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In this note, we give a necessary and sufficient condition on ¢:
X — Y for vy to be an open perfect mapping of v X onto vY and other
related results.

Throughout this paper, by a space we mean a completely regular
Hausdorff space and mappings are continuous and we assume familiarity
with [1] whose notation and terminology will be used throughout. We
denote by ¢: X — Y a map of X onto Y, by BX (vX) the Stone-Cech
compactification (Hewitt realcompactification) of X and by B¢ (vp =
(Be)|vX) the Stone extension (realcompactification) over X (vX) of .

Concerning clopenness of vg of a clopen map ¢: X — Y the following
results are known.

THEOREM A ( Ishii [4]). If : X — Y is an open quasi-perfect map, then
v is an open perfect map of vX onto vY.

THEOREM B (Morita [8)). If o: X — Y is a clopen map such that the
boundary of each fiber is relatively pseudocompact, then v is also a clopen
map of vX onto vY.

In §2, concerning Theorem A we give a necessary and sufficient
condition on ¢ for ve to be an open perfect map of vX onto vY without
using the theory of hyper-spaces (Theorem 2.3 below) and a necessary and
sufficient condition on ¢ for v to be an open RC-preserving map of vX
onto vY under some condition (Theorem 2.6 below).

We use the following notation and abbreviation: C(X) is the set of
real-valued continuous functions defined on X, C(X; ¢) = { f € C(X); f
is p-bounded}, Bd 4 = the boundary of 4, usc = upper semicontinuous,
Isc = lower semicontinuous and w (w,;) = the first infinite (uncountabel)
ordinal, clopen = closed and open.

1. Definitions and Lemmas.

1.1. DEFINITION. Let ¢: X — Y. f € C(X) is said to be p-bounded if
sup{|f(x)}; x € ¢ ()} < oo for every y € Y. Whenever f is ¢p-bounded,
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we put
f(y)=sup{f(x);x€p (y)} and

f{(y) = inf{f(x); x € 97(y)} foreachye Y.

A subset 4 of X is relatively pseudocompact if f| A is bounded for each
fe C(X). p: X — Yissaid to be

(1) WZif clgy@~'y = (Bp) 'y foreachy € Y [5].

(2) W,N if clBXq)”IR = (,B(p)‘l(cl,,yR) for every regular closed set R
of Y [3].

(3) *-open (W*-open) if int(cl pU) D U (int(cl pU) # &) for every
open set U of X [2, 7].

(4) B-open if @ is *-open and W, N.

(5) a d*-map if NclpZ, = @ for any decreasing sequence { Z,} of
zero sets of X with empty intersection [6).

(6) RC-preserving (an RC-map) if @R is regular closed(closed) for
every regular closed set R of X [2].

We note that (1) a closed map is a Z-map and a Z-map is WZ [5], (2)
an open map is *-open and a *-open map is W*-open [7], (3) a space Y is
cb* iff any d*-map onto Y is hyper-real, i.e., ve is a perfect map onto vY
[6], (4) an RC-preserving map is RC and (5) an open WZ-map is S-open
by 1.2 (1, 5) below. Thus it is easy to see that if ¢ is S-open, then (B¢)|Z:
Z — (Bo)Z is B-open for each Z with X € Z c BX. Y D B is said to be
o-d* if (Be) !B C vX. By 1.2(4) below, ¢ is a d*-map iff Y is p-d*.

LEMMA 1.2. Letp: X = Y.

(1) If p is WZ, then ¢ is open iff Bo is open [5].

(2) if @ is open (WZ), then f' is usc (Isc) and f° is Isc (usc) for every
f € C(X: @) (for example, see [5])).

(3) If p is open WZ, then f" and f* € C(Y) for every f € C(X; ¢) [5].

(4) @ is a d*-map iff (Be) 'Y C vX[6].

(5) @ is B-open iff By is open [T].

(6) If @ is an RC-map, then @ is WZ [3].

(7) @ is RC-preserving iff @ is a W*-open RC-map [2].

2. Main Theorems.

LEMMA 2.1. Let ¢: X — Y. Then the following are equivalent:
(1) p is WZ (open).

(2) f'is Isc (usc) for every f € C(X; @)

(3) f¥ is usc (Isc) for every f € C(X; @).
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Proof. (2) « (3) is evident. (1) = (2). From 1.2(2).

We will prove (2) = (1). Suppose that ¢ is not WZ. Then there are
y € Y and p € BX with p € (Bp) ™'y — clgx@'y. Since p & clyrp™ly,
there is g € C(BX) such that p € intg, Z(g) and g = 1 on clgy @~ 'y. Let
us put f=g|X. Then f€ C(X), fi(y)=1, A=2Z(f)# & and p €
clgyA. On the other hand, clgy @4 = clgy(Bp)4 = (Bo)clgx 4 = (Bo)p
= y. This shows y € cl ¢4 and hence for each neighborhood V of y, there
is z € Vwith fi(z) = 0, i.e., f'is not Isc.

Now suppose that ¢ is not open. Then there are a point x and an
open set U @ x such that V' — U # & for every open set V' 3 y = @(x).
Let f€ C(X; @) such that x€int Z(f)c U and f=1 on X — U.
Obviously fi(y) = 0and f' = 1 on ¥V — @U. This shows that /' is not usc.

Using 2.1, it is easy to see the following:

THEOREM 2.2. ¢: X = Y is open WZ iff f' and f* € C(Y) for every
f € C(X; @) equivalently,

C(Y)={f5fec(X9)}={/;feC(X;9))}.

THEOREM 2.3. ¢: X — Y is a B-open d*-map iff ve is an open perfect
map of vX onto vY.

Proof. <) From 1.2(1,4,5) and (B8¢) 'Y c (Be) vY = vX. =) By
1.2(5), Be is open. We will prove that v is a perfect map ontovY. To do
this, it suffices to show that (Be)p = g € BY — vY for every p € BX —
vX. Let p € BX — vX. Then thereis f € C(BX) withp € Z(f) C BX —
vX. B being open WZ by 1.2(5), it follows from 2.2 that f' € C(BY),
f'(g) =0 and f' > 0 on Y. This shows g € BY — vY, so v is a perfect
map onto vY. Since B(vp) = Be and Be is open, vy is open by 1.2(1).
Thus ve is an open perfect map of v.X onto vY.

2.4. EXAMPLE. Let X = [0, w;]* — {(@}, @); w < a < w,;}, ¥ = [0, 0]
and ¢ the projection of X onto Y. It is obvious that ¢ is not WZ and
hence not closed and ¢~ !(w,;) is not compact. On the other hand Beo:
BX = vX =10,w,]> > Y =vY = BY is open perfect (compare with the
assumption of Theorem A).

2.5. LEMMA. If ¢: X = Y is a *-open RC-map, then @ is open.

Proof. Let U be open in X and x € U. Take a regular closed set R
with x € int R € R C U. Since ¢ is a *-open RC-map, we have y = ¢(x)
€ int(cl ¢(int R)) € pR C @U, soy € int U. Thus ¢ is open.
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In the following we put

Y,= {y € Y; "'y is open but not relatively pseudocompact},
Y,=X-Y,.

THEOREM 2.6. ¢: X — Y is a B-open map such that Y, is o-d* iff ve is
an open RC-preserving map of vX onto vY such that cl,, Y, is (ve)-d*.

Proof. <) Since vo is open WZ by 1.2(6,7), Be is open by 1.2(1) and
@ is a B-open map by 1.2(5). The fact that cl Y, is (vp)-d* implies that Y,
is p-d*.

=) (1) We will first prove thatif p € X — vX and (Be)p = q € VY,
then there is a clopen subset D of Y such that g € cl,,D, D C Y, and
cl,yDNecl,Y, = @& Thereis f € C(BX) withp € Z(f) C BX — vX. By
1.2(5), Be is open. Thus f' € C(BY). Since Y,is ¢ — d*,f' > 0 on Y, and
hence Z(f)NY,= @. Since fi(q) =0, g € vY and Z(f') is closed.
D= Z(fYNY,=Z(f") N Y is a non-empty clopen discrete subset of ¥
contained in Y,. Cl D = Z(f") NvY implies q € cl,;D and cl, ;D N
c,,Y,=&.

(2) Let us put ={DC Y,; D is a clopen subset of Y} and
cl,y2 = U{cl,,D; D € 2}. Then it is easy to see the following

vY=cl,,2Ucl,Y, cdy@nNcl,Y, =0

and

(Bp) 'dl,,Y, c vX.

(3) vp is onto vY. Let g € cl,, D, D € 2. For each y € D, let us pick
a point p(y) from ¢ 'y and put 4 = { p(y); y € D}. Then 4 is a discrete
closed C-embedded subset of X. Thus v4 = cl, A4 is homeomorphic to
cl,yD under the map ve. Thus we have vgp(vX) = vY.

(4) vp is an RC-map. Let F be regular closed in vX and F = (ve)F.
Suppose that there is g € ¢l,,E — E. By (2) and the clopenness of ¢ 1y,
y €Y, we have g ¢ Y, U cl ,Y,. Thus there is D € & with q € cl,, D
and cl,,D Ncl,,Y, = & by (2). Since B¢ is open by 1.2(5), vy is also
*-open and we have that £ D (ve)int,, F is dense in cl, , E because F is
regular closed. Let M = EN DN Y, Then g € cl,,M. Let us pick a
point p(y) from ¢ () NF,ye M. A = { p(y); y € M} is a discrete
closed C-embedded subset of X and hence v4 = cl, ;4 C F and v4 is
homeomorphic to vM = cl M, so g € E a contradiction.

(5) v is open RC-preserving. Since v is an RC-map, vy is WZ by
1.2(6). Thus the openness of B¢ implies that ve is open by 1.2(1) and
RC-preserving by 1.2(7).
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As a direct consequence of the above theorem, we have the following
corollary which is a generalization of the result obtained in [S] if X is
realcompact and @: X — Y is an open WZ map with Bd ¢ 'y = compact
for each y € Y, then Y is also realcompact.

COROLLARY 2.7. If X is realcompact and @: X — Y is a B-open map
such that Y, is @-d*, then Y is also realcompact.

THEOREM 2.8. Let ¢: X > Y and Z = (Bo) 'Y, U vX. Then the
following are equivalent:

(1) Z is a realcompact and ¢ is a B-open map such that Y, is p-d*.

(2) ¢' = (Bo)|Z is an open perfect map of Z onto vY.

(3) vo is a clopen map of vX onto vY such that Bd(ve)~'q is compact
for every q € VY.

(4) vy is a clopen map of vX onto vY such that (vY),is (ve)-d*.

Proof. (1) = (2) If Z = BX, then ¢’ = Bo and ¢’ is an open perfect
map onto vY. Let p € BX — Z and g = (B¢)p. Then Z = vZ, BZ = BX
and there is f€ C(BX) such that pe Z(f)c BX - Z and 0 < f< 1.
Since By is open WZ and Y, is g-d*, it is easy to see that f' € C(BY),
fi(g)=0and f'> 0 on Y. Thus ¢ € BY — vY, so ¢ is a perfect map
onto vY. The openness of ¢’ follows from 1.2(1, 5).

(2) = (3) We shall show that ve is closed. Let F be closed in vX and
q € cl,y(vp)F — (vp)F. Since ¢’ is perfect and every point of Y, is
isolated, we have ¢ & Y, so (B9) ¢ = (vp) 'q is disjoint from cl,F,
and hence g & ¢'(clF), a contradiction. Thus ve is closed. The verifica-
tions of other parts are easy. (3) = (4) Evident.

(4) = (1) Since ve is clopen, B(vp) = B is open by 1.2(1) and hence
@ is B-open by 1.2(5). Since vY = (vY), U Y,, the (vp)-d*-ness of (vY),
= vY — Y, implies the ¢-d*-ness of Y,. Since Y, = (vY), and (vY), is
(vp)-d*, we have Z = (Bp) Y, and hence ¢: Z — vY is an open
perfect map which shows that Z is realcompact.
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