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Consider the cycles of the random permutation of length n. Let
X, (1) be the number of cycles with length not exceeding r’, ¢ € [0,1].
The random process Y,(¢) = (X,(¢) — tln n)/Int/? n is shown to con-
verge weakly to the standard Brownian motion W(¢), ¢t € [0, 1]. It follows
that, as a process, the empirical distribution function of “loglengths” of
the cycles weakly converges to the Brownian Bridge process. As another
application, an alternative proof is given for the Erdés-Turan Theorem: it
states that the group-order of random permutation is asymptotically ¢?,
where % is Gaussian with mean In? »/2 and variance In® /3.

1. Introduction. Results. Consider S,, the symmetric group of per-
mutations of a set {1,...,n} endowed with the uniform distribution,
P(o) = 1/n! for each 6 € S,. Since a pioneering work by Goncharov [10],
[11], a considerable attention has been paid to the asymptotic study of the
order sequence of cycles lengths for the random permutation (r.p.), and of
components sizes for the random mapping (Koichin, et al. [13], [14],
Shepp and Lloyd [20], Balakrishnan, et al. [1], Stephanov [21], Vershik and
Shmidt [22]). Let X, = X, (o) designate the random number of cycles of
length s in the r.p. o. It is known [11] that X, the total number of cycles,
it asymptotically normal with mean and variance ln n. A similar result
holds true for the total number of cycles whose lengths are divisible by a
given number, [4], [20]. In this paper, we study the asymptotical behavior
of the joint distribution of X,,..., X,

For each ¢ € [0, 1], consider

1) X()= ¥ X Y= (X,(0) - tlnn) /2 n;

l<s<n'

ne

so, X, (¢) is the total number of cycles of the r.p. with lengths not
exceeding n’. Clearly, each sample function of Y,(-) belongs to D[0, 1] the
space of functions on [0, 1] which are right-continuous at each ¢ € [0,1)
and have left limits at each ¢ € (0,1]. Introduce W(¢), ¢t € [0,1], the
standard Brownian motion defined on a complete probability space with
continuous sample paths. Let 5 be a class of functionals on DJ[0,1]
continuous in the sup-norm metric.
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288 J. M. DELAURENTIS AND B. G. PITTEL

THEOREM. Y,(-) converges to W(-) in terms of finite dimensional
distributions. Moreover, for each H € 3¢, the random variable H(Y,(-))
converges weakly to H(W(-)); in short, Y, = W.

Notes. Since (X, — lnn)/In'/? n = Y,(1), the Goncharov result is a
direct corollary of the theorem.

(2) To each cycle of the r.p., let us assign its “loglength” which is the
logarithm of the cycle length with base n. Clearly, all the loglengths are in
[0, 1]. Introduce the empirical distribution function (e.d.f.) F,(¢), ¢t € [0,1],
of the loglengths, that is, F,(¢) = X,(¢)/X,. The theorem yields, after
simple manipulations, that, as a process, In'/?n(F,(t) —t), t €[0,1],
converges weakly (=) to W(¢) — tW(1), ¢t € [0,1]. Thus, the asymptotical
behavior of the loglengths is very nearly the same as of that for a sequence
of [In n] independent random variables each uniformly distributed on [0, 1],
[9].

(3) Consider Z, and P, respectively the order and the product of the
cycle lengths of the r.p. Erdos and Turan [5] proved that In P, and In Z,
are relatively close in probability, as n — oo. Later [6], they established,
via very complicated argument, asymptotic normality of In P,, whence of
In Z,. Best [4] found a simpler proof of closeness of In P, and In Z,, but
his proof that In P, is nearly normal remains rather technical. We are
aware of, but have not seen, two other published proofs (Kolchin [15],
Pavlov [18]) of the Erdos-Turan theorem.

Let us show how this theorem follows from our result.

First, we prove that, for each a > 2,

(1.2) P(A,2lnn(lnlnn)*) >0, n- oo,

where A, = In P, — In Z,. (Our proof resembles the Best argument, but is
much simpler.) Introduce

D, = Y 0,(k)X,, 0,k - {

Since E(X,,) =1/s, E(X, (X, —8,,)) =1/ss’, s+ s" <n, a simple
computation leads to

1 if ks,
0 otherwise.

E(D,) = ¥ 6,()/s = O(In n/k),

s=1

(1.3) . )
B(D(Dye=1) = | £ 0005 = 0l /i),

the estimates being uniform in k < n.
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Denote D%, = min(1, D,,). Since the multiplicity of a prime factor p
in P, (resp. Z,) is X1 D, s (resp. X, D,}), we have
InP,=3) > D, np, WImZ =) Y DXInp,

p s=1 p s=21
so that

A< Y (D,—-D¥)nk=Y A,Ink

n =

k=1 k>1
AsA,, <D,.,A, <D, (D, —1)/2, we obtain (see (1.3)),

[In n]
E(A)<c{lnn Y Ink/k+1nn Y lnk/kz) = O(ln n(Inln n)*).
k=1 k>{In n}

Since A, > 0, the last estimate implies (1.2).

Second, we prove that In P, is asymptotically normal with mean
27'In? n and variance 37'In® n. (Then, in view of (1.2), In Z, has the same
limiting distribution.) Introducing ¢, =Ins/Inn, 1 <s < n, and sum-
ming up by parts, we have (see (1.1))

In Pn = 2 anlns = ].1'12}1[1 - Z tns(tn,s+1 - tns)]

l<s<n l<s<n-1

+1n3/2n[Yn(l)— Y V(0 )(t, 00— tns]

1<s<n—-1
=1n?n[27' + O(ln"%n)] + lnS/Zn[Yn(l) — len(t) dt].
0
So, by the theorem,
(In P, — 270 n) /02 n = [* (W(Q) = W(2) dt = [ W(2) .
0 0

It remains to observe that the last integral is normal with zero mean and
variance 37\

4 Foroe S, leti<i,<--- <i,<n,»=r(0), be the locations
of all the (upper forward) record values in o. Consider the inter-record
timesA, =i, —i,1<j<v» A, ,=n+1-i,andletR, =R, (0)
stand for the number of A’s equal to 5, 1 < 5 < n. Since there exists a
one-to-one mapping T of S, onto itself such that

{X (O } {Rns(T(o))}:=l’
({12], [16]), the sequences {R nsts=1 and { X, }7_, are equidistributed.
Thus, with no other proof needed we could have formulated the ana-
logues of the theorem, and the statement in (2), in terms of the inter-re-
cord times. The correspondinig results appear to be new, though the
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(inter)record times have been studied by many authors, [2], [8]. (For
example, Neuts [17] proved asymptotic normality of the nth interrecord
time in the (infinite) r.p. associated with a sequence of independent
random variables with a common continuous distribution function.)

2. Proof of the theorem. The joint distribution of X,

e 1 <8 < n,
is given by Cauchy’s formula [3]:

n

s ! .f =
(21) P(X, =a,l<s<n)= H((l/s) /), i Sglsax n,
0 otherwise.

Introduce a bounded sequence z = {z }°°; and the sequence of generat-
ing functions (g.f.) f,(z) = E(I1,_,_,z}), n = 1, fo(z) = 1. It follows
from (2.1) that, for |¢] < 1,

(22) Y f,(2) = exp[ > zf/s},

n>=0 s>1
[19], (cf. [20]). Fix the positive integers r, /;,...,[,, and introduce the
r-dimensional g.f. g, (y) = E(IT,_, ), (X,, =0, for [ > n). Choosing
in(22)yz,=y,ifs=1,(1 <» <r),and z, = 1 otherwise, we obtain that

(g(y)=1

(2.3) 2 t'g(y)=exp| 2 yit/L+ ) ts/S]
v=1

n<0 S#[l, 4.,/,,

= exp

r.
A

-
i

(s - 1)t%}/(1 0.

Hence, by Cauchy’s integral formula,

7

24) g,(n)=0m)" [ exp{ X (- 1>z’»/1,}/((1 —z)z") e,
v=1

where C is any circle with radius less than one surrounding the origin in

the complex plane. It is important that (2.4) holds for each set of positive

integers n, r, [,,...,1,.

Introduce a process
(2.5) Y,,*(t)=( 7 (X”—l/s))/lnlﬂn, re[0.1].
1<s<[n']

Since X, _,_,1/s — In» = 0(1), » - oo, it suffices to prove that Y,* = W.
(Centering of X, by 1/sis natural since E(X,,) =1/s,1 <s < n.)
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LEMMA 1. For each fixed k and 0 =t, < --- <1t, =1, the random
vector { Y,*(1,)}%., converges to {W(t,)} ;- in distribution.

Proof. For1 <j < k,letn; = [n"]so thatn, = 1, n, = n. Denote

n,

Qﬂnj= Z an’ &Fnj: Z 1/S

s=n,_;+1 s=n,_;+1
We have to show that {(%,, — £,,)/In"/? n}%_, converges weakly to the

Gaussian vector with k independent components having parameters
0, ¢, -t ) 1<j<k

Introduce x; = exp(u,/In'/?n), u; > 0 and is fixed, 1 <j < k. Set-
ting r = n, I, = s for each s, and y, = x, for n;,_; + 1 <» < n, in (2.4),
and choosing the radius of Cequal top = 1 — n!, we have

(2.6)  h(x)= E(j]:[le’)

n,

=(2wp")"‘exp[2(x,—1) X o/l

j=1 s=n,_;+1

where

(27) 1 =f[ e ™ b,(¢) do,  b,(¢)=(1— pe) expla,(s)],

-7, )

n,

(2.8) a,(9) = gl (x,=1) X (p/s)(e**=1).

s=n,_;+1

To estimate I, we proceed as follows. Break [-m, ) into [~¢,, o],
[~¢0s ol ¢o = n~>%; let the corresponding integrals be I, I,. First, we
estimate /,. In I,, we replace b (¢) by b,(¢), which is close to b (¢) for
¢ € [-¢,, ¢], and nicely manageable if ¢ € (—o0, o0). The resulting in-
tegral I, is a difference of two integrals J; and J,, over respectively
(=00, 00) and (~o0, 00) — [—¢g, o). We estimate J,. J;, whose contribution
in the value of I is dominant, is asymptotically evaluated by means of the
inversion formula for an L;-integrable characteristic function.

The proof follows.

(1) Show that

(2.9) I, = 0(n™V%).
Integrating once by parts, we have

[ (o) de

{¢g, 7]

< n‘l[lbn(w)l+lbn(¢o)l+f[ . lb,’,(qs)ldqs}.

0+
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Here, (see (2.7), (2.8)),
|6.(7)| = O(exp(Re a,(7))) = 0(1),

since

nj

Re(a,(¢)) < g(x,—l) Y (p*/s)(cossp — 1) <0,

s=n;_;+1

(x;21,j=1,...,k). Also,
(210) [, (o)l <|1 = pe®| " = [(1 = p)* + 2p(1 — cos ¢)|

= 0[(1 — cos ¢0)‘1/2] = 0(¢51).
Further, since
bi($) = pi(1 — pe’®) “expla,(¢)] +i(1 — pe’?)”

nj

xepla, @] T (51 L (pe)"

j=1 s=n,_;+1

estimate

k
oi(@)] <11 = oot +]1 = pett " X (x; = )1 =(pe)" "
j=1

= 0|1 - pe* ") = 0[(1 - cos )] = 0(¢7),
for ¢ € [¢,, 7]. Therefore

J

bg, T

bi(o)|de = O(¢5'),

and, together with (2.10), it yields

[ (o) da] = of(nen)”) = (7).

The case of [—7, —¢,] is similar.
(2) To estimate I,, compare it with

(2.11) L= e"b(s)ds,
[~%0, ¥l

b,(¢)=[1-p(1+i¢)] (1 — i¢) " expla,(9)].
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Sincep=1-—n"land|e™ — (1 + i¢p)| < 27'¢*,
(1= pe)™ =1 = p(1 +ig)] (1 — ig)”|
<22 +|1 - p(1 + i¢)|—1|1 —-(1-i¢)”|
< 27'n%* + n|g|.
Subsequently (¢, = n~3/%),

(212)  |L-Lis< |

|b,(¢) — b,(¢)|de
[~¢0, $o]

< 2‘1n2f o> do + n/ |p|do
(=0, ol [=%0. 9]

= 0(n%} + n¢g) = 0(n717%).

Thus, it suffices to estimate i2. Notice first that 13,,(-) € L,(—00, o0); (one
reason why the factor (1 — i¢)~! is included in b (¢) is to have this
happen). If so,

213) L=[ e ™b(s)de—[ e "h,(9)ds
(-0, ) [=¢0. 0]

= n‘lf e b, (u/n) du — n‘lf e "“b,(u/n) du

(-0, ™) {ul=no,
=J, —J,.
(2a) Evaluate J,. By (2.8), (2.11), we have
(214) 17, (u/n) = (1 = iau)”' (1 — iayu)” expla,(u/n)]
k

11 ﬁ 1 exp[Al-x(e"‘"“/" - 1)]

= (1 —iau)'(1 — iayu)”
Jj=1 s=n, |+

where
(2.15) a,=p=1-n", a,=n"t,
(2.16) A, =(x;—1)p'/s.

Notice that
(1 —iu)"' = E[exp(iuV)],  exp[A(e™ —1)] = E[exp(iu?(A))],

where V' > 0 is exponentially distributed with parameter 1, and #(A) is
Poisson distributed with parameter A. Hence, a crucial observation:

(2.17) n~'b,(u/n) = E[exp(iuM,)],
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n

k 7
(2.18) M,=aVi+aVo+ ), Y (s/n)P(A,),

h
J=1 s=n, ;+1

where V,, V,, {#(A,)},, are all independent. Since n'b,(u/n) €
L (-c0, 00), M, has a (bounded) continuous density f,, (of course, it 1s
seen directly from (2.18)). Moreover, by the inversion formula [7], for
each x

fulx) = @n)" [ e Elexpliu,)] du.
SO
c=at [ e (u/n) du = 2af,, (1))
(-0, )

The density of aV; is a,exp(-a;x), x > 0; denote F, the distribution
function of

Mn:a2V2+ ; ;Z,: (S/”)*@(Ap)-
Then
(2.19) fu=[  aexp(-a,(1 = x)) dF,(x).

(-o0,1]

Now (see (2.18)),

E()=a,+ Y, Y (s/n)A,

<n’t +[ max (x;, - 1)]n‘1 Y o

s=1

= O(n‘1 + max (x, — 1)) = O(In"'?n).

l<y<k
Therefore, for each € > 0,
(2.20) lim [F,(e) — F,(-¢)] = 1.

Since @, — 1 as n — oo, we get from (2.19), (2.20) that

lim f,, (1) = lim o exp(-a,) ="

Thus, J, — 2me~!. More precisely, since a, =1 —n~' and E(M,) =
O(In"*? n),
(2.21) J,=2me ' + O(In"°n), Vée(0,1/2).
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(2b). Estimate J,. Integrating by parts, we have (B, (u) = n™'b, (u/n))

f e "B (u) du

u=nd,

Here (see (2.8), (2.14)),

(2.22) |B,(ngo)| = O(1 — ieyng| ) = O((ngy)™") = O(n7%),

<[B,(noo)l+ [ |B1(w)]du.

|Bn’(u)l= O(H—Z +ntu1 - iotzul_1 +

a:,(u/n)|nu’2)

= O(u‘2 + {a:,(u/n)lu‘z),

and
k nj .
(2.23) la,(u/m)|=| X (x,—=1) X (pe™/")
Jj=1 s=n,_;+1
_ _ tu/n -1
< 2klréljasxk (x; = )1 = pe™/| ",
(2.24) 1 - pe”‘/"|—1 < [n?+1 - cos(u/n)]"?

_JO(nu), ifu/n<m,
O(n), always.

Putting together (2.22)—(2.24), we obtain

j Bl(u)|du = 0(/

uz=ng, u>ndg,

u‘zdu)

+0| max (x,—1) nf udu
l<j<k [ndy, nm]

+nf u‘zdu))

= 0((11(#0)_1 + max (x, - l)) = O(In""*n).

<j<k
Therefore (the case u < —n¢, is similar),
(2.25) J, = 0(In"? n).
(3) Combining (2.9), (2.12), (2.13), (2.21) and (2.25), we can conclude:

I=J,+[I, +(I, - L) =] =27 + O(In"%n), &<(0,1/2).
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Hence, by (2.6) and p" = e }(1 + O(n™Y)),
k
h,(x)= E( l—[xj%)
j=1

. exp{ > (x;—- 1) ZJ p°/s |(1 + O(In"® n)).

Jj=1 s=n,_;+1

What remains is to evaluate the first factor on the right. Since
x;—1= exp(uj/lnl/zn) ~1=u/W?n+u;/2lnn+ O(In">?n),

(2.26) X (p/s—1/s)|<1,
s=n;_;+1
(2.27) Y 1l/s—(lnn;—Inn;,,)|<1,
s=n;_;+1
(2.28) |Inn,—Inn, ) —(¢;,—1,,)Inn| <1,
we have
k
E{exp ( Y ujfl’nj)/lnlﬂn }
j=1
k n,
=exp|| Xu, ) 1/s|/In?*n
Jj=1 s=n;_;+1
Xexp|27' Y uX(t; - tj_l)}(l + O(In%n)).
L =t
So, by definition of £, ,

lim E{exp ( Y ul%,, - fnj)/lnl/zn)]}
n— oo | j=1

k
= JI;I1 exp[27Mu3(z, - t1)]-

It follows from this relation that {(%,, — %, ;)/In"/>n}*_, converges in
distribution to { W(¢;) — W(t,_,)}%_,. Lemma 1 is proven.

To complete the proof of the Theorem, it suffices to show [9] that the
processes Y, *(-) are equicontinuous, or more precisely, that for each
e >0,

li?(} limsupP{ sup |Y*(¢") - Y,*(¢)| = e} =0.
¢ |

n— o0 t"—t'|<c
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A method we shall use to prove it is inspired by a proof of equicontinuity
of the e.d.f. processes £,(-) on [0,1] for a sequence of n independent
random variables uniformly distributed on [0, 1] (see Introduction), which
is given in [9].

By definition of Y,*(-) (see (2.5), (2.6)), Y, *(¢) + (X"} 1/s)/In*/? n is
a nondecreasing function of . Hence, for0 < ¢, <1, <t; <1, <1,
(2.29) -4, (5, 1) < Y X(1,) — YX(2,)

< YH(t,) — V(1) +A,(1, 1),

[n']

An(tla t4) = ( Z 1/3)/1111/2"7

s=[n"1]+1
where (see (2.27), (2.28)),
(230) An(tl’ t4) = (t4 - tl)lnl/zn +2In"V?n.

The proof quoted above is based only on (2.29) (with £ (-) instead of
Y *(-), of course), where

(2.31) A (1, t,) < (2, — 1)n'?,
and an inequality
(2.32) E[(£,(t+h) = £,(0))"] < ch?, forh = n.

No changes would have been necessary, had the inequality (2.31) con-
tained on its right-hand side an extra term o(1), which is present in (2.30).
Thus, in our case it would be sufficient, (compare (2.30) with (2.31),
(2.32)), to prove an inequality analogous to (2.32) with restriction on A of
the form: 4 > In~! n. Fortunately, it is exactly the case here.

LEMMA 2. There is
(233)  E[(Y(c+ h) - Y1) <174h%, ifh > tntn.

Proof. Fix 1 <»; <v»,. Introduce Y72, X,,, the total number of
cycles with lengths from »; to »,. Denote it just C,, for simplicity of

subsequent expressions. We shall prove

(2.34) E|(c, - E(C,)!| < 15E%(C,) + 13E(C,),
where
(2.35) E(C,) = Y 1/s.

{s<n:iv,<s<v,}
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But let us show first how (2.34), (2.35) lead to (2.33). We have:

[nl+h]

(2.36) Yn*(t+h)—-Y,,*(t)=( y (Xm—l/s))/lnl/zn

s=[n']+1

with », = [n'] + 1, », = [n"*"]. Then, (see (2.27), (2.28)),

[n1+h]

E(C)= )Y 1/s<hlnn+2=Inn(h+2In'n)<3hlnn,

s=[n']+1

if & > In"! n. Since (2.34), (2.36), we conclude that
E|(¥*(: + ) — ¥,(1))"] < (1352102 0 + 39K 10 n) /In*

= 135h% + 39hIn"'n < 174h°.
In order to prove (2.34), notice first that by (2.3),
2 1"E(y<) = exp[ Y (- 1)ts/s]/(l —1).
n=>0 s=

Taking the jth order derivative of both sides of this relation at y = 1, we
obtain

v J
2.37) £ emp = | £ o) =0
n>0 s=p

where
m =E[C,(C,-1)---(C,—j+1)]

is the jth order factorial moment of C,. Equating coefficients by the same
powers of ¢ on both sides of (2.37) yields
J

(2.38) m{) = Y 1/s,;

st e- s, <n p=1
(here and everywhere below, the restrictions »; <5, <7, (1 < p <j), are
silently assumed; the same goes for s, < n (1 < p < j), though in this case
these restrictions are redundant). In case j = 1, (2.38) gives (2.35). A direct
corollary of (2.38) is

(2.39) m{ < (m®)’ = E/(C,),
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or, more generally,
(2.40) mD < mW(m®Y*, = =1,
Now, a simple argument shows that

E[(c, - E(C))]| = E, + E, + E, + E,,

2.41 E, = m®, E. = Tm® — 4( m® 2’

1 n 2 n n
(2.42) E; = 6m® — 12m@m® + 6(m§}>)3,
@43 Eo=m® — amPm® + 6mP(mP): — 3 mp)"

Estimate E,, E,, E,. By (2.39), (2.41),
(2.44) E, < 3(m®)".
Then, by (2.40), (2.42),

2
E;=6(m® — mPm®) + 6mf,1)[(m§11)) - mﬁf’]

B )
here (see (2.38)),
1

(mﬁ}))z —m@=Y 1 Y —

5152 s +s,<n 5152

- T - T )i

sits>n 5152 g igsn 5105
s(%) ls(—z—)Z(l)sgz,
"/ 45,20 51 R7g \$
so
(2.45) E, <12m®.
Consider finally E,. Write (see (2.40), (2.43))
(246)  E = (m® - mOm®) + 3(m®)’[m® — (m®)]]

1 2 1 3
+3mO (mPm = m)

< 3mO(mPm® — m®) = 3m®Y" .

299
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Here (see (2.38))

247) Y

r ry

si+s,<n 515253 s +s,+s3<n 515253

1 1 1
+ +

$185,  §153 8553

= Z (-5'1 +s, + 33)_1
s 25855,

1 1
Y 4wt Y
s +s5,<n S1S2 s+, <n S1S3
sl-&sz-Es3>n s1+sz-&s3>n
4 144
=)+ .
Since in Y/, for each (s, §,), 55 can assume at most s; + s, values,

(2.48) Yent Y HFH_s0 y 1

IA

s+s,<n 5152 s;+s,<n 51
<2n7') % =2mY;
similarly,
(2.49) Y <oy 2 2p Y 2 o ®,
5,5, ~ s
Hence, (see (2.46)—(2.49)),
(2.50) E, < 12(m®)’.

Collecting together (2.44), (2.45), and (2.50), we arrive at (2.34) (re-
member, E(C,) = m®).

The theorem is proven.
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