Pacific Journal of

Mathematics

A COEFFICIENT INEQUALITY FOR FUNCTIONS OF
POSITIVE REAL PART WITH AN APPLICATION TO

MULTIVALENT FUNCTIONS

ALBERT EDWARD LIVINGSTON




PACIFIC JOURNAL OF MATHEMATICS
Vol. 120, No. 1, 1985
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ALBERT E. LIVINGSTON

We obtain sharp bounds on the magnitude of certain determinants,
whose entries are the coefficients of a function of positive real part in the
unit disk. These inequalities are used to solve a coefficient problem for a
certain subclass of multivalent functions.

Introduction. Let P(z) =c¢,+ ¢;z+ --- be analytic in A = {z:
|z] < 1} and satisfy Re(P(z)) > 0 for z in A. The author [6] proved that
the coefficients satisfy the inequality |c,/c, — ¢;c,_,/cal < 2 foralln > 2.
This inequality was then used to obtain sharp bounds on the coefficients
of functions in a subclass of multivalent close-to-convex functions. The
inequality has recently been used by Libera and Zlotkiewicz [4] in their
study of the coefficients of the inverses of convex functions. In §2 of this
paper we generalize the above inequality, obtaining precise bounds on the
magnitude of certain determinants involving the coefficients c,,. '

Section 3 of the paper deals with the coefficient problem for a certain
class of multivalent functions. Goodman [1] has conjectured that if
f(z) = a;z + --- is at most p-valent in A then forn > p + 1,

d 2t(n + p)!
. <

A0 eal= b G = o= p— D = )
Inequality (1.1) reduces to the well-known Bieberbach conjecture when
p = 1. Let S(p) be the class of functions which are analytic and p-va-
lently starlike in A. A function f(z), analytic in A with f(0) =0, is a
member of S( p) if and only if there exists § > 0 such that for § < |z| < 1,

la,.

7))
(1.2) Re[ 702) ] 0
andforéd <r <1,
2o reiﬂfr(rem) _ -
(1.3) fo Re[——f(rem) }dﬁ 2pm.
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140 ALBERT LIVINGSTON

We shall say that F is in K( p), if it is analytic in A and there exist f in
S(p) and § > O such that for é < |z| < 1,

zF’(z) o
14 R[f( )] 0

We shall say that F is in K( p) and analytic on |z| = 1, if F is analytic
for |z| < 1 and there exist f, analytic for |z| < 1, such that (1.2), (1.3) and
(1.4) hold for |z] = 1. Inequality (1.1) was proved by Goodman and
Robertson for a function in S(p) in case all its coefficients are real [2] and
by Robertson (7], if a; = a, = --- = a,_, = 0, the remaining coefficients
being complex. The author [5] proved (1.1) for n = p + 1 for functions in
K(p) and in [6] the inequality was proved for all n > p + 1, if f is in
K(p) and a; =a,=--- =a,_, =0. A proof of (1.1) for functions in
K(p) with real coefficients appears in the literature [3]. However, the
proof seems to be flawed (see for example MR 58 #22521). In §3 we give
a different and simpler proof of this result using the inequalities obtained
in §2.

2. Coefficients of functions with positive real part.

LEMMA 1. Let Re ¢y > O and for z in A,

1+ ez
+ ilmcy, =
74

(2.1) P(z) = (Rec,) Z )\ Z c,z"

where for j = 1,2,...,m, t; and \; are real with \; > 0 and X7, A, = 1.
Define for a fixed n the s by s determinants Q{*),s > 1,k = 1,2,... ,mby

i(n+s—2
et e o 2/C0 Cnrs-3/Co €./ Co

1 1 0 0

e 1/ 1 0

(s) = .
Ok ek 2/ ¢Co 1/ 0
'~ Dk Cs_2/Co ¢5-3/Co 1
then fors = 1,2,...andn = 2,3,...

e 2
Z }\kIQl(cS)I =1.
k=1




Proof. We have c,
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= (Recy)LT 2 A e™ forn >

nant is linear in any of its columns, we can write

QI(<S) = Z }‘j

Jj=1

1
eilk

ei(s——Z)tk

1

DU Y (Re co)e DY ey ey afco -

0

2(Recy)e’i/c, 1

2(Rec )el(s /e, €s-3/¢o

Expanding the determinants by their second row we obtain

(2.2)

0p -

ei(n+s—2)tk

et

ei2'k

ei(x—-Z)tk

Jj=1

— eithl(cs—l) —

“ 2(Re Co) A i2t,

-2

Co j=1

cn+s—3/c0 cn/CO
1 0
¢1/Co 0
€,-3/Co 1

ei(n+s—2)tj cn+s-3/c0

eitj 1

il € €1/

e’ €s-3/Co
2(Recy) & :

-1

bl St 28 Z )\jean}s ).
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> 1. Since a determi-

Cn/cO
0
0

cn/CO

We proceed by induction. The case s =1 is trivial. For illustrative
purposes we also consider the case s = 2. QP = ¢!« — ¢, /c,. Thus

m m
5 rjopl' =12 5 A, Ref e
k=1 k=1

=1—-2Re Z}\ e ot

Reco tz c,
=1-4Re Z}\ iyl 4|2
Co
2 2
=1-|2 4|32 =1
o o

m
i k
k (
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&) +
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2
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2

)é oint

2

Co



142 ALBERT LIVINGSTON

Assume that 7, A, |0~ V)% = 1 for some s. Using (2.2) we obtain,

2

2R =
(2.3) Z Mog| - Z AiJeitQpD = Z250 3 A et
0 j=1
“ (s=1) Re CO - 5 YtV - it (s—1)
= Z >‘k|Qk | —4Re Z [0)3 Z}\je Q5
k=1 k=1 j=1
4 Re Co f Ajeith(s 1)
Co 1
m 1 Re ¢, 2 Re ¢, 1 2
= £ aJoyf +of 22| - re "0y
k=1 o
= Z >‘k|Q(S_1)I =
k=1
This then completes the proof of the lemma by induction.
THEOREM 1. Let P(z) = ¢y + ¢,z + --- be analytic in A and satisfy

Re P(z) > 0 for z in A. For s = 1,2,3,... define the (s + 1) by (s + 1)
determinant

Cots/ €0 Cnrs—1/Co Cnrs—2/Co *°°  €,/Co
¢/ 1 0 <. 0
AP =| /¢ €1/ ¢ 1 T 0
¢,/¢g ¢_1/¢o C,—2/Co T 1

Then fors = 1,2,...andn =1,2,...,

Rec,

49| < 2’ <2.

Co

Equality is attained for P(z) = (1 + z)/(1 — z).

Proof. Since functions satisfying the hypothesis of the theorem are
uniform limits in compact subsets of A of functions of the form (2.1), we
may restrict our consideration to such functions. Thus we may assume
that the c, have the form

¢, = (Recg) 202X e™

Jj=1
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We therefore have, using the linearity of 4 in the first column

i(n+s—1)¢,
el(n Dk cn+s—1/CO cn+s-2/c0 e cn/co
1 1 0 e 0
m .
A9 =Y 2113 Co Aei| e ¢1/¢ 1 ..o 0
k=1 0 . . . .
i(s—1
ek €s-1/Co ¢—2/C 01
2ReC,

Z Akeith,((s+1)'

CO k=1

Using the Schwarz inequality and the fact that X7’_; A, = 1, we obtain

2Re G|
G

2Re CO

2
47 <

Z A IQ(S+1)I

b

by Lemma 1. This gives the inequality stated in the theorem.

COROLLARY 1. Let P(z) = ¢y + ¢,z + --- be analytic in A and satisfy
Re P(z) > 0 for z in A and let 1/P(z) =dy,+ dyz+ ---, then for p =
1,2,...,

<2 Re ¢,

<2

P
Z dy_(Coi

k=t

Co

fort =0,1,2,...,pandn > p.

Proof. Since (P(z))(1/P(z)) = 1 we obtain for any p = 1,2,... the
system
1 =d,
0=dy, +dc,
0=dy, + dic, +d,yc,

0=dy, ,+dc, , 1+ - +d, .

Let
Co 0 0
(N c 0
— ap—t+l
B e CZ Cl 0 - C{)’
Cp—t Cp—i-1 Co
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and let B;; be the minor of the element in the ith row and jth column of
B. Using Cramer s rule we obtain forj = 0,1,...,(p — t),
(-1)’
4= =B
0

Therefore in the notation of Theorem 1

¥4 l)k t
de—zc ch k g — T B ki1
k=t
cn t cn—t—l cn—p
a Co 0
1
= c c 0 = AP~!
p—t+1| 2 1 477,
c§ . .
cp——t cp t+1 cO
Thus by Theorem 1
Rec,
k—-tcn—k = 2 c 2.
0

3. Coefficients of functions in K( p).

LEMMA 2. Forn>p + landt =1,2,...,(p — 1)

2p(n+ p)!
GV 2 - - D= )
"il 4p(k + p)!
k=pr1 2Pk —p — D)Y(k? - p?)
2n(n + p)!
T @p)n—p - (n=p?)’
& 8s(k + p)!

(3.2) 2+ ) Yy

kopi1\smrr1 (P + ) p = )k — p — YUKk? = 5?)
L 4s(n + p)!

L G rap—s)n—p D7 =)
- 4t(k + p)!
T Op = 0k — p = DKL)
2t(n + p)!

T+ 0 - OMn - p— Di(n? = 12)
(continues)
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_ 2n(n + p)!
(p+ ) (p—t)(n—p-1Un*-1")

If n = p + 1, we interpret sums of the form £;Z) ,, as zero.

Proof. If n = p + 1, both sides of (3.1) equal 2( p + 1). Forn > p + 2,
(3.1) appears as equality (2.6) in [6). f n=p + 1 and t = p — 1, both
sides of (3.2) equal 2p+ 1) (p+1). Foralln>p+2 and t=p — 1,
(3.2) appears as equality (2.5) in [6]. We assume then that (3.2) is true for
a particular value of 7 and all » > p + 1. Replacing ¢ by (¢ — 1) in (3.2)
and using the induction hypothesis we see that the proof of (3.2) will be
complete if we can prove that for a fixed rand alln > p + 1,

2(n+t)(n+p)
(p+ ) (p—0)(n—p-1)n*-1?)
.\ 2(1 = 1)(n + p)!
(p+t=1p—t+1)n—p—1)n>(t - 1))

(3.3)

LY 4t(k + p)!
k=pr1 (P + ) (p — )k — p — DI(k? - 1)
N "il 4(t — 1)(k + p)!
k=t (p+t=Dp—t+ Dk —p— (k> =(¢ - 1))
2n(n + p)

= (p+t——l)!(p—t+l)!(n—p_1)!(,22__(1_1)2)-

We will prove (3.3) by induction on n. If n = p + 1, both sides of (3.3)
equal 2(p + D2p + DI(p + )!'(p — t + 2)!. Assume that (3.3) is true
for a particular value of n. Replacing n by (# + 1) and using the induction
hypothesis, the left side of (3.3) becomes,

2(n+t+1)(n+p+ 1)
(p+p—)(n=p)(n+1)"~2?)
N 2t = 1)(n+p+ 1)
(p+t—=1p—t+(n—p)Y(n+1)"-(-1))
N 4t(n + p)!
(p+ ) (p-0)(n—p-1)Un*-1?)
+ 4(t — 1)(n + p)!
(p+t—=1p—t+1)n—-p-1)n*—(s- 1)

(continues)
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N 2n(n + p)
(p+t=Dp—t+ 1 (n—p-1Yn?—(t— 1)
B 2(n+t)(n+ p)!
(p+)(p— ) (n—p—DUn®>—1?)
2(t —1)(n + p)!
(p+t=DUp—t+1D(n—p—1)n>—(r- 1)’

_ 2(n+p+ 1)
(p+)(p—t)(n—-p)(n—1+1)
2t —1)(n+p+ 1)
(p +t—Dp—t+ D) (n—pNWn+t)(n—1t+2)

B 2(n+p)'
(p+)(p—t)(n—p—1n+1)

2(n+p)'
(p+t—1)'(p—t+1)'(n— - D(n—t+1)

B 2(n+p). n+p+1 1
C(p+)Mp=-Mn—-p-)|(n-p)n—t+1) n+t
2(n+ p)!
(p+t—1)'(p—t+1)(n— - D n—t+1)

N 2(t—1)(n+p+ 1)
(p+t—Dp—t+D(n—pn+t)(n—1t+2)

_ 22n + 1)(n + p)!

T (p+r=Dp—Mn-pMn—-t+1)(n+1)
2(n+ p)!
(p+t——1)'(p—t+l)‘(n-— - DY n—-1t+1)

20t —)(n+p+ 1)
(p+t—-l)'(p—t+1)'(n—p)'(n+t)(n~t+2)
B 2(n+ p)!
(p+t—-1D(p-t)Mn-p—-D(n—-t+1)
2n+1 + 1
(n—p)n+1) (p—t+1)
+ 20t —1)(n+p+ 1)
(p+t—1Dp—t+1)n—-pn+t)(n—1t+2)

X

(continues)
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_ 2(n+p+ 1)
(p+t—=DUp—t+1)(n—p)(n+1)
2t =1 (n+p+ 1)
(p +t—D(p—t+ D (n—pn+t)(n—1t+2)
_ An+p+1)! [ t—1 ]
(p+et—=DYp—t+1D)(n—p)(n+1) n—t+2
_ 2(n+1)(n+p+ 1)
(p+t=Dp—t+D(n—-p)(n+1)°-(r-1)"
which is the right side of (3.3) with n replaced by (» + 1). This completes
the proof of (3.3) by induction.

LeMMA 3. Let F(z) = a;z + a,z*> + --- be in K(p) and be analytic
for|z| < 1 with a, real for each n, then there exists f(z) = b,z + b,z* + -
in S(p) and analytic for |z| <1 with b, real for each n, such that
Re(zF'(z)/f(z)) > O for|z| < 1.

Proof. Since F(z) is in K( p) and analytic for |z| < 1, it is known that
there exists 4(z) in S(p) and analytic for |z| < 1 such that
Re zF’(z)/h(z) > 0 for |z| < 1. Let P(z) = zF'(z)/h(z) and Q(z) =
[P(2)P(2)]V? = [(zF'(2))*/h(z)h(Z)]"/?, where we take the principal
branch for the square root. Let f(z) = zF'(2)/Q(z) = byz + byz* + ---,
then f is analytic for |z] < 1 and b, is real for each n. Also zf'(z)/f(z)
= L(zh'(2)/h(2)) + 3(zh’(Z) /h(Z)). Thus Rezf’(z)/f(z) > O for |z]| <
1. Since zF’(z) has exactly p zeros in A [5], f(z) has exactly p zeros in A.
Thus fis in S(p) and Re(zF'(z)/f(z)) = Re Q(z) > 0 for|z| < 1.

THEOREM 2. Let F(z) = a;z + a,z> + - - be in K(p) with a, real for
each n, then forn > p + 1,

2 2t(n + p)!
GO el G G-~ D = 7

) la,.

Proof. Without loss of generality we may assume that F is analytic for
|z] < 1. Then by Lemma 3, there exists f(z) = b,z + byz? + --- in S(p)
and analytic for |z] < 1 with b, real for each n, such that Re[zF'(z)/f(z)]

> 0 for |z| < 1. Let P(z) = zF'(z2)/f(z) = ¢4 + ¢,z + ---. Comparing
coefficients, we obtain
(3.5) na,= Y b,c, .

k=1
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Let 1/P(z) =d,+ d;z + ---. Comparing coefficients of both sides of
the equality f(z) = (zF’(z))(1/P(z)), we have,

(3.6) b,=Y tad,_,.
=1

Combining (3.5) and (3.6), we have forn > p + 1,

)4 k n
(3'7) ha, = Z ( tatdk—t)cn—k + Z bkcn-—k

k=1\1t=1 k=p+1

14 14 n
= Z( dk—tcn—k)tat+ E byCp_y-

t=1\k=t k=p+1

Making use of Corollary 1 and the fact that |c,| < 2|c,|, we obtain from
(3.7

y4 n—1
(3.8) nla,|< Y 2ta|+ X 2leol bl +leol 1B
t=1 k=p+1

Since f is in S(p) and b, is real for all n, it is known [2] that for
k>p+1,

- p 2s(k + p)!
(39) 'bk'_s§1 (p+s)p—s)k—p—1)(k?—s?)

AR

Since Re(1/P(z)) > 0 it follows that |d,| < 2|d,| = 2/|col- Therefore,
from (3.6) we have

"« 2ta,| | nla,l

(3.10) bl < 2

=1 lcol lcol

Combining (3.9) and (3.10) we have fork > p + 1,

I 2s(k + p)!
(3.11) |bk| = sgl (P + S)!(P —_ S)!(k -p - 1)!(k2 - 32)

X (f 2af s'—a—')

=1 1%l leol
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Combining (3.8) and (3.11), we obtain,

2s(k + p)!
nla,| < Z 2tla |+ k=§+1 szl (p+s)(p— )Wk — p — DYk? = 52)
X(si14flat|+ 2S|asl))
TGN - )(n—p - Di(n~ 57 ,§2" A+ sla).

Therefore,

P
nla,|< ) 2t

* k:;-lﬂ sz: (p+s)p- 3;!((';1_“_1;)!_ Dk = s§4tla,l
T et e 1
* :2 (p+s)p - i;g((';tp)'_ D2 = s57) & Z 2t]a/
¥ é (p+s)(p _2:)2!2: J_ri)!_ Di(n? = 57) la].
Thus,
nla,| < é 2t|a,|
i ,:il :1 i “L(p+s)p- j;'((lr I;,)'_ Dk = %) tla,|
* k:gl ‘fi‘ (p+0)p _41,)2'2,; +§)' D = 7)o
VT T o eyl
’ é (p+0)Np —2tt)2'§: ip)‘— DY(n? - 12) la]
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Therefore,

r—1 n—1 P 1
nal< Y2+ X X Bs(k +p)t

t=1 kept1s—1+1 (P +)(p = s)(k —p — DI(Kk* - 5?)
= at(k + p)!

L G - Ok —p - DIE = 1)
* E (p+9)(p - :;!((:Jr—i)i Di(n? — 57)
T+ s - f)t!(<';+—l;)!— Di(n? — ) ]"“"
P Z G = (7]
2p)(n 2—p1£n—+1§:)(!r12 -p?) ]pla”l'

Using Lemma 2, we obtain,

ala p-l 2nt(n + p)! 2
o= 2 O = Otn —p — Dt = 7)
2np(n + p)! a|
@p)(n—p—-1)(n?=p?)" "

which is equivalent to (3.4).

Inequality (3.4) is known to be sharp for functions in S( p) with real
coefficients [2]. Since S( p) is contained in K( p), (3.4) is the best possible
inequality that can be obtained for K( p).
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