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It is proved that the free product of any two k -groups with a
compact subgroup amalgamated is a k -group, and in particular, Haus-
dorff.

1. Introduction. In recent years much work has been done on
describing the topology of free products of topological groups (see for
example {1, 3, 8, 10, 12, 13, 15]). From there it is natural to progress to
free products with amalgamation.

One would hope that the free product with amalgamation of any
Hausdorff topological groups exists, is Hausdorff and its underlying
group structure is the amalgamated free product of the underlying groups.
This would include as a special case Graev’s theorem [2] that the free
product of Hausdorff groups is Hausdorff. As his proof is certainly
non-trivial, it should not be expected that this “hope” will be easily
verified, even if the result is true.

The first contribution to this problem was by Ordman [13], who
showed that the amalgamated free product of certain locally invariant
Hausdorff topological groups is Hausdorff. The next contribution was by
Khan and Morris [S] who proved the Hausdorffness of the free product of
Hausdorff groups with a central subgroup amalgamated. This has recently
been extended by Katz and Morris [4] to free products of k _-groups with
a closed normal subgroup amalgamated.

Most of the work on free topological groups and free products of
topological groups in fact deals with topological groups which are k-
spaces. Therefore, the result we would like to have is that the amalga-
mated free product of k _-groups is a k-group. This would imply La
Martin’s theorem that epics in the category of k_-groups have dense
range. (See [6], [11] and [14].) We prove here that the free product of any
two k -groups with a compact subgroup amalgamated is a k -group and
in particular Hausdorff. This result includes a large class of examples not
covered by [4] or [13], since every connected locally compact Hausdorff
topological group, G is a k_-group and has a compact subgroup K such
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170 ELYAHU KATZ AND SIDNEY A. MORRIS

that G is homeomorphic to R” X K, for some Euclidean group R”. Such
examples with G not locally invariant and K not normal exist in profu-
ston.

2. Definitions and statements of the main result. The standard
references for amalgamated free products of groups are B. H. Neumann
[9] and Magnus, Karrass and Solitar [7]. For completeness we include
some definitions here.

DEFINITION. Let A be a common subgroup of groups G and H. The
group G * , H is said to be the free product of G and H with amalgamated
subgroup A if

(i) G and H are subgroups of G * , H,

(ii) G U H generates G * , H algebraically,

(iii) every pair ¢,, ¢, of homomorphisms of G and H, respectively,
into any group D which agree on A, extend to a homomorphism ® of
G * ,H into D.

DEFINITION. Let 4 be a common subgroup of topological groups G
and H. The topological group G * , H is said to be the free product of the
topological groups G and H with amalgamated subgroup A if

(i) G and H are topological subgroups of G * , H,

(ii) G U H generates G * , H algebraically, and

(iii) every pair ¢, ¢, of continuous homomorphisms of G and H,
respectively, into any topological group D, which agree on 4, extend to a
continuous homomorphism of G * , H into D.

Our main result is the following:

THEOREM. Let F and G be k -groups with a common compact subgroup
A. Then the free product of F and G with A amalgamated is a k -group. (In
particular, the amalgamated free product F * ,G is Hausdorff.)

3. Yoffi representations. To prove the main theorem it suffices to
show that the kernel, K, of the canonical homomorphism ®: FxG —
Fx* ,G is closed. The first step in doing this is to find a nice representa-
tion for the elemnts of K. This will be achieved in Proposition 1.

NOTATION. We denote the embedding map of 4 in F by f and the
embedding map of 4 in G by g.

It is readily seen that K is the normal subgroup generated by
{f(a)g(a)™': a € A}. Further, observe that each w € K has a representa-
tion.
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w= (tl-l e tlvfhvlt;; T till)(tz»l T tzyqzvzt;»}h T tgll)
. (ts,l St qut.v PR 1;11)’

where for each j, ¢, liesin For G, and ¢;, and ¢, ;, do not both belong to
F or both belong to G, and each v, € { f(a)g(a) ™}, g(a)f(a) ' a € A}.

(%)

DEerFINITIONS. For each representation of the form (*) we define the
weight of the representation to be a sequence (4q,, a,, a;,...,4,,...), where
a, is the number of ¢’s equal to the number i. We well-order the set of
sequences of saying (4, a,,...,4,,...) < (aj, aj,...,a,,...) if and only if
a,=aj fori >nanda, <a,.

Given any word w it may have many representations of the form (x).
We define the weight of the word w to be the least weight of all the
representations of w.

We shall see later, when dealing with transpositions, that a word need
not have a unique representation of least weight.

REMARK 1. Let w have representation (*) of least weight.

(i) If v, = f(a,)g(a,)"", then ¢, , # f(a,)"" and ¢, # g(a,), since
otherwise w would have a representation of smaller welght

(i) No ¢,y -~ ¢, vt 2 -+ 17} equals x,x, - - x, where each x, =
Sja o 8, 1(b)8(b) s, i s, 1, where each s, lies in F or G and s,
and s, , do not both belong to F or both belong to G and b, € 4, for
n;,<q,j=12,...,r. (This would contradict the fact that the representa-

tion of w has least weight.)

(iii) If
(t et v '--tfl)(t. cee f. v. .t oot )
7,1 1,q,"i%1,q, il (i+1),1 (i+1),q, " i+1(+1D,q,4, (1+1),1
-1 -1
(taima = wemg, Lol i, 7 tatbma)
= sl . qusl;l e .. s]._l’

where v = f(a)g(a)™!, a€ A, and each s, € F or G then ¢ >

max{q,, ¢, i1r--->Gin)-
(iv) Let

x1=t1, - lqg(a)f( ) 1‘1'..11_,11'
Put a=a;'. If t,, €F, put t=1¢f(a), sot€F. If ¢t

L4,
=t,,8(a,),s0t € G. Then in both cases

X, =1l ti,q,ﬁltf(a)g(a)“1t;ql,,1 1:11-

€ G, put

L4,
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The above rewriting shows that we can assume that if (x) is a
representation of a word w € K, then each v, is of the form f(a;)g(a;) ™"
Because, if it is not, we can change the representation so that it is.
Further, the change of representation does not affect the weight. So each
w € K has a representation of the form (*) of least weight, with each
v, = f(a,)g(a;)?, for some a; € A.

NoTATION. From now on whenever we say we have a representation
of the form (*) we mean that v, = f(a,)g(a,)"*, for each i.

We need some further restrictions on the representations we consider.

DEFINITIONS. Let x, =¢,; --- t;, f(a))g(a) 't} -+ 11}

=ty by, f(ay)8(ay) Mg, o 1oy

(i) Letq; = g,and ¢ ; =1, forl <j<g,—1 andthtzqf(az) =
e. If g, = g, then x,is said to have an even link with x,. If g, # g, then x;
is said to have an odd link with x,.

(i) Let g, < g, and ¢, ;=1¢, ;for 1 <j < g —1and g(a,)) " 't; 11,
= e. If g, = g, then x, is said to have an even link with x,. If g, # g, then
x, 1s said to have an odd link with x,.

(iii) If x; does not have an even link with x, or an odd link with x,,
then x, is said to have a neutral link with x,.

and x,

@iv) A representation X%, + -+ x,forw € K, where each x, = ¢, -
tigUitig - tids for v, = f(a,)g(a,)7", is said to be yoffi' if it has least

weight and each x; has a neutral link w1th X1

LEMMA 1. Let the representation (x) of w € K have least weight and be
such that q, = q,., for some i. If t, , =1t,.,,,j=1....(¢— 1, v,;=
f(a;)g(a; )_1 and v, = f(a;,,)g(a;.,) " thent, qltz+1 q+1f(ai+1) # eand
gla,) 1t alivig,, * € thatis, x; does not have an even link with x; , ,

Proof. Suppose g(a,) "'t lt,., . = e. Then
-1 _ -1,
(ti+1,q,+1) = g(a,) lig-
1 -1
So [ti,l T lqvlth ti,l .

A Hebrew word meaning nice.
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-1 -1
[t(i+1),l ot ligng, Vietbivrg,, t(i+1),1]

-1 _ -1 _
Lig = ti,q,f(ai)[g(ai) ti,z;,tiﬂ,qm]f(ai+1)g(ai+1) ti+11,q,+1
: t;+11,1
-1, _
=1l ti,q,f(ai)f(ai+1)g(ai+1) ti+11,q,+1 S tgina

-1 -1,_ —

Liy o tt’,q,f(ai)f(ai+1)g(ai+1) [g(ai) ti,;,] ce t(i}rl),1
-1,_ _

=17 ti,q,.f(aiai+1)g(aiai+1) ti,;, Tt t(iil),l‘

This is clearly a contradiction to (*) having least weight. So
gla,) ', t,y1,, # e. Similarly it can be shown that 77,7, . f(a,,;)
#* e.

NotaTION. Let X =U>_ {wwu™': u € (FU G)", v=f(a)g(a)™?,
a € A}, where (F U G)" denotes the set of words which are the product
of at most » elements from F U G.

LEMMA 2. Let x;=1t,; -+~ t; . f(a)g(a) "1y, -+~ t;] and x,=
fay -+ tyg f(a2)8(ay) M5L -+ t31 be in X. If x, has an odd link with x,
then x,x, = x}x1, where x’, and x{ are in X, the weight of the representation
X; X, equals the weight of the representation x, x1, and x}, has a neutral link
with x1.

Proof. Without loss of generality, assume g, > ¢,. Then ¢, ; = ¢, ; for
1<j<g,—-landt t,, f(a,) = e Put

-1 _
Xy =1py - tz,qu(az)g(az) tz,}h T t2,11’

and
, -1, -
x| = [tz,l N tz,qz(g(”Z)tl,qz+1>t1,qz+2 BN tl’qlf(a1)g((11) tl,;l

-1 -1 -1} -1 -1
e tl,q2+2(tl,q2+1g(a2) )t2,q2 s 12,1]~

Then x’x{ has the required properties.

DEFINITION. The change of representation from x,x, to x}x{, when
q, > g, or when g, > gq,, is called a transposition.

PrOPOSITION 1. Each w € K has a yoffi representation.
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Proof. Choose a representation of w of the form (*) which has least
weight. Let this representation be w = x; --- x;, where x,=1¢, ---

1, Uitia -t whereo, = f(a,)g(a,) ' fori=1,...,s.

Our proof will be by induction on s. Firstly consider the case s = 2;
that is, w = x; - x,. If x; has a neutral link with x,, then this is a yoffi
representation. Observe that by Lemma 1, x; cannot have an even link
with x,. So we let x; have an odd link with x,. Then by Lemma 2 we can
apply a transposition to obtain x3x; such that this representation also has
least weight and x) has a neutral link with x;. Hence x}x{ is a yoffi
representation of w.

Now suppose that every word of the form w = x;x, --- x

n < s, has a yoffi representation. Then consider any word
W= XXy = Xoqq

for

n’

where the weight of the word w equals the weight of the representation
Xx; -+ Xy, Clearly the weight of the word x,x, - - - x, equals the weight
of the representations x, - -- x,. Thus by the inductive hypothesis it has a
yoffi representation of the same weight. So without loss of generality we
can assume that it is x; - -+ x,. So each x, has a neutral link with x,; for
i=1,...,s — 1. If x, has a neutral link with x_, , we are done. If not, we
perform a transposition of x x . ; to obtain from w the representation
XX, ++ 0 X,_1Xi.1%e. If x,_; has a neutral link with x_, ,, we are done. If
x,_, has an odd link with x/_ , then we apply a transposition of x,_;x/,
to obtain the representation x;x, --- x,_,x. . ,x._;x,. By Lemma 3
(proved independently below) x._,x; has a neutral link. Once again, if
x,_,x!. ; has a neutral link we are done. If not, apply a transposition of

X,_,XY., to obtain x,x, -+ x,_3x/71x,_,x,_,x.. By Lemma 3 again
4

x’_,x! has a neutral link. Continuing this process, if necessary, we obtain
a yoffi representation. So the proof is complete once we have Lemma 3.

LEMMA 3. Let x,x,x; be a representation of a word w such that the
weight of the word w equals the weight of the representation x,x,x,. If x, has

1484

a neutral link with x,, then x,x,x5, X;X3x5 or xyx{x} is a yoffi representa-

tion where x3x) is a transposition of x,x; and x3ix{ is a transposition of
X1X5.
Proof. If x,x,x4 1s not a yoffi representation let
X; =t ti’qif(ai)g(ai)_lt;ﬁ e tiy,  fori=1,2,3.
We distinguish six cases:
D a<g,<q5 (ii)g<g3<q, (iii)gs<q,<q,
(iv) g, <gs<q;, (Va3<q1<q, (vi)q,<q <gs.
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Consider case (i). We claim that x; has a neutral link with x} since x,
has a neutral link with x, and the first g, elements of x, and x} are the
same. Hence x,x3x} is a yoffi representation. Exactly the same argument
works in case (ii). Now consider case (iii). If x, has a neutral link with x/
we are done. If not, consider x7x;x}. We have to show that x; has a
neutral link with x3. In obtaining x;, from x, we replace only 7, , by 7;
and 7, , ., by g(a;)t,, ., and in obtaining x; from x, we replace only
ty.q, bY 13, and t; , ., by g(as)t; , ., because x; = x3 in this case. The
fact that x; has a neutral link with x, then clearly implies that x; has a

"t

neutral link with x}. Hence x§'x{x} is a yoffi representation.
Cases (iv)—(vi) are proved in the same fashion.

Finally observe that g, = ¢, implies that x, has a neutral link with x,
and so x,x,x; is a yoffi representation, ¢, = g, implies x3x{x} is a yoffi
representation, and g, = ¢, implies x,x3x’ is a yoffi representation. This

completes the proof of the lemma.

4. The reduced lengths of elements of K. The key results of this
section are Propositions 2 and 3 which imply that if w = x;x, --- x is a
yoffi representation and w has reduced length < n(thatis,w € (F U G)"),
thens < nand2q;, +1 < 4n,fori=1,2,.

LEMMA 4. Let w € K have representation (*) of least weight. If q; > q,
forsomeiandt, ;=1 ,forj=1,...,q, ., thent,, .. # f(a,.)
Proof. Suppose t;, ., = f(a;,1). Then

PR |
ti LigUtia e 1]

= (ti, U 1q,+1f( 1+1)g(a1+1) 1q+1 titll)

NP -1
(’i,l [’i,q.ﬂg(“wl)ti(qiﬂ+2)] T g Vili g,

. -1 -1
[ti,q,-+1+2g(ai+1) ti,q,+l+1] SRR 75 )

‘(ti,l e 1q,+1g(az+l)f(at+1) tq,+1 ti_,ll)'

As the weight of the representation on the left side of the equality is
greater than the weight of the representation on the right side, we have a
contradiction. Hence ¢, , ., # f(a,,1)-
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PROPOSITION 2. Let w € K and have yoffi representation (*). Then for
each i € {1,2,...,s}, g(a) ™', } - tii't i1y " tisa,, f(ai) in re
duced form equals g, f,8,f, - - - f,, where each f, € F\ {e}, g, € G\ {e},
and k; > 1.

Proof. 1t suffices to show that in putting the relevant word in reduced
form, the elements g(a,) ' and f(a,,,) do not get cancelled. Indeed, we
prove only that f(a,,,) does not get cancelled, as the other follows by an
analogous argument. The element f(a,,,) could get cancelled out only in
one of the following ways; but all are impossible, as indicated by the
bracketed remarks.

(1) 1+1 G+ f(al+l) (Remark 1(1))
(2) f(ai+1) =l g +1 and

T 1,...,qi+1. (Lemma 4)

() tigtuin.g..S(a) =
L=ty  J= 1,...,q,.+1 — 1 (yoffi implies neutral link).

i,j

Thus f(a;,,) does not get cancelled out. So we see that the proposi-
tion is true.

REMARK 2. Proposition 2 implies that if w = x; --- x, is a yoffi
representation and has reduced length < n, then s < n.

LEMMA 5. Let w € K have yoffi representation (*). If the reduced length
of W=ty ety 0 vs_lt(_sl_l),q:_1 t(_sl_l)’1 is m, then the reduced
length of w is greatre than or equal to m — 3.

Proof. By Proposition 2, in order to obtain the reduced form of w
from the reduced form of w’ it suffices to ascertain what is the reduced
form of

gla, ;)" ' s_llqﬁl ts_—ll,lts,l sqf(a )gla,)” ' s—;s"' ts_ll
From what we have said earlier it is obvious that the reduced length of
gla,_) 't , | oo 1, f(a,)is greater than or equal to|q,_, — ¢, — 2.
The reduced length of g(a,)z;, - -+ ¢} is greater than or equal to g,.

Noting that the length of #,, --- v, --- f(a,_,) is greater than or
equal to m — (g,_; + 1), we see that the reduced length of w is greater
than orequaltom —¢,_; —1+|g,_; —¢q,|— 2 + g, > m — 3.
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REMARK 3. Of course the bound m — 3 in Lemma 5 is a crude one,
but it serves the purpose.

PROPOSITION 3. Let w € K have yoffi representation (). If the reduced
lengthof wisnthen2q,+ 1 < n + 3s,foreachi =1,...,s.

Proof. Consider t;; - v;--- t;}!. Successively multiplying on the
right or left with words of the same kind, we obtain the word w. In so
doing, we can apply Lemma 5 above s — 1 times, and the result follows.

REMARK 4. Combining Remark 2 and Proposition 3 we obtain the
desired result 2¢;, + 1 < 4n.

5. Proof of the Theorem. To prove the main result, which is the
theorem stated in §2, we must now study the k , structure.

It is known [12] that the free product of two k -groups is a k -group.
More particularly, if ¥ and G have k_, decompositions F = U, F, and
G = U, G, then the free product has k , decomposition

FxG=U(F,UG,)"

For convenience, we assume f(4) C F,, g(4) C G, F,=F, ', G, = G,
EF,CF,,,and GG, <G,,,.

n+m nm =

Recall that @ is the canonical continuous homomorphism F* G —
Fx ,G.

NOTATION. Let

X, = {uvu_lz ue (F,UG,)",v=f(a)gla) ',ae A}

0
X=UX, and Y,=(X)".
n=1

Here ( X,,)" denotes the set of all words which are the product of at most n
elements from X,,.
Clearly each X, and Y, is compact, and K = U?_, Y.

REMARK 5. To prove that K is closed, it suffices to show that for each
n,

(1) KN(F,UG)" CY,,;.
This suffices, since then we would have
KN(E,UG,) =KnN(F,UG)'NY,s=Y,N(F,NG,)"
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which is compact, and hence we would have K closed in F* G by the
k ,-condition.

Proposition 1 implies that each w € KN (F, U G,)" has a yoffi
representation (*). Remarks 2 and 4 then imply that s < nand 2¢g;, + 1 <
4n, for each i. To complete the proof of (1) above (and hence of the
theorem) it suffices to show that each ¢, ; € F,,s U G,,5. This is a conse-
quence of Proposition 4, proved below.

PROPOSITION 4. Let w € K have yoffi representation (). If w €
(F,U G,)", theneacht, ;€ Fs,,U Gy, .

Proof. By Proposition 2, we know that w in its reduced form is the
product of the reduced form of the following blocks:

Ly o tl,qlf(al); g(al)_l-“f(az); g(a2)_1-~-f(a3);.,.;

gla, ) "+ fla); gla) 't;L -+ i1

The reduced form of w in F * G is unique, so each block in the reduced
yoffi representation of w matches a part of the reduced form obtained
from the word w € (F, U G,)". Thus any reduced block of w can be
expanded to part of a word in (F, U G,)” and is therefore itself in
(F,U G,)".

Consider the block By = #;; -+ t; , f(a,). Recalling that f(A4) C F,,
g(A)c G, F,F,cF,,, and GG, CG,,,, and noting that each ¢, ;
(1 <£j < g —1) can be expanded to a part of a word in (F, U G,)", at
worst a product of n elements all from F, (or G,) it follows that
h,; € F2VU G If 1y, € F,then, atworstt, , f(a,) € F2,50t, , € F2, 1.
Therefore#; ; € F2,; U G2, forj=1,...,q,.

Consider the block B, = g(a;)™! - -- f(a,). Each element in B, is
also in the reduced form (of B,) or is amalgamated by other elements of
B,. Such an amalgamation can involve at most three elements. At most
one of these three is a 7, ;. Of the others at most one is a ¢, ;, and the
other is in f(A4) U g(A). As the elements of the reduced form of w lie in
F. U G,., we see that each element of B, mustliein F,,:,, U G,,2, .

We now proceed to consider in a similar fashion B,, B,,...,B,_;. We
thus obtain that each ¢, ; that appears in w is an element of F, . ) U
G, (»>+1y- The result now follows by observing that s < n.

s

REMARK 6. To prove the theorem, it suffices to show that the kernel K
of @ is a closed subgroup of F * G. Observing that ®(F) N ®((F, U G,)")
C O([F:V (G,:N A)]") it then follows that F is a closed topological
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subgroup of F=* ,G. Similarly G is seen to be a closed topological
subgroup of F* ,G also.

We have thus completed the proof of the theorem.

REMARK 7. We conclude by noting that if G is any connected locally
compact group and K is a maximal compact subgroup, then the amalga-
mated free product G * ;G is seen, from our Theorem, to be a k_-group
(and hence Hausdorff). This example could not be deduced from Ordman
[13], Khan and Morris [5] or Katz and Morris [4].

REMARK 8. Our Theorem includes the case when K is a finite group. It
should be interesting to investigate this case further.
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