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Let X be a Peano continuum and let $ = 2% (resp., C(X)) be the
space of all nonempty closed subsets (resp., subcontinua) of X with
Hausdorff metric. f $ = C(x), assume that X contains no free arc.
Then the following are shown.

(1) If w is an admissible Whitney map for $, then

wlo™1((0, w(X))): 0™ ((0, @(X))) = (0, (X))
is a trivial bundle map with Hilbert cube fibers.

(2) If X is the Hilbert cube Q, then there is a strongly admissible
Whitney map « for $ such that wjew ([0, w(X))) ~ [0, w(X)) is a
trivial bundle map with Hilbert cube fibers.

(3) If X is the n-sphere S” (n=1,2,...,), then there is a Whitney
map o for 2% such that for seme 7, € (0, w(X)), @] (0, f,]):
@ (0, t,]) — (0, t,] is a trivial bundle map with X X Q fibers. If X is
the n-sphere S” (n = 2,3,...,), there is a Whitney map « for C(X) such
that for some 7, € (0, w(X)), w|w (0, t,]) is a trivial bundle map with
X x Q fibers.

1. Introduction. Throughout this paper, the word compactum means
a compact metric space. A connected compactum is a continuum. A Peano
continuum is a locally connected continuum. If x and y are points of a
metric space, d(x, y) denotes the metric from x to y. For any subsets 4
and B of a metric space, let d(A4, B) = inf{d(a, b)|a € A, b € B}. Also,
let d,,(A, B) = max{sup,.,d(a, B), sup,.pd(b, A)}. dy is called the
Hausdorff metric. The hyperspaces of a continuum X are the spaces
2¥ = {A C X|A is nonempty and compact} and C(X) = {4 € 2¥|4 is
connected} which are metrized with the Hausdorff metric d. Let Fi( X)
= {{x}|x € X}. A Whitney map for a hyperspace $ of a continuum X is
a continuous function w: § — [0, w(X)] such that w({x}) = 0 for each
{x} e F(X), and if 4, B€ © and 4 ¢ B, then w(4) < w(B) (see [8,
13]). The notion of Whitney map is a convenient and important tool for
hyperspace theory. If w is a Whitney map for § = 2¥ or C(X) and
0 <t < w(X), then w™(¢) is called a Whitney level. Note that Whitney
levels are coverings of X which, as ¢ gets close to zero, converge to
w }0) = F)(X) = X. It is of interest to obtain information about the
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structure of Whitney levels and to determine those properties which are
preserved by the convergence of positive Whitney levels to the zero level.
Throughout this paper, by Q we mean the Hilbert cube [12,[—1,1]. In
[4], Curtis and Schori proved that for any Peano continuum X, 2% is a
Hilbert cube and if X contains no free arc, C(X) is also a Hilbert cube.
Recently, Goodykoontz and Nadler introduced a very important notion
“admissible Whitney map” to study the structure of certain Whitney
maps. Let § = 2% or C(X). A Whitney map « for § is an admissible
Whitney map [7] if there is a homotopy A: $ X [0,1] — § satisfying the
following two conditions;

(D) forall4 € §, h(A4,1) = A4, h(A4,0) € F(X), and

(2) if w(h(A,1t))>0 for some 4 € ©, t € (0,1], then w(h(4,s)) <

w(h(A,t)) whenever 0 < s <t < 1.

Such a homotopy 4: § X [0,1] = & is called an w-admissible deformation
for . In [7], it is shown that if X is either a compact starshaped subset of
a Banach space or a dendrite, then there exist admissible Whitney maps
for 2% and C(X). Also, if X is any smooth dendroid, then every Whitney
map for C(X) is admissible. By using this notion, Goodykoontz and
Nadler proved the following very interesting results.

(1.1) THEOREM ([7])). Let X be a Peano continuum and let w be an
admissible Whitney map for = 2% or C(X). If © = C(X), assume that X
contains no free arc. Then for any t € (0, w( X)), 0 X(¢), @ X0, t]) and
@ Y([¢, w(X))) are Hilbert cubes.

(1.2) THeEOREM ([7)). If w is an admissible Whitney map for © = 2% or
C(X), then w is an open map with FAR fibers.

The purpose of this paper is to give more precise information by using
infinite-dimensional topology. The ideas and techniques in this paper
essentially depend on [7]. Our main results are the following: Let X be a
Peano continuum and let § = 2% or C(X). If § = C(X), assume that X
contains no free arc.

(1) If w is an admissible Whitney map for &, then w|w~}((0, w( X))):
@ (0, w( X)) = (0, w(X)) is a trivial bundle map with Hilbert cube
fibers.

(2) If X is the Hilbert cube Q, then there is a strongly admissible
Whitney map o for © such that w|w ([0, @(X))): « [0, w(X))) —
[0, w( X)) is a trivial bundle map with Hilbert cube fibers.
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(3) If X is the n-sphere S” (n = 1,2,...,), then there is a Whitney
map « for 2% such that for some ¢z, € (0, w(X)), o (0, t,]:
@ (0, £,]) — (O, t,] is a trivial bundle map with X X Q fibers. If X is the
n-sphere S$” (n = 2,3,...), there is a Whitney map « for C(X) such that
for some t, € (0, w( X)), w0 Y0, 1,]): @ H(0, z,]) = (0, t,] is also a
trivial bundle map with X X Q fibers.

The author wishes to thank the referee for his kind remarks.

2. Strongly regular mappings and Whitney maps. In this section, we
show that if X is a Peano continuum and w is an admissible Whitney map
for § = 2¥ or C(X), then the restriction w|w *(0, w(X)]):
@710, w( X)]) = (0, w(X)] of w to & (0, w(X)]) is a strongly regular
mapping with AR fibers. Also, we introduce the notion “strongly admissi-
ble Whitney map” and prove that if w: © — [0, w(X)] is a strongly
admissible Whitney map, then w is a strongly regular mapping with AR
fibers.

(2.1) DEerFINITION (cf. [7, (2.1)]). Let X be a continuum and let &
denote either one of the hyperspaces 2* or C( X). A Whitney map  for §
is called a strongly admissible Whitney map for § provided that there is a
homotopy 4: X [0,1] = © satisfying the following conditions;

D h({x},s)={x}foreach{x} € F(X)and 0 <s <1,

(2) h(A,1) = A, h(A,0) € F(X) for each 4 € s#and

(3)if w(h(A4,1t)) > 0forsome 4 € Handr € (0,1], then w(k(A4, s))
< w(h(A4,t))foreach0<s<t<1.

By definitions, every strongly admissible Whitney map is an admissi-
ble Whitney map, but the converse of this assertion is not true. Note that
the existence of a strongly admissible Whitney map for & implies that
F,(X) = X is a strong deformation retract of . Hence we have

(2.2) PROPOSITION. Suppose that X is a Peano continuum and  is a
strongly admissible Whitney map for © = 2¥ or C(X). Then X is an AR.

Proof. By [14], £ is an AR, which implies that X is an AR.

(2.3) THEOREM (cf. [7, (2.14)])). If X is a compact convex subset of a
Banach space B, then there are strongly admissible Whitney maps for
© = 2¥and C(X).
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Proof. Let w be the Whitney map for & as defined in [13, p. 275].
Since X is an AR, there is a retraction r: § — F}(X) = X. For each
A € 9, define a homotopy h,: 4 X[0,1]—> X by h,(a,s)=sa+
(1 —s)r(A) for each a€ 4 and 0 <s < 1. Also, define a function
h: $ X [0,1] = $ by

h(A,s)={hy(a,s)ac4d) foreachd € $and0 < s < 1.

It is easily seen that 4 is continuous. The definition of 4 implies that A
satisfies the conditions (1) and (2) of Definition (2.1). Also, by [7, (2.13)],
h satisfies the condition (3) of Definition (2.1). This completes the proof.

(2.4) THEOREM (cf. [7, (2.16)]). If X is any dendrite, then there are
strongly admissible Whitney maps for § = 2* and C( X).

Proof. Letp € X. Let <,,d and D be as in [7, (2.16)] and let w be the
Whitney map for § = 2¥ or C(X) as in [13, p. 275]. Since X is an AR,
there is a retraction r: = F|(X)= X. For each 4 € &, define a
function & ,: 4 X [0,1] — X satisfying the following conditions;

(1) h ,(a, s) is contained in the arc from a to r(A), and

(2)ifa € A, thens - D(a, h(a,s))= (1 —s)-D(h,(a,s), r(A)).
Then we can easily see that 4, is continuous. Also, define a function A:
9 X [0,1] = 9 by

(3) h(A,s)={hy(a,s)la€ A} foreach4d € Hand 0 <s < 1.
Then 4 is continuous. Also, by the definition of 4 and [7, (2.13)], we can
see that A satisfies the conditions (1), (2) and (3) of Definition (2.1). Hence
w is a strongly admissible Whitney map for §.

A map p: E — B between metric spaces is a strongly regular mapping
([1] and [6)) if it is a proper map and for each b, € B and ¢ > O thereis a
neighborhood U(b,) of b, in B such that if b € U(b,), there exist maps
Ehn: P (D) = pTH(by) and g, 4 p~'(by) = p~'(b) such that g,,, 8byb
move points no more than ¢ and g, 8, 5> 85,5855, are homotopic to the
identity maps on p~'(b,), p~(b) via homotopies which move points no
more than e, respectively. Note that every strongly regular mapping is an
open map.

Then we have the following
(2.5) THEOREM. Let X be a Peano continuum and let = 2% or C( X).

(i) If w is an admissible Whitney map for &, then w|w™'((0, w( X)]):
@ (0, w(X)]) = (0, w( X)) is a strongly regular mapping with AR fibers.
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(i) If w is a strongly admissible Whitney map for $, then w:  —
[0, w( X)) is a strongly regular mapping with AR fibers.

Proof. Suppose that w is an admissible Whitney map for £ and 4 is an
w-admissible deformation. By [7, (2.9)], w~'(#) is a compact AR for each
0 <7< w(X).Lett € (0, w(X)). Define 8,: 0~ '([£, w(X)]) = [0,1] by

6,(A) = the unique number in [0, 1] such that w(k (4, 6,(4))) = ¢
(see [7, (2.7)]).
Define r,;: w7 !([t, w(X)]) = @ !(2) by
r(A4)=h(4,6,(4)) (see [7, (2.7)]).

Now letz € (0, w(X)]. Let K, be as in [7, (1.2)]. Define ¥,: w ([0, t]) —
[0, 00) by

¥,(A) = the smallest number in [0, 00) such that
w(K,(4,%,(4))) =1
Define R,: w ([0, t]) = w~}(¢) by
R,(4) = K,(4,%,(4)).

Now suppose that 0 < ¢, <, < w(X). Define mappings g, ,: @~ '(#,) >
w7 N(t;) and g, @ (1;) > w7 (1) by
8, = R¢2!w~l(t1) and 8y T "rll“"l(tz)-
To show that g, °g,, is homotopic to the identity map on w (1),
define H: w7 '(#;) X [0,1] = w7 !(¢;) by
H(4,5) =r(K,(4,s- ¥, (4))).

To show that g, °g,, is homotopic to the identity map on w Xty),
define H,: w ™ !(¢,) X [0,1] > w~'(¢,) by

Hy(A,s) =R, (h(4,1-s(1-6,(4)))).

By using maps g,,, 8., and homotopies H,, H,, we can easily see that
w|w 10, o( X)]: @ (0, w( X)) — (0, w(X)] is a strongly regular map-
ping. Finally, if w is a strongly admissible Whitney map for &, the case
when 7, = 0 can be handled in the analogous fashion. This completes the
proof.
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3. Trivial bundle maps and Whitney maps. A map p: E > B is a
trivial bundle map with F fibers if there is a homeomorphism h: E — B X F
such that the following diagram is commutative;

h
E - BXF

PN v q

&

where g: B X F — B is the projection map, i.e., (b, f) = b for (b, f) €
B X F.

Then we have the following

(3.1) THEOREM. Let X be a Peano continuum and let § = 2% or C(X).
If & = C(X), assume that X contains no free arc.

() If w is an admissible Whitney map for $, then w|w™'((0, w( X))):
@ (0, w( X)) = (0, w(X)) is a trivial bundle map with Hilbert cube
fibers.

(1) If X is the Hilbert cube Q, then there is a strongly admissible
Whitney map for & such that w|w [0, @(X))): « [0, w(X))) —
[0, w( X)) is a trivial bundle map with Hilbert cube fibers.

To prove (3.1) we need the following result of Chapman and Ferry.

(3.2) THEOREM ([3)). If p: E — B is a strongly regular mapping with
compact Q-manifold fibers and dim B < oo, then p is a locally trivial bundle
map.

Proof of (3.1). Case (i). It follows from (2.5) that w|w™}((0, w(X))):
10, w( X)) = (0, w( X)) is a strongly regular mapping. By (1.1), ©~(¢)
is a Hilbert cube for each 0 < ¢ < w(X). Note that dim(0, w( X)) = 1.
Hence by (3.2), w|w }(0, w(X))) is a locally trivial bundle map with
Hilbert cube fibers. Since (0, w( X)) is contractible, w|w ~!((0, w( X))) is a
trivial bundle map.

Case (ii)). We may assume that Q is a compact convex subset of the
Hilbert space /,. By (2.3), there is a strongly admissible Whitney map
for . (1.1), (2.5) and (3.2) imply that w|w ™ }([0, w( X))): @0 ([0, w(X)))
— [0, (X)) is a trivial bundle map with Hilbert cube fibers. This
completes the proof.

Note that every trivial bundle map is a strongly regular mapping. In
the statement (i) of (2.5) (resp., (3.1)), we can not conclude that
w|w X0, w(X))) is a strongly regular mapping (resp., a trivial bundle
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map). In fact, we have the following

(3.3) PROPOSITION. Let X be a Peano continuum and let w be an
admissible Whitney map for © =2* or C(X). If w|o ([0, w(X))):
@ [0, w( X)) — [0, w(X)) is a strongly regular mapping, then X is an
AR. In particular, if X is the topological cone over a locally connected
compactum Y which is not an ANR, then each admissible Whitney map for
9 is not a strongly regular mapping.

Proof. By [7, (2.9)], @ !(¢) is a compact AR for each 0 < ¢ < w(X).
If w]w ([0, w( X))) is a strongly regular mapping, for any & > O there is a
positive Whitney level w™!(¢) (¢ > 0) such that X is e-homotopically
dominated by w~!(¢). By Dowker’s result [Homotopy extension theorems,
Proc. London Math. Soc. 6 (1959), p. 105], X is an ANR. Since X is
contractible, X is an AR.

Naturally, the following question is raised.

(3.4) Question. If X is a compact AR, is there a strongly admissible
Whitney map for 2% or C(X)?

Finally, we shall prove the following

(3.5) THEOREM. Let X be the n-sphere S" (n = 1,2,...,). Then there is
a Whitney map w for & = 25" (n=1,2,...,) or C(8") (n = 2,3,...,) such
that for some t, € (0, w(X)), w|w ([0, z,]): @ }[0,,]) > [0, ¢2,] is a
strongly regular mapping. Moreover, w|w ™ ((0, t,]): @ (0, t,]) = (0, #,] is
a trivial bundle map with X X Q fibers.

To prove (3.5), we need Toruhczyk’s characterization of compact
Q-manifolds.

(3.6) THEOREM ([13, Theorem 1]). Let X be a compact ANR. If the
identify map on X is a uniform limit of Z-maps, then X is a compact
Q-manifold (for the definition of Z-map, see [13]).

Proof of (3.5). Assume that X = S"= {x = (X, X5,...,X,,1) €
R"*1||x]l = 1} € R"*'. Let d be the metric on S" such that for each
X = (X, Xp5...5X,,1)andy = (¥, Y2s---Y,41) € S7,

d(x, y) = arccos[x,y; + x,0, + <+ + X, ¥, + X1 Vi)
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Note that if d(x, y) < 7 and 0 < s < 1, there is only one point & (x, y)
€ S” such that

(1) d(x, h(x, y)) + d(h(x, y), y) = d(x, y), and

(2) d(x, h(x, y)) = s -d(x, y) (e.g., see[2, p. 327)).
Since F;(X) = X is an ANR, there is a neighborhood U of Fi(X) in
and a retraction r: U — F;( X). Choose a positive number ¢, € (0, w( X))
such that

(3) w 1([0, 1,]) € U and

(4) d(r(A), a) < w/2 for each 4 € 0w [0, t,]) and a € A.
Define a function h ,: 4 X [0,1] = X by

(5) h(a,s)=hy(r(A),a)foreachac 4and 0 <s<1.
Then 4 , is continuous. Also, define a function h: 0 ([0, £,]) X [0,1] = &
by

(6) h(A,s)={hy(a,s)|ac A) foreach4 € o }[0,1,]), 0 < s < 1.
Then A is continuous and the definition of 4 and [7, (2.13)] imply that A
satisfies the following conditions.

(D h({x},s)={x}foreach {x} € Fi(X),0<s <1,

(8) h(A,1) = A, h(A,0) = {r(A)} € Fi(X) for each 4 € 0 ([0, £;))
and

(9) if 4 € w7 I([0, 1;]) and w(h(A4, s)) > 0 for some 0 < s < 1, then
w(h(A,s)) > w(h(A,s")) foreach0 <5’ <s < 1.
Choose a positive number ¢, ( < ¢;). By (9), we have

(10) (w0, t,]) X [0,1]) € w ([0, #,])-
also, by using the homotopy K, (see [7, (1.2)]) and by the same way as in
[7, (2.7)], @~ Y(z) is a retract of w™!([0, #;)) for each 0 < ¢ < ¢,. Since
0 1([0, ,)) is an ANR, w~!(z) is also an ANR. By using (3.6) and the
same argument as in [7, §3, 4], we can see that w (¢) is a compact
Q-manifold for each 0 < 7 < ¢,. Also, by using the homotopy 4, we can
see that w|w X0, 7,]): @ ([0, £,]) = [0, ¢,] is a strongly regular mapping
(see (2.5)). Hence by (3.2), w|w (0, t,]) is a trivial bundle map with
compact Q-manifold fibers. Let w~'(¢) = M for some ¢ € (0, ¢,). Con-
sider the map g = g o((w|w ([0, z,])) X 1,): @™ X([0, £,]) X Q ~ [0, #,] X
Q — [0, ¢,], where 1,: Q — Q denotes the identity map on Q and g:
[0,2,] X Q — [0, t,] is the projection map. Then g is also a strongly
regular mapping with compact Q-manifold fibers, hence g is a trivial
bundle map with M X Q fibers. In particular, M = M X Q = g"1(0) =
S X Q. This completes the proof.

(3.7) REMARK. In the proof of (3.5), we cannot conclude that
w|w }(0, w(X))) is a trivial bundle map with $” X Q fibers. In [7, (4.15)],
Goodykoontz and Nadler showed the following fact: Let X = S* be the
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unit circle and let w be the Whitney map for 2% as defined in the proof
(3.5). Then there is a positive number #,, ¢, < w(X), such that w~'(z,) has
a finite-dimensional nonempty open subset of w™!(¢,). Hence w~1(z,) is
not a Q-manifold.

(3.8) COROLLARY. There is a Whitney map « for $ = 252 or

C(S"X Q), (n=1,2,...) such that for some t,< (0,w(S" X Q)),
wlw (0, t,]) is a trivial bundle map with S™ X Q fibers.
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