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A bounded cyclic self-adjoint operator C defined on a separable
Hilbert space H can be represented as a tridiagonal matrix with respect
to the basis generated by the cyclic vector. An operator / can then be
defined so that CJ - JC = -2iK where K also has tridiagonal form. If
the subdiagonal elements of C converge to a non-zero limit and if K is
of trace class then C must have an absolutely continuous part.

1. Introduction. A bounded cyclic self-adjoint operator C defined
on a separable Hilbert space H has a tridiagonal matrix representation
with respect to the basis generated by the cyclic vector. The spectral
properties of C are studied in [1] under the assumption that the main
diagonal elements in the tridiagonal representation are zeros. In this case
C is the real part of a weighted shift operator, and if / is the correspond-
ing imaginary part then CJ — JC = 2iK where K is diagonal. It is shown
in [1] that C has an absolutely continuous part if K is of trace class.

The purpose of this paper is to extend the above result to tridiagonal
matrices with non-zero diagonal. This extension is significant for the study
of systems of orthogonal polynomials which satisfy a three term recursion
formula. The coefficients in the recursion formula correspond to a unique
tridiagonal matrix whose spectral measure is the measure of orthogonality
for the system of polynomials. If the measure is symmetric about the
origin (as in the case of the normalized Legendre polynomials) then the
diagonal entries of the corresponding tridiagonal matrix will be zero. See
[1] for further background.

Suppose now that C is a bounded cyclic self-adjoint operator with the
following tridiagonal matrix representation with respect to the basis { φn}:

\ aλ 0 0
j χ b2 a2 0

(1.1) C= ' 2 *
v ' 0 a2 b3 a3

Then φn = Pn(C)φ1 with Px(λ) = 1, P2(λ) = (λ - bx)/aλ and for n > 2,

an-\
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It follows that C is the real part of the operator T defined by Tφn = bnφn

+ 2anφn+v If / = (l/2/)(Γ + T*) then CJ - JC = -2iK where K =
[ktJ] has tridiagonal form with

(1.2) ku= -af^ + af (*o-O),

The aim now is to analyze the spectrum of C if Σ|A:ί7| < oo and Σ\kt i+ι\
< oo. Note that in this case lim an and limbn exist. If liman = a (a Φ 0)
and Iim6rt = 0 then the spectrum of C at least contains the interval
( — 2α,2α). Note also that the diagonals of K are absolutely summable
whenever K > 0 so that T is hyponormal. For if K = [fc/y.] is positive then
{ a%} is an increasing sequence and |&/7|

2 < \ku\ \kjj\. It follows that

Furthermore, the following is true:

THEOREM. The operator K in (1.2) is of trace class if and only if
Σ\ku\< oo and Σ\ku^\< oo.

Proof. Assume that the diagonals of K are absolutely summable. It
follows from Jensen's Inequality that

Σ((κ*κ)1/2φn,φn) < Σ(κ*KΦn,Φn)
1/2

and a direct computation shows that if K*K = [pu] then

Pa = i ( - « / - A - i + * , - A ) 2 + ( - * ? - i + «,2)2

+ i ( - β Λ + «Λ + i ) 2 fori>i.

Since

Γ̂ is of trace class.
Suppose AT is of trace class. Write K = D + W where D is diagonal

and W is the real part of a weighted shift operator. Since Σ \(Kφn, Φn) \ <
oo, D (and hence W) must be of trace class. Furthermore, W with weight
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sequence { wi} is unitarily equivalent to Wf with weight sequence {IwJ}. If
V denotes the unilateral shift operator then W'(V + V*) with diagonal
elements |w1|, \wλ\ + |u>2|, |w2| + |w3|, , is of trace class. Hence the
diagonals of K are absolutely summable.

2. The absolutely continuous part of C. If C = JλdEλ let Ha{C)
denote the set of x in H for which | |£ x x | | 2 is an absolutely continuous
function of λ. The subspace Ha(C) reduces C and the restriction of C to
Ha(C) is called the absolutely continuous part of C. If C is represented as
a multiplication operator on L2(μ) these ideas are related to the decom-
position of the spectral measure μ.

The following lemma is needed for the proof of the main result.

LEMMA. / /

SN+1(λ) - «i2Λ2

n = 2

then

SN+1(λ) = fl^(λ) - aN(λ - bN+ι)PN(λ)PN+ι(λ) + a

Proof. Note that

S 2(λ) = α i

2Λ2(λ) + a^-b, + Z>2)Λ(λ)P2(λ)

ai(b2 - λ)Λ(λ)P2(λ)

Assiune that the result has been verified for N = 1,..., k and recall that

«/Λ+i(λ) = ( λ " **)^*(λ) " «*-Λ-i(λ) . Then

Sk+1(λ) = al^P^W ~ β*-i(λ

- [(λ - *J

- ( λ - 6,)P,(λ)[(λ - bk)Pk(λ) - β^xP^

THEOREM. Let Km an = 1/2 αnί/ limZ>n = 0. // Σ | - a2_x + α 2 | < oo
Σ|αM_!( — 6n_i + &n)| < oo ίΛe« the spectral measure of C is absolutely

continuous on (— 1,1).
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Proof. The plan is to first consider an operator obtained from C by
replacing a finite number of constants in such a way as to simplify the
structure of K and make use of the absolute summability of the diagonals.
Given k > 1 choose R(k) such that

00 -i 00 -j

Σ \-al-i + <Ί\*vτ> Σ k-i(-ftΛ-i + *JI< O2Ϊ

and such that if n > R then |4α2 - 1| < 1/16A;, |6J < 1/16A:. Obtain Ck

from C by replacing the constants bv...,bR by 0 and the constants
av...,aR by 1/2. It will now be shown that the spectral measure of Ck is
absolutely continuous on ( —1 + I/A:, 1 — 1/&). Since C is a trace class
perturbation of Ck the same result will then hold for C.

Let Δ be a subinterval of ( - 1 + I/A:, 1 - I/A:) and for Ck = fλ dEλ

let μ(Δ) = | |£(Δ)φ 1 | | 2 . With / and K defined as before,

(2.1)

Σ f^_1(-^_1

bn)fPH.xdμfPndμ

Several cases need to be considered.

Case I. Suppose JAP^dμ < μ(Δ) for each n. Then

1 / 2
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Case II. Suppose j^P^dμ < μ(Δ) = j^P^ dμ except for a finite num-
ber of n. Then there exists N such that j^P^dμ = max/ΔPrt

2 dμ. Adding
and substracting

to the expansion of (KE(Δ)φ1, £'(Δ)φ1) in (2.1) and using the expression
for SN given in the lemma it follows that

(KE(A)φ1,E(A)φ1)

-/x(Δ) £ flβ.-xί-*.-! + OΛ-A +(-««-! +

-(λ - bNf\p2

N{λ) dμ - ±-

32A:*

III. Suppose there exists a subsequence {PnJ} such that
> μ(Δ). Choose L sufficiently large such that

μ(Δ) Σ [\am-x{-bH_x

L+l

Choose M > L such that JAP^dμ > μ(A). Then there exists JV such that
/ΔPNdμ = τnaxλ<n<MS^n dμ Using the same approach as in Case II it
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can be shown that

N

-μ(Δ) Σ

oo Γ

+ Σ k-i(-Λ-i +

i

\{\) dμ

~μ(A)[p2dμ Σ [Iβ.-iί-*.-! + O
J Δ 2

Λ/+1

In each case, therefore, <ΛK(Δ)φ1,£(Δ)φ1) ^ (l/16A:)|μ(Δ)|2. It
can also be shown (see the proof of Theorem 2.2.4 in [4]) that

where |Δ| denotes the length of Δ. It therefore follows that |μ(Δ)| <
8fc||/|| |Δ|. Let β be a Borel subset of ( - 1 + 1/fc, 1 - l/k) of Lebesgue
measure zero. Then for any ε > 0 there exists a pairwise disjoint sequence
of intervals {Δy} such that Δy c ( - 1 + l/k,l - \/k\ β c UΔy and
Σ|Δ y | < ε. Since μ(β) < Σμ(Δy) < 8/k||/||Σ|Δy| it follows that μ(β) = 0.
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Hence the spectral measure of Ck is absolutely continuous on ( — 1 +
I/A:, 1 - I/A:). By the Kato-Rosenblum Theorem the same result holds
for the spectral measure of C.

COROLLARY. Let limαn = a (a Φ 0) and Kmbn = b. If

then the spectral measure of C is absolutely continuous on ( — 2α + b9

2a + b).

Finally it should be observed that the above theorem becomes false
under the weaker condition that K is compact. To see this assume that the
main diagonal elements of C are zero and define a\n_x = 1, aln =
(n + \)2/n2 for « = 1,2,.... Since Pn

2(0) = ( f l ^ ^ - O Λ - i ί O ) it fol-
lows that P2

2

rt(0) = 0 and P2

2

Λ+1(0) = l/(n + I) 2 . Therefore λ = 0 is an
eigenvalue. (See Stone [5].)

Note. A similar result has recently been attained by Mate and Nevai
in [2] with very different techniques.
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