2.5. LEMMA. Ifφ: X -> Fwα * -open RC-map, then φ w open.

Proof. Let ί7 be open in X and X G ί/. Take a regular closed set R
with x e int R c i? c t/. Since φ is a *-open i?C-map, we havey = φ(x)
e int(cl φ(int i?)) c φi? c φί/, soj^ e int φ[/. Thus φ is open.
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In the following we put

Yd = { y e Y; φ~ιy is open but not relatively pseudocompact},
γe = χ-γd.

THEOREM 2.6. φ: X -* Y is a β-open map such that Ye is φ-d* iff υφ is
an open RC-preserυing map of vXonto vYsuch that cl^yί^ is (vφ)-d*.

Proof. <=) Since υφ is open WZ by 1.2(6,7), βφ is open by 1.2(1) and
φ is a β-open map by 1.2(5). The fact that clvYYe is (vφ)-d* implies that Ye

is φ-d*.
=>) (1) We will first prove that iΐp ^ βX - υXand (βφ)p = q e υY,

then there is a clopen subset Z> of Y such that q ^ c\vYD, D <z Yd and
clvy£> Π c l^ iς = 0 . There is/ e CXβX) with/? e Z(/) c βX - υX By
1.2(5), βφ is open. Thus/' e C(j87). Since Y, is φ - rf*,/1" > 0 on Ye and
hence Z(/ z ) Π Ye = 0. Since /'"(ήf) = 0, q ^ υY and Z(/') is closed.
D = Z(f') Π Yd = Z(fl) (Λ Y is a non-empty clopen discrete subset of Γ
contained in Ŷ . Cl̂ yZ) = Z(f') Π υY implies ^ e cl^yD and clυyZ) Π

(2) Let us put ^ = { ΰ c Ŷ ; Z) is a clopen subset of Y] and
c\υY@ = U{c\vYD; D e ^ } . Then it is easy to see the following

vY = c\vY@ U clυyYe9 c\υY2) Π c\υYYe = 0

and

(3) υφ w o«/o vY. Let # e clυ yD, D e ^ . For each j e D, let us pick
a point/?(j) from φ"V a n c^ put A = {/?(j); y e /)}. Then^ί is a discrete
closed C-embedded subset of X. Thus ι̂ 4 = c\vXA is homeomorphic to
cluyZ> under the map υφ. Thus we have υφ(υX) = υY.

(4) υφ is an RC-map. Let F be regular closed in vX and E = (vφ)F.
Suppose that there is q e clυyi? — E. By (2) and the clopenness of φ~ιy,
y e Yd9 we have q <£ Yd U clυyYe. Thus there is D e ^ with ήr G cluyZ)
and cluy£) Π cluyYe = 0 by (2). Since βφ is open by 1.2(5), υφ is also
* -open and we have that E D (υφ^nt^ i 7 is dense in c\υYE because F is
regular closed. Let M = E Π D Π Ŷ . Then q e c\vYM. Let us pick a
point /?(.y) from φ - 1 ( j>) Γ) F, y ^ M. A = {p(y); y G M} is a discrete
closed C-embedded subset of X and hence vA = clvXA c F and υ̂ 4 is
homeomoφhic to υM = clvYM, so q ^ E a, contradiction.

(5) υφ is open RC-preserυing. Since υφ is an i?C-map, υφ is WZ by
1.2(6). Thus the openness of βφ implies that υφ is open by 1.2(1) and
ΛC-preserving by 1.2(7).
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As a direct consequence of the above theorem, we have the following
corollary which is a generalization of the result obtained in [5] if X is
realcompact and φ: X -» Y is an open WZ map with Bd φ~ ιy = compact
for each y G Γ, then Fis also realcompact.

COROLLARY 2.7. If X is realcompact and φ: X -> Y is a β-open map
such that Ye is φ-d*, then Y is also realcompact.

THEOREM 2.8. Let φ: X -> Y and Z = (βψ)~ιYdU vX. Then the
following are equivalent:

(1) Z is a realcompact and φ is a β-open map such that Ye is φ-rf*.
(2) φ' = (βφ)\Z is an open perfect map of Z onto vY.
(3) υφ is a clopen map of vX onto vY such that Bdίυφ)"1^ is compact

for every q e vY.
(4) υφ is a clopen map of vX onto υY such that (vY)e is (υφ)-d*.

Proof. (1) => (2) If Z = βX, then φ' = βφ and φ' is an open perfect
map onto vY. Let p e βX - Z and q = (βφ)/?. Then Z = υZ, βZ = βX
and there is / e C(i8JSf) such that /? e Z(/) c βX - Z and 0 < / < 1.
Since βφ is open WZ and Ye is φ-d*, it is easy to see that /'" e C(j87),
/' '(ί) = 0 and / 7 > 0 on 7. Thus q <Ξ βY - vY, so φ' is a perfect map
onto υY. The openness of φ' follows from 1.2(1,5).

(2) => (3) We shall show that vφ is closed. Let F be closed in vX and
g e clvy(uφ)F— (υφ)^. Since φr is perfect and every point of Yd is
isolated, we have q € Yd9 so (βψ)~ιq = (vφ)~ιq is disjoint from clzi%
and hence q £ φ'(clzF), a contradiction. Thus υφ is closed. The verifica-
tions of other parts are easy. (3) => (4) Evident.

(4) => (1) Since υφ is clopen, β(vφ) == βφ is open by 1.2(1) and hence
φ is β-open by 1.2(5). Since vY = (vY)e U Yd9 the (υφ)-J*-ness of (vY)e

= vY - Yd implies the φ-J*-ness of Ye. Since Yd = (vY)d and (vY)e is
(υφ)-J*, we have Z = ( β φ ) " ^ ^ , and hence φ': Z -> vY is an open
perfect map which shows that Z is realcompact.
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