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We locate the zeroes of oscillatory solutions of wide classes of
differential equations, y(™) = ¢(x)y. Asymptotic techniques are used.
The asymptotic behaviour of solutions and their derivatives up to the nth
order are also provided.

New results are obtained in addition to old results becoming more
transparent.

1. Introduction. The main purpose of this paper is to demonstrate
a method for locating the zeroes of oscillatory solutions of the differential
equation

(1.1) y®=c(x)y.

As shown by the references cited, the differential equation (1.1)
attracted a considerable amount of attention. However, the location of
zeroes of oscillatory solutions of (1.1) does not seem to be available in the
literature. It is the purpose of this paper to fill this gap for a wide class of
differential equations (1.1).

The method to be used exploits concepts of classical asymptotics
which seem to us the most appropriate ones to handle problems of
singular differential equations. The singularity of the differential equation
(1.1) stems from the fact that the independent variable x ranges on an
infinite interval and also from the fact that ¢(x) may be unbounded.

We do assume an amount of smoothness on the coefficient c(x)
which is more restrictive than a continuity assumption made e.g. by Kim
[12]. However, this is a reasonable price to be paid for obtaining the fine
structure of y(x),» = 0,1,...,n — 1 as x = 0.

In particular, most of the asymptotic properties known so far on
oscillatory and nonoscillatory solutions of (1.1) can be better understood
by the techniques employed in this work.

An additional reward of this paper is that we produce Prufer type
representatives for solutions of (1.1) which belong to certain subspaces of
the linear space of solutions of (1.1). See e.g. Hille [9] p. 394.

The course of events in this paper will be as follows: After this
introduction we proceed to §2, which contains preparations for an
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318 H. GINGOLD

asymptotic decomposition theorem. In §3 we prove an asymptotic decom-
position theorem, and in §4 we find the location of zeroes of oscillatory
solutions of (1.1). This paper is an attempt to generalize results of Gingold
[5] for the case n = 2. Results of §4, in this paper, depend heavily on §5 in
Gingold [5].

2. Preliminaries. We first convert the scalar differential equation
(1.1) into a vectorial differential system for the vector

y
yl
(2.1) :
y("—l)
The resulting matrix differential system is
(2.2) Y =AY
with
0 1
1
(23) 4= ,  A=(ay), j,k=1,..n.
1
c(x) o - .- 0
In this matrix
(2.4) any = c(x),
(2.5) a,,..=1 j=1..,n-1

and all other entries in this matrix are zero.
Notation 2.1. We will denote

(2.6) r=r(x) =|c(x)|1/n.

It is a simple exercise to verify that the eigenvalues of the matrix 4
denoted by A, (x), k = 1,...,n, are easily found to be

(2.7) A(x)=r(x)(e’%)=r(x)(cos b, + isinb,),
where
(2.8) 0k=irg;—(xl+2'nz(k—1), k=1,...,n, c(x)#0,

and arg z is defined for z complex

(2.9) -7 <argz=Imln:z < 7.
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We use the following asertion throughout this paper and we will not
restate it in the sequel unless it will be replaced.

Assumption 2.2. Let J be the interval [a, o). Then

@

(2.10) le(x)|# 0, c(x) isreal for x € J.

(i) c(x) € C*(J).

It is a simple consequence of Assumption 2.2 that r(x) € C*(J). Itis
also a simple exercise to verify that the matrix 4 possesses n linearly
independent eigenvectors which form the columns of the following
Vandermonde matrix V,

(2.11) V="(v,), Lk=1,..,n,
(2.12) vy = N '(x).

Therefore, the transformation

(2.13) Y=VZ

takes the differential equation (2.2) into

(2.14) Z'=AZ,

with

(2.15) A = [vUuy - v,

and with

(2.16) VA4V = diag{ A (x),....A,(x)}.

We will need more properties of the matrix ¥ 'V’ in (2.15). Therefore
we will need the following lemma:

Lemma 2.3. Denote by K a constant matrix,
(2.17) K=(k,), s,d=1,...,n,

to be introduced later. Denote by b also a constant to be introduced later.
Then if V is the Vandermonde matrix given by (2.11), V is differentiable and

(2.18) V- = (Inr)bK.

Proof. In order to find explicitly V'V we let

1 1 1
(6[91)r (eiez)r e (elgr)r
(219) V = (92101)"2 (62102)r2 (e216’,,)r2

_(.e(nfl)iOI)rn~l (.6(11—1)192)rn~1 (.e(n~l)19,,)rn~1J
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Then
(2.20) Det V = pl1+2+ = +n=Dl(Det V)
with,
[1 1 e 1 1
eit et et
(2.21) v, = o2t o 2i% e 2%
_;,(n—l)iOI .e(nwl)mz ;,(n—l)ié’,, |

Thus, one can verify that
(2.22) Det V = rlnn=DV2 T (e — /%),
k<1

Next we turn to the adjugant of V in order to find ¥ 1. To this end
we evaluate ¢, the cofactors of V as follows: Let V), be the following
(n — 1) X (n — 1) matrix which is obtained from V' by eliminating the /th
row and the kth column in an obvious manner. (The arrows point
respectively to the eliminated row and column in (2.23)).

(2.23)
column k
{

1 1 1
V/k _ (ew‘)r (elak)r (eia,,)r
row | — (ez(/q)ol)r/—l (ei</—1)02)r1—1 (e /—1)0k)r1—1 (ei(l—l)ﬂ,,)rlfl

(el(nfl)ol)rnAl s (e[(n—l)9n)rn71
Then,

[1+2+ - +Hn—-1)]
I+kl ~
(2.24) e =(-1)""——F—(DetV,)
rd-D
with
column k
1)
B 1 1 1
it it it

(2.25) - . . .

Vik = . . .

rowl - |e=D& .. LiU=Db .. LiU-D8,

_ei(n—l)ﬂl . ei(n—l)&,,
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Obviously (Det ¥;,) is a constant. Therefore

(2.26) ey = (1)K ptntn=02-0-Dl(Det 7, ).
The entries of V! are given by
(2.27) (Det V)V = (b,,), s,j=1,...,n,
with
(2.28) by, = Cj-
By (2.19) one has
(2.29) V' = (v)), vjp=(—1)e " DospU=2p
Denote by u,,, s, d = 1,...,n the entries of
(2.30) (Det V)V = (u,,).
Then
(231) Uy = Z i}sjuj,‘d = Z cjsv_;d
j=1 j=1

(-1)7* 2= D2-G=0(Det 5, )(j — 1) €' D=2/

™=

1

J

= pln(n=1/21,-1,s Z ("1)j+s(j - 1)ei(J-1)0d(Det I;;S)

j=1
We now let
(2.32) ko= 2 (-1)"7(j = 1)e’V"D%(Det 7,),
j=1
and
(2.33) b l:= ]_I (e’ — e'%)
k<l

and the result follows.

Throughout this work, we will assume that a suitable norm | ||
defined on the set of n by n matrices is given.

We now plan to perform a second linear transformation. To this end,
we need the following:

Assumption 2.4. The nonnegative mapping h(x) given by
o0
(2.34) h(x):= f |(r=2r7y |t
is finite on J. Also,

(2.35) im (r-2(x)r'(x))“ =0, k=01,
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and (therefore, without loss of generality) all eigenvalues of r 'A, are distinct
onJ.

We can now provide the following needed lemma:

LEMMA 2.5. Consider the matrix r~'A,. Let assumptions 2.2, 2.4 hold.
Then, there exists on J an n by n matrix function T(x) with the following

proeprties;
T(x) is invertible and continuously differentiable on J.
(2.36) T(x) =1+ A(x)
where
(2.37) IA(x)]l = 0(h(x)), x> oo.
Also,
(238) @:= T(x)[r(x) 4(x)] T(x) = diag{py(x),....1,(x))
where p (x), j =1,...,n, are the n distinct eigenvalues of r~*A, with the
ordering
(2.39) lim p(x)=e% j=1,..,n
Moreover,
(2.40) I7°G) | = 0(r'(x)),  x = oo.

Proof. A proof follows from the discussions in Gingold [6, 7].

We proceed to the next section.

3. Asymptotic decomposition. In this section, we intend to find a
fundamental solution of (2.2) by use of an “asymptotic decomposition
theorem.”

THEOREM 3.1. Let assumptions 2.2, 2.4 hold. Assume that throughout J
r’(x) does not change sign if In r(x) is unbounded and

(3.1) Y |Reb(k;,—k,,)|#0, jk=1,.n.
J#Fv

Let

(3.2) |71 ds < oo

Then, there exists an interval J= [a, ), a < a, such that a fundamental
solution of (2.2) on J is given by

(3.3) Y = V(I + P(x))exp fx D(s) ds.
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The n by n matrix function P(x) is continuously differentiable on J and
(34) lim [P(x)] = 0,
The matrix D is given by
(3.5) D = diag[re® — b(In rYk,,,...,re% — b(InrYk,,].

Proof. First we show that on an interval J, a fundamental solution of
(2.2) can be found such that

(3.6) Y=V(I+A)I+ P)expf D(s) ds.
In (3.6), P = P(x) is a certain n by n matrix function such that for x € J
(3.7) |P(x)| <1and lim ||P(x)|=0.

The matrix D is a diagonal matrix defined as follows: Denote by Siks
j, k =1,...,n, the elements of T!(x)T"(x). Denote

(3.8) S = diag[s,,,...,s,,

Then

(3.9) D=rQ-38§

With the help of Lemma 2.5 we notice that the transformation
(3.10) Z=T2Z,

takes the differential system (2.14) into

(3.11) Z;=(T7AT - T'T")Z,.

The differential system (3.11) turns out to be an “almost diagonal
system”. See Gingold [7]. Thus, there exists an interval J such that a
fundamental matrix solution of (3.11) is given by

(3.12) Z,= (I+P(x))exp [ D(s) ds

on J, where P(x) satisfies (3.7). This implies (3.6).
We now intend to show that

(3.13) lim jx°° ID(s) — D(s)|ds = o.

Consider the determinant of r 4, — p1.
It is a simple exercise to verify that p,(u), the characteristic poly-
nomial of !4, has the following form:
j=n

(3.14)  p,(w) = TT(e® — bk, r2r = p) +(r2r")p, ,(n)

j=1
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where p, _,(p) is a polynomial of order n — 2 in . It possesses continuous
coefficients in x on the closed interval [4, co].
Construct the new polynomial

Jj=n
(3.15) g.(p, €)= Hl(e"’f — bkr 2 — ) + ep,_s(n)
j=
where ¢ is a complex number.
Without loss of generality, we may assume that g,(u, &) possesses
distinct eigenvalues on J and |¢| < g, where ¢ is a small positive number.
Regard the roots of g,(p, €) = 0 as functions of & (and the parameter
x). Then by considering the initial value problems
é.‘li —_ M — o0 __ -2, .
(3.16) de = g op p(0) =e bk, r=%r’, j=1,...,n,
we deduce that the » distinct roots of g,(u, €) are holomorphic functions
of € for |¢| < &,.
Moreover,

(3.17) p=e%—bk,rr'+0(), j=1,..,n,

where O(¢) is uniform with respect to x on J.
In (3.15), by letting

(3.18) e=(r2)

we conclude that

(3.19) r_lﬂj = ei0/ i bkjjr—lr/ + 0((’,—2',/)2).
We have

(3200 [T ID(s) = D(s)lds = [ ID(s) = r(s)(s) s

+f " 18(s)ls.
This implies (3.13) by combining (3.2) and (2.34). Define now
(321) P(x)i= (I+A(x))(I+B(x)exp [ [D(s) - D(s)] ds — I
and the result follows.

REMARKS. It is also possible to use a transformation of the indepen-
dent variable x given by

(3.22) n=[ r(s)ds
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so that (3.6) would also be derived by Levinson’s theorem. See [3], p. 93.
However, the setting of this theorem is more general.

For theoretical reasons, it seems immaterial to replace (3.6) by (3.3).
However (3.3) points out that the eigenvalues of 4, need not be calcu-
lated. While the explicit construction of D(x) is a relatively simple task,
the numerical calculation of D(s) is more laborious. D(s) cannot be
found explicitly.

By following the proof in Gingold [7], finer bounds on ||P(x)|| could
be found.

For wide classes of mappings c(s), it can be shown that

(3.23) IP(x)|= 0(h(x)),  x - co.

If we add the assumption that ¢(x) € C*(J), then it can also be
shown that

h'(x)
. P =0 .
(3.24) PGl o ] 5o e
Theoretically, the bounds in (2.37), (3.23), (3.24) “may not be inter-
esting”. However, for numerical purposes, accurate bounds may be cru-
cial.

4. The location of zeroes. Thanks to Theorem 3.1 we are able to
locate the zeroes of solutions of (1.1). Moreover, as a bonus other
asymptotic properties of solutions will follow.

In the sequel, when we will refer to a solution of (1.1) we will have in
mind a non-trivial solution of (1.1). Throughout this section we will
assume that conditions of Theorem 3.1 are fulfilled.

Let us prove the following lemma.

LEMMA 4.1. For n=1,2,... and n is odd, the matrix A possesses
N = (n — 1) /2 pairs of complex conjugate eigenvalues. If n is even and
c¢(x) > 0, A(x) possesses N = (n — 2) /2 pairs of complex conjugate eigen-
values but if c(x) <0, it possesses N = n/2 pairs of complex conjugate
eigenvalues.

Proof. We let

B - arg c(x) ‘

(4.1) -

Then A possesses a real eigenvalue iff 8, /7 given by (2.8) is an integer. We
will consider several cases.
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Case 1. nis odd and ¢(x) > 0. It is obvious by (2.8) that
0,  2(k-1)

T n

(4.2) B =0, k=1,...,n.

Then for £ = 1 we obtain the only real eigenvalue
(4.3) A(x) =r(x).

Case 1I. nis odd and c¢(x) > 0. Then,

(4.4) g, G _2k=1) g

n ka n

which implies that the only real eigenvalue is

(4.5) A(x) = —r(x), k=

Case Il1. nis even and ¢(x) > 0.
Then by (2.8) the only real eigenvalues are

(4.6) A(x) =r(x), >\n/2+1('x) = —r(x)

Case IV. nis even and ¢(x) < 0.
Then by (4.4) it follows that no real eigenvalue is possible at all.
Lemma 4.1 helps us to adopt the following notations.

DEFINITION 4.2. We say that the differential equation (1.1) belongs to
class I, I, IIL, or IV if c(x) pertains to one of the four cases described in
Lemma 4.1.

Notation 4.3. By relabeling indices we may assume without loss of
generality that (from the outset, in §1)
(47) ReX;>ReA,>--- >Re)y, A, ,y=1, j=1,...,N,

where N is the number of pairs of complex conjugate eigenvalues guaran-
teed by Lemma 4.1. Moreover, we let

()
(4.8) ReA, =A, =r(x)> Rel,
if (1.1) belongs to class 1.
(1)
(4.9) ReAy > ReA,=A, = —r(x)

if (1.1) belongs to class II.
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(I11)
(4.10) r(x)=X,=Re),>RelA, > Rely > Rel,_;
= —l"(X) = An—l

if (1.1) belongs to class III. (The case N = 0 is not excluded from this
notation.)

Notation 4.4. We now define the real functions 4,(z), B,(¢) as follows:
(411)  A,(x)+B,(x):= [ [r(r)e = r(0)r(0)k,,] a1,

v=1,...,n.

Thus
(4.12) A,(x) = [ (r(¢)cos8, = r(0)r(1)ay,) dr
(4.13) B,(x) = [ (r(t)sing, — r(1)r/(1)ay,) di
where
(4.14) a,:= Rek,,,
(4.15) a,,=Imk,,, »=1,...n.

By the convention just made one has the following:
Case I:

(416)  A,=[ (r()=r () (ay,)dt,  x e,

Xy

(417) B, = _az,,f: P (0) (1) di = —ay, In[r(x)r(x)],

(418) 4, fxx(r(t)cosz—nj—'/r-—r“l(t)r’(t)alj)dt,
x _2j N .
(4.19) Bj=j; (r(t)sm—ni'n—rl(t)r(t)azj) dt, j=1,....N.
Case II:

(4.20) A= fx (r(t)cos 2jn_ 177 - r"l(t)r’(t)a1j> dr,

X1

@21)  B= [ (r(t)sin 2!"1— LY r—l(t)r'(t)azj) dt,

X1

j=1,...,N.
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(4.22) A, = [ (r(0) + r ()P (1)ay,) di

(4.23) B, = —a,,In[r(x)r(x,)].

Case 111. A, B,, are given by (4.16), (4.17). A, B, are given by (4.18),
(4.19). A, _,, B,_, are obtained from (4.22), (4.23) by substitutingn — 1 in
place of n.

Case 1V. A, B; are given by (4.20), (4.21).

For the sake of uniformity we add the following assumption:

Assumption 4.5. If
(4.24) Y lay, " # 0,
v=1

then the function r(x) is monotone increasing or monotone decreasing
onJ.

Since we have Assumption 4.5, we may add the following assumption
without loss of generality.

Assumption 4.6. Fort € J in cases I, III
(4.25) singnz— r-(¢)r'(t)a, >0, v=1,...,n,
and in cases [, IV
(4.26) sin%— r2(t)r'(t)a, =0, »v=1,...,n.

This assumption is given in order to guarantee that the functions
B, (x), found above, possess inverses.

Indeed, the following lemma (whose trivial proof is omitted) can be
proven.

LEMMA 4.7. With Assumptions 4.5 and 4.6 the functions B,(x), B,_,(x)
and B/(x),j = 1,...,N, are monotone functions of x on J.

We will need to find » real linearly independent solutions of (1.1). We
first define

(427) W= (w,)=V(I+P), P=(p,).jk=1...n,

and we write down the elements of the first row of W by

(4.28) w,=1+2) ., »=12,.,
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with
n
(4.29) Zy:z Y P
j=1

Similarly, we have

(430) Wy, = Z)\j(ajv—'—pjv) =}\v(1 +pvv) + ZAJPJV

Jj=1 J#Fv

and

(4'31) wmv = Z Arj"'*l(ajv + PJV)
j=1

=A’:‘41(1 +pv1/)+ Zkrjn—lpjy, m=2,...,n.

J*Ev

We choose n real linearly independent solutions of (1.1) as follows:
By (4.28) via (3.3) we have each of the »n linearly independent solutions of
(1.1) to be

|1 + EV] exp(4,(x) + i6,,(x) + iB,(x))
with
0h=arg(1+zy), v=1,...,n.

From now on the letter y with lower indices will denote something
other than the entries of the matrix function Y which appears in (3.3).
Thus, we adopt

Notation 4.8. We denote n real solutions of (1.1) by y,(x),» =1 --- n
and we define them as follows:
If (1.1) belongs to classes I, I or 111

¥.(x) = Rew,,exp(4, + iB,)

=[1 + X |(exp 4,(x)) cos(B,(x) + 8,,(x))
y1,(x) = Rew, ;exp(4, + iB,)

=l1 + Zj[(eprj(x)) cos(Bj(x) +0,(x))
y,;(x) = Imw, exp(4, + iB,)

=[1+ X |(exp4,(x)) sin( B,(x) +6,,(x)), j=1,....N.
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If (1.1) belongs to class 111, we pick
(432) yn~1(x) = Re wl,n—lexp(An——l + iBn—l)

='1 + Zn_l'(eprn_l(X))COS(Bn—l(x) +6,, 4(x))

and the rest n — 1 real solutions according to (4.29), (4.30), (4.31). If (1.1)
belongs to class IV we pick the 2N = n real solutions according to (4.30),
(4.31).

It is simple to verify that in all cases I-IV the set of » real solutions
form a basts for the linear space of solutions of (1.1).

Notation 4.9. We denote by S, the linear subspace generated by y,(x)
if (1.1) belongs to class I, II, or III. If (1.1) belongs to class IV, S, will
denote an empty set.

We denote by S,_; the linear subspace generated by y,_;(x) if (1.1)
belongs to class I11. If (1.1) belongs to class I, I or IV, S, _, will denote an
empty set.

We denote by S, j = 1,...,N, the N two-dimensional linear spaces
spanned by y; ;(x), y,,(x). If N = 0, we let S; above denote empty sets.

We also denote by S the linear space of solutions of (1.1).

Let us first turn to the location of zeroes of a non-trivial solution
y(x)esS,j=1....,N(N>0).
Let ¢, , ¢, ; be two real variables. Then, it can be easily verified that

(4.33) y(x) =1, (x) + c3;0,(x)

= [Mj(x)cos(Bj(x) +6,,(x) + \I'u,j)]\/clzj + 3,

(4.34) M;(x):= |1 + ¥ |(exp4,(x))
and with
_CZJ .
(4.35) tan¥,, , =——, j=1,...,N.
272

In order to better understand the process of locating the zeroes of
y(x), we define an “ideal solution” of (1.1), y,(x) by letting in (4.33),
(4.34).

(4.36) P =0.
For the particular solution (4.33) we then get
(4.37) 6,,(x)=0, Z, =0
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to obtain

(438)  yu(x) = (expA;(x))cd, + c3, cos(B,(x) + ¥, ).

We do not claim that y; (x) is a solution of (1.1). However, the location of
its zeroes on J are easily observed to be at x, such that

(4.39) Bi(x;)+ ¥, =21+ 1)% (/ an integer),
or if B;(x) has an inverse on J

_ T
(4.40) x =B+ )T - ¥, ).

We expect the zeroes of y(x) for x large enough, to be close to x, given by
(4.39) or by (4.40).

Indeed, we are now able to apply the results of Gingold [5], §5, to
locate with high accuracy the zeroes of y;(x),j = 1,...,N.

It will be superfluous to repeat all the arguments of Gingold [5].
Therefore, we state our results in a form such that the reader who is
interested in the details will be able to easily reproduce them as an
exercise.

The next theorems provide information on solutions of (1.1) beyond
that given by Kim [12, 13], Willet [24], Kreith [15], Swanson [21]. We did
not come across any other method in the past which also provided with
high accuracy the location of zeroes of solutions of (1.1). It clearly
demonstrates an edge of asymptotic techniques.

THEOREM 4.10. Let assumptions of Theorem 3.1 and Assumptions 4.5
and 4.6 hold. Then, the linear subspace S,, (S,_,) contains nonoscillatory
solutions of (1.1) if either

(4.41) a,,=0 (a,,.,=0).

or (without restriction on a,, (a, ,_,)) if

(4.42) sup |In r(x)| < .
xeJ

moreover, y, € S, has an exponential growth in cases 1 and 111 and it has an
exponential decay in case 11. y, | € S, _| has exponential decay in case III.
If (1.1) belongs to class 111, then

. Mn—l _
(4.43) xlirr:o v =0

n

where

(4.44) M, = M,(x)=[1+ Y |expd,(x),
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(4.45) M, ;= M, (x)=[L+Y _|expd, ,(x).

Proof. This is an immediate consequence of the definitions.
We have

THEOREM 4.11. Let assumptions of Theorem 4.10 hold. If S, is not the
empty set and N > 0 then in cases 1, 111,

. y/‘(x) .
: 1 =0, =1,...,N.
(4.46) Jm =%
IfN > 1,
M (x)
(4.47) lim —-~ j=1,...,N -1,

x—=o00 My 1(x) -
where M are given by (4.34).
If S, _, is not the empty set and N > 0 then in case 111

(4.48) fim Maz2(X)

0.
X 00 Mn(x)

Proof. The trivial proof is omitted.
Next we have

THEOREM 4.12. If assumptions of Theorem 4.10 hold. Let n > 3, or let
(1.1) belong to the class IV.

Then S contains N linear subspaces S; of oscillatory solutions y; given by
(4.33),j=1,...,N.

The location of the zeroes of y, are given at the points X, ON J such that

. _ ki
(4.49) |mh|I—I>loo [xmj — B; 1((2mj + 1)5 - \Ifl’z.j)] =0
and also
_ T

(450)  x, ~B((@2m,+1)7 - ¥o,) Imlo .
|m;| = oo means that m; attains successive integral values and either
m; — +00 orm; > —o0.

Moreover, let a,, # 0 and let

(4.51) lim |Inr(x)|= .
X—> 00
Then in cases 1, 11, y, € S, is an oscillatory solution with zeroes x,,

(452) lim [xm" - B,,‘l((Zmn + 1)%)] =0,

!mnl_‘)w

%, ~ B@m, + DT ). Im,| = co.
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In cases 11, 111, with (4.51) and a,, , +# 0, y, , € S,_, is an oscilla-
tory solution with zeroes x,, _ satisfying (4.52) with n — 1 replacing n.

Proof. See Gingold [5] §5.

We state a theorem which summarizes the preceding oscillation re-
sults.

THEOREM 4.13. Let assumptions of Theorem 4.10 hold. Let y(x) be the
general solution of (1.1) given by

(4.53) y(x)=c,y.(x)+ )y cljyl_[(x) + Cz,)’z,(x) + €1 Vur(X)-

Jj=1

If S, or S,_, or both are zero we choose correspondingly c, or c,_, or both to
be zero.

) If
(4.54) a,,#0, a,, #0
and (4.51) holds then each non-trivial solution of (1.1) is oscillatory. In
particular, all solutions in case IV are oscillatory.

(i1) Let c,, # 0. Then, (in cases 1, 111) the zeroes of X, of y(x) are such
that with j = n they satisfy (4.52) and

(%) = ¢,p,(x)

(4.55) I <C, xel,

Ml(x)
for a certain constant C.
(iii) Let
(4.56) c,=¢;=¢;=0, j=1,...5,—1,j,<N.

Then the zeroes of y(x) are located at points x,, such that
JO

(4.57) lim [xmm - ngl((ijo + 1)32’- -~ \Ifl’z,jo)] ~0
and

_ k2
(4.58)  x, ~ Bjol((zmjo +1)7 - ‘1’1,2,10)’ I | = eo.
Also

y(x) =y (x) .

4 A S
(4.59) M,(x) <G, x&J,
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withl=n—1ifj,=Nandl=j,+ 1ifl <N, and C a certain constant.
(IfS,_,isemptyput M, _, = 1))
(1) If in case 111

(4.60) ca=c¢,=¢,=0, j=1,..,N,

J

then the zeroes of y(x) are located at x,, . This satisfies (4.52) with n — 1
replacing n.

Proof. The inequalities (4.55), (4.59) follow directly from the defini-
tions of 4,(x), M,(x). Thus, in (4.55) we take

y(x) = e,y (x)
(4.61) C:= Sup s < o0
xeJ Ml(x)
and in (4.59) we take
x)—y (x
(4.62) C:= Sup M——yi"-u < 0.

M,(x)

xeJ

For the approximation of the zeroes of y(x), we “identify in (4.53) a
leading term” and use the details in Gingold [5] §5.
Next we obtain a “non-oscillation” theorem.

THEOREM 4.14. Let assumptions of Theorem 4.10 hold.

(1) Let a,, = 0 or let a,, # 0 and let (4.42) hold.

If ¢, #+ 0 when S, is a non-empty set, then in cases 1, 111 y(x) is
non-oscillatory and (4.61) holds.

(i) If a,,,_, =OQorifa,, , = 0and(4.42) holds and

(4.63) ¢, = ¢ =0, j=1,...,N,

n =0

J J

then in case 111 y(x) is nonoscillatory if S, _, is not an empty set.
If in case 111, a,, = O or a,, # 0 and (4.42) hold, and if

c;=¢, =0, j=1,..,N.

Then y(x) is nonoscillatory.
Proof. We omit the trivial proof.

REMARKS. A similar analysis carries over to nth order linear homoge-
neous differential equations whose characteristic polynomials possesses n
distinct eigenvalues. In this case the location of zeroes of oscillatory
solutions can be provided in terms of the elements on the main diagonal
of a certain matrix derived from the coefficients of the linear differential
equation.
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If
(4.64) lim r2r" #+ 0, o0

then a different analysis is needed. It is an easy exercise to verify that for
(4.65) c(x)=0x", m> —n,0real,

all conditions of Theorem 3.1 are satisfied.
The same is true for (4.66) and (4.67).

(4.66) c(x) =6e*", @realand « > 0.

It is worth noticing that in case (4.66) or in case
(4.67) c(x) = x*(nx)?, a> -n,Breal,

the “analytic theory” of asymptotic expansions cannot be applied.

This article also shows how to derive Pruffer type formulas for
solutions of higher order linear differential equations. This question has
been asked by several authors. See Swanson [21], pg. 95.

The relation between oscillation and certain eigenvalue problems of
(1.1) is well known. Thus, our method provides approximations to eigen-
values in certain eigenvalue problems.
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