Pacific Journal of

Mathematics

WHEN ALL SEMIREGULAR H-CLOSED EXTENSIONS ARE
COMPACT




PACIFIC JOURNAL OF MATHEMATICS
Vol, 120, No. 1, 1985

WHEN ALL SEMIREGULAR H-CLOSED EXTENSIONS
ARE COMPACT

JAck R. PORTER AND R. GRANT WOODS

It is well-known that compactifications of Tychonoff spaces are
semiregular and H-closed. Katetov has determined when certain H-closed
and semiregular H-closed extensions of a Hausdorff space are compact.
In this paper, those Tychonoff spaces in which all semiregular, H-closed
extensions are compact are characterized.

1. Introduction and preliminaries. In 1947, Katetov [K,] de-
termined that the “largest” H-closed extension « X of a Hausdorff space X
is compact iff X is compact. Since compact spaces are semiregular, a
related problem is to determine when the semiregularization of kX (de-
noted (k X'),) is compact. This was also solved by Katetov [K,]. A natural
extension of this problem is to determine when all of the semiregular,
H-closed extensions of a space are compact.

If #(X) denotes the collection of all semiregular, H-closed exten-
sions of a space X and #'( X) denotes the collection of all compactifica-
tions of X, the problem is to determine those spaces X such that #(X) =
X' (X). Since #(X) +#+ @ iff X is semiregular and ) (X) # & iff X is
Tychonoff, it follows that #(X) = #(X) = @ iff X is not semiregular
and #(X) # X (X) when X is semiregular but not Tychonoff. So, the
nontrivial portion of the problem is to characterize those Tychonoff
spaces X such that #( X) = X (X). This problem is completely solved in
this paper.

At first glance, the evidence points to the trivial solution that . ( X)
=X(X) iff X is compact, for if D is an infinite discrete space, then
M (D) # A (D) (see [PV,]). However, additional investigation reveals that
if X = BN\ {p]} forsomep € BN\ N, then #( X) = X' (X).

Some preliminary definitions and concepts are needed. Throughout
the paper, the word “space” will mean “Hausdorff topological space”.

A space X is H-closed if X is closed in every space containing it as a
subspace. Recall that set 4 C X is regular open if A = intyclyA. The
semiregularization of a space X is the topology generated on the underly-
ing set of X by the family of regular open subsets of S, and is denoted as
X,. A space X is semiregular if X = X_; the space X is easily verified to be
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semiregular. Obviously, the identity function on the underlying set X,
viewed as a function from space X onto the space X, is continuous.

A space X is minimal Hausdorff if there is no strictly coarser Haus-
dorff topology on X. A well-known result [K, ] is that a space X is minimal
Hausdorff iff X is H-closed and semiregular. If X is H-closed, then X is
also H-closed and, hence, minimal Hausdorff [PT]. A space Y is an
extension of a subspace X if cl;, X = Y; two extensions Y and Z of a space
X are said to be equivalent, denoted as Y =, Z, if there is a homeomor-
phism A: Y — Z such that hA(x) = x for each x € X. Henceforth, we
identify equivalent extensions of a space. Another well-known result [S] is
that if Y is an extension of a space X, then Y, is a semiregular extension of
X,; in particular, when X is semiregular, then Y is also an extension of X.

If #is an open filter base on a space X, the set N{cl, F: FE€ %} is
called the adherence of #in X and denoted as ad ,%. An open filter base
Fon X is fixed if ad yF+# J; otherwise it is free. For each space X let
X* = XU {%: %is a free open ultrafilter on X}. The family {U C X: U
isopenin X} U{{#} U U: Uisopenin X, UE ¥, € X*\ X} is a
base for a topology on X*; X* with this topology is denoted as k X. For an
openset UC X,letoU=UU {# € X*\ X: U € %}. The family { oU:
U open in X} is a base for a topology on X*; X* with this topology is
denoted as oX. The space (kX), is denoted by pX. We now list some
results which are needed in the sequel; these results can be found in
X,,K,,P,PT,PV,,PV,].

(1.1) PROPOSITION. Let X be a space. Then:

(a) kX and oX are H-closed extensions of X, and the identity function
from k X onto 6 X is continuous.

(b) If Y is an H-closed extension of X, then kX > Y, i.e., there is a
continuous function from k X onto Y which is the identity function on X. [1It is
in this sense that k X is the “largest” H-closed extension of X.]

(c) If X is semiregular, then pX is a minimal Hausdorff extension of X,
pX = (0X),, the identity function from o X onto p. X is continuous, o X \ X is
homeomorphic to p X \ X, the family { oU: U is a regular open subset of X}
is a base for the topology on p X, and for an open subset U C X, cl,x(oU)
= (cl,U) U ol.

For a space X, the spaces kX and oX are respectively called the
Katetov H-closed extension and the Fomin H-closed extension of X; if X
is semiregular, pX is called the Banaschewski-Fomin-Shanin minimal
Hausdorff extension of X. Let Y be an H-closed extension of a space X,
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and let f,: kX — Y denote the (unique) continuous function such that
fy(x) = x for each x € X (see 1.1(b)). If X is semiregular and ¥ = p X,
then f} is denoted as f,; since the identity function on the underlying set
of kX is a continuous function from ¢X onto p X (see 1.1(c) above), it
follows that f, is the identity function on X*. For eachy € Y\ X, fy (»)
is a subset of k X\ X = X*\ X and, hence a subset of o X\ X and
pX\ X. Let P(Y)={fy(y): y € Y\ X}. So P(Y) is a partition of
pX\ X.

(1.2) ProrosiTION. [P, Th. 05; PV,, Th. 3.1 and 3.5; PV,, Th. 5.4]. Let
X be a semiregular space. Then:

(a) If Y is an H-closed extension of X, then P,(Y) is a partition of
p X\ X into compact subsets.

(b) If P is a partition of p X\ X into compact subsets, then there is an
H-closed extension Y of X such that P,(Y) = P.

(¢) If Y and Z are H-closed extensions of X, then

(@) P(Y) = P(Y,) and

() P(Y)=P(2)iff Y, = Z,.

So, by 1.2(c), there exists a bijection between the set of minimal
Hausdorff extensions of a semiregular space X and the set of partitions of
pX\ X into compact subsets. Let #(X) denote the set of all minimal
Hausdorff extensions of a semiregular space X.

Let P be a partition of a space X into compact subsets. 4 set C C X is
P-saturated if C = U{ B € P: B C C}. We say that P is upper semicontinu-
ous (abbreviated as USC) if, for each open subset U of X and each4 € P
for which 4 C U, there exists a P-saturated open set V such that 4 ¢ U
¢ U. If X is a Tychonoff space, Y is a compactification of X, and g:
BX — Y is the continuous function such that g,(x) = x for x € X, then
P,(Y) is used to denote { g5 (p): p € Y}. Let X'( X) denote the set of all
compactifications of X.

(1.3) PROPOSITION. Let X be a Tychonoff space. Then:

(a) [N, Prop. 1] If Y € X' (X), then Py(Y) is an USC partition of BX.

(b) [N, Prop. 1] If P is an USC partition of BX and {{x}: x € X} C P,
then for some Y € A (X), P = Py(Y).

c)pX = BX.

Proof. Part (c) follows from 1.1(b), the fact that (k X), = p X, and the
following fact (see [K,]): if Z is a space and f: Z — R is a continuous
function into a regular space R, then f: Z, — R is also continuous. O
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(1.4) PROPOSITION. Let X be a Tychonoff space for which pX = ,X.
Then X' (X) = M (X) iff, for each partition P of p X\ X into compact
subsets, the partition P =P U {{x}: x € X} is an USC partition of BX.

Proof. Suppose X' (X) = #(X) and P is a partition of p X\ X into
compact subsets. Then P = P,(Y) for some Y € #(X) by 1.2 (b,c). But
YeX(X)by hypothes1s Smce gvel, (x)=x for each x € X, it follows
that g, o f, = fy. Hence P= P;(X) and P is an USC partition of BX.
Conversely, to prove that #( X) = X'( X), first note that X' (X) C A (X)
as every compactification of X is minimal Hausdorff. Now, suppose
Y € #(X). Then by hypothesis, P“(Y) is an USC partition of SX. So,
there is some Z € #'( X) such that Pg(Z) = PF(Y). In particular, P,(Z)
= P(Y) so Z, = x Y, by 1.2(c), which implies that Z = Y. o

A point x in a space X is called extremally disconnected in X if for
each pair of disjoint open sets U, V of X, x € cl, U Ncly V. A subset
A C X is said to be regularly nowhere dense in X if there are disjoint open
sets Uand Vin X such that 4 C cl,U N cl, V.

(1.5) Let X be a Tychonoff space. The following are equivalent:

(@ pX = BX,

(b) every closed, regularly nowhere dense subset of X is compact, and

(c) every point of X\ X is extremally disconnected in SX.

Proof. The proof of the equivalence of (a) and (b) is in [K,]. To show
(a) implies (c), it suffices to show for disjoint open sets U and V of BX
that clg,U N clgyV € X. Note that clgyU =cl,yU=cl, x(UN X) =
cl (U N X) U o(U N X); the first equality is by (a) and the last equality
is by 1.1(c). Since o(UN X) No(V N X)=0o(UN VN X) = &, it fol-
lows that clgyUNclgy V= (clxy(UN X)Ncly(VN X)) U (o(UN X)
N o(V N X)) € X. Conversely, to show that (c) implies (b), suppose U
and V are disjoint open subsets of X. Let R = BX\ clgy(X\ U) and
T =BX\clgy(X\ V). Note that RN X=U, TNX=V,and RNT
NXcUNV=; as Xis dense in BX this implies that RN T = &.
By (¢), clgxyR Nclgy T C X. Since clyUNclyVCclgyRNclgyT, it
follows that cl , U N cl , ¥V is compact. This completes the proof of (b). O

Let X be a Tychonoff space. A point p € X\ X is called a remote
point of BX if for each closed, nowhere dense subset 4 C X, p & clgy A.

(1.6) [vD] Let X be a Tychonoff space. Then:

(a) If X is second countable, non-pseudocompact and has no isolated
points, then BX has remote points.
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(b) If p is a remote point of BX, then p is an extremally disconnected
point of SX.

2. Main result. We can now prove the main result of this paper.

(2.1) THEOREM. Let X be a Tychonoff space. Then #(X) = X (X) iff
the following are true:

(a) every closed, regularly nowhere dense subset of X is compact,

(b) BX\ X is discrete, and

(¢) if BX\ X is infinite, then clgx(BX\ X) is the one-point compactifi-
cation of X\ X.

Proof. Suppose A (X) = H'(X). Since pX € #(X), then by 1.3(c),
pX = BX. By 1.5, (a) is true. If BX \ X is finite, then both (b) and (c) are
satisfied. So, suppose BX\ X is infinite. Then BX\ X has at least one
accumulation point in 8X. Assume, by way of contradiction, that p and ¢
are distinct accumulation points of X\ X in BX. Let U, and U, be open
neighborhoods of p and g, respectively, such that clzy U, N clgx U, = @.
There is an infinite set 4 = {x,: n € N} € U,\ X and an infinite set
B={y:neN}cUN\X Letf: BN — clgy4 and g: BN — clzy B be
continuous functions such that f(n) = x, and g(n) =y, for n € N. Let
a € BN\ N. So, f(a) and g(a) are distinct accumulation points of 4 and
B, respectively. Choose k € N so that f(a) # x, and g(a) # y,if n > k.
Consider the partition

P={{x,,5):neN\{L2,....k}}u{{x;}:1<i<k}

U{{n}:1<i<k}u{{y}):yeBX\(XUA4UB)}

of compact subsets of BX\ X =pX\ X.By 14, P=PU {{x}: x € X}
is an USCApartition of BX. Let T = BX\ clgy U,. Evidently f(a) € T, so
there is a P-saturated open set ¥V C BX such that f(a) € V' C T. By the
continuity of f there is an infinite set C € a such that f[C] C V. So, there
is some m € C such that m > k. Hence, { x,,, y,,} C V as Vis P-saturated.
This is impossible as y,, € B C clgy U, and V' N clgy U, = &. This com-
pletes the proof that BX \ X has precisely one accumulation point in SX.
Thus, clgy(BX\ X) = (BX\ X) U { p} where p is the accumulation point
of BX\ X. Also, this shows that clz(8X\ X) is a one-point compactifi-
cation of the discrete space SX \ (X U { p}). By showing thatp & BX\ X,
we will have shown that (b) and (c) are satisfied. Assume, by way of
contradiction, that p € BX\ X. Let { x,: n € N} be a faithfully indexed
infinite subset of BX\ (X U { p}). Since { x,: n € N} is discrete and S.X
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is regular, it is straightforward to obtain a family {U,: n € N} of pairwise
disjoint open sets of BX such that x, € U,. Let U, = U{U,: n even} and
Uy =U{U,: nodd}. Then U, N Uy = @.Butp € clgx U, N clgxy Uy so pis
not an extremally disconnected point of 8X, which contradicts 1.5. So we
have that p & BX \ X and (b) and (¢) are satisfied.

Conversely, suppose (a), (b), and (c) are satisfied. By 1.5, B X = pX.
Let P be a partition of compact subsets of p X\ X. By 1.4, it suffices to
show that P = P U {{x}: x € X} is an USC partition of 8X. First note
that if 4 € P, then 4 is a finite set as 4 is a compact subset of the discrete
space p X\ X = BX\ X. If BX\ X is a finite set, then any partition of
BX\ X, in particular P, is an USC partition of 8X\ X; if X is a locally
compact space and P is an USC partition of BX \ X, it easily follows that
P is an USC partition of BX. So, suppose BX\ X is infinite. Then
clgx(BX\ X) = (BX\ X) VU { p}. To show P is an USC partition of BX,
let U be an open subset of BX. There are three cases.

Case 1. A C U where A € P. Since SX\ X is discrete, there is an
open set U, in BX such that U, N (BX\ X)=A.Now, A Cc U NUCU
and U, N U is P-saturated.

Case 2. p € U. Since (BX\ X)\ U is finite, there exist » € N and
sets A;,...,4, € P such that (BX\ X)\UC A4, U ---UA4,. Now, p €
U\N(4, VU ---U4,)c U and evidently U\ (4, U ---UA4)) is
P-saturated.

Case 3. x € U where x € BX\ clgy(BX\ X). Then x € U\
clgx(BX\ X) € Uand U\ clgx(BX\ X) is P-saturated. |

For each cardinal A > 0, we now give an example of a noncompact,
Tychonoff space X such that #(X) = X (X) and |[BX\ X| = A.

(2.2) ExampLE. Let p € BN\ N and X = SN\ { p}. Then k X\ X is
a singleton and (kX), = pX = BN. So, if Y is the topological sum of »n
copies of X, where n € N, then Y is an example of a space with the
properties that #(Y) = X#(Y) and |BY \ Y| = n.

(2.3) ExaMPLES. Let A be an infinite cardinal. Let D be a discrete
space of cardinality A, and let #be a partition of D into countable infinite
subsets such that |.Z| = A. For each d € D, let I, be a copy of the unit
interval [0,1]. Let Y denote the topological sum of the I,’s—ie., Y =
@®{I,: de D}. For each L€, let Y, = @{I,: d€ L}, and put
X =Y U {o0}. A subset U of X is defined to be open if (1) U N Y is open
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in Y, and (2) if co € U, then there is a finite subset % of .Z such that
X\U{Y;: L € #} ¢ U. Clearly this defines a Tychonoff topology on X.
Here are some results that will be useful in obtaining the desired example.

(a) If L € 2, then Y, is clopen in X; in particular, clz, Y; = BY;.

(b) {clgx Y;: L € L} is a family of pairwise disjoint clopen subsets of
BX.

© BX = {0} UUclgy Y,: L € Z}].

(d) A point p € BX is a remote point of X iff forsome L € ¥, pisa
remote point of BY;.

Proof. The proofs of (a) and (b) are straightforward. To prove (c), let
p € BX\ X. There is an open set U in BX such that oo € U and
p & clgy U. There is a finite set #C Lsuch that X\U(Y,;: Le #} c U.
Since BX = [U{clpx Y,: L€ F U clgy(X\U{Y,: LEF}), then p €
clgy Y, for some L € %. The remainder of the proof of (c) is easy. To
prove (d), let p be a remote point of BX. By (c), p € clgy Y, for some
L € Z.If A is a closed, nowhere dense subset of Y,, then A4 is a closed,
nowhere dense subset of X. So, p & clgyA which implies that p & clgy, 4
as BY; = clyx Y, by (a). Hence, p is a remote point of BY,;. Conversely,
suppose p is a remote point of BY; (= clgy Y;) for some L € &, and let 4
be a closed, nowhere dense subset of X. Then B =4 N Y, is a closed,
nowhere dense subset of Y;. Since clgy Y, is a neighborhood of p in X,
then p & clgy, B iff p & clgy B iff p & clgyA. So, p is a remote point of
BX.

By 1.6, BY, has a remote point, say p,, for each L € #. Let
Z=BX\{p,: L€} Since XC ZC BX, then BZ = BX and
IBZ\ Z| = A. By (b), BZ\ Z is a discrete subset of BZ. By 1.6, each
point of BZ\ Z is extremally disconnected in SZ; hence, by 1.5,
every closed, regularly nowhere dense subset of Z is compact. Clearly,
{clgx(X\U{Y,: L € F}): Fis a finite subset of £} is a clopen neigh-
borhood base of o0 in BX = BZ. But, for each finite subset % of £,

lx(X\NU{Y: LeF}) 2 {p: LEAF);

this shows that (BZ\ Z) U {0} = clgz(BZ\ Z) is the one-point com-
pactification of 8Z \ Z.

So, Z is a Tychonoff space satisfying (a), (b) and (c) of 2.1; hence,
M(Z)=H(Z)and |BZ\ Z| = A. O

Let Q denote the space of rational numbers. Another example of a
Tychonoff space X with the properties that #(X) = ) (X) and |BX \ X|
= N, can be obtained by letting X = BQ\ {d,: n € N} where {d,:
n € N} is a sequence of remote points of BQ converging to some point of
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Q. That there is a sequence of remote points of SQ that converge to a
point of Q follows from the result in [vD] that the set of remote points of
BQ is dense in SQ \ Q and, thus in 8Q.

We are indebted to J. Vermeer for this different example. Let A be an
infinite cardinal, ¥ = @ {N,: a« <A} where N, is a copy of N, and
X =Y U {c0}. Asubset U C X is defined to be open if U N Y is open in
Y and if oo € U, there is a finite subset F C A such that N, C U for
a € A\ F. Let p, € BN,\N, and Z = BX\ { p,; @ <A}. Using the
above technique, it follows that #(Z) = X' (Z) and |8Z \ Z| = A. Another
interesting example pointed out by J. Roitman is to let #Z be a maximal
almost disjoint family of infinite subsets of N and X = N U {co} where
U € X is defined to be open if co € U implies there is a finite sub-
set #C 2 such that R C U for R € #\ %. For each R € %, let pp €
clgxyR\R (= BR\R), and Z = BX\ {pr: R€2}. Then #(Z) =
H(Z), |BZ\Z|=|2|, and Z\ {00} is not the topological sum of
(BR\ (pr): R € #).

2.4. REMARK. Property 2.1(a) is an internal property of a Tychonoff
space X and 2.1(c) translates into this internal property: either there exists
n € o such that given any collection of n + 1 pairwise disjoint zero-sets of
X, at least one is compact, or else X is locally compact at all but one
point. To obtain an internal condition on X that is equivalent to 2.1(b) is
more involved, and it seems difficult to formulate a simple condition that
does not involve mention of z-filters. However, it is possible to formulate
an involved internal condition as follows. [The reader is referred to [GJ]
or [W] for relevant background information about Stone-Cech compactifi-
cations.]

(2.5) PROPOSITION. Let A be an infinite cardinal and let X be a
Tychonoff space. The following are equivalent:

(1) BX \ X is a discrete space of cardinality \ and

(2) there are families {Z;: i <A} and { H;: i < A} of zero-sets of X
with the following properties:

(a) for each i <\, Z, is not compact, but if A and B are disjoint
zero-sets of X contained in Z,, then at least one of A or B is compact,

(b) foreachi <\, Z,NH,= @ and if S € Z(X) and S N (Z; U H;))
= O, then S is compact,

(© ifi <j <A, thenZ,N Z; is compact, and

(d) if Fis a family of noncompact zero-sets of X and if F N G is compact
whenever F and G are distinct members of # , then | ¥ | < \.
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Sketch of proof. To show (1) implies (2), let BX\ X = {d;: i <A}.
For eachi <A, find S; € Z(BX) and T, € Z(BX) such that d; € intzy S,
(BX\X)\{d,} CintgyT,,and S;N T, = F.Let Z,= S, N X and H, =
T, N X. Bvidently, clgxZ,\ Z; = {d;} and (a) follows from this. As
BX\ X C intgyS, U intgy T;, (b) follows readily, and (c) follows from (a)
and the fact that d,#d; if i#j. If F, G€ Z(X), pr € clgxyF\ X,
P; € clgxyG\ X, and F N G is compact, then py # pg; hence, (d) follows
from the fact that |8X \ X| < A. Conversely, to show (2) implies (1), let
{Z: i <A} and {H; i <A} be families of zero-sets of X satisfying
(a)—(d). It follows from 2(a) that |clgy Z;\ X| =1 for i <A. Let {d,} =
clpxZ,\ X. By 2(b) {d;} = (BX\ X)\ clgx H;, which shows that BX\ X
is discrete. If i # j, then d; # d; by (c), and so |BX\ X| = A. It follows in
a similar way from (d) (and the fact that BX\ X is discrete) that
IBX\ X| < A. a

A space X is Urysohn if each pair of points are contained in disjoint
closed neighborhoods.

(2.6) THEOREM. Let X be a space. Then M (X,) = X (X,) iff every
H-closed extension of X is Urysohn.

Proof. The proof follows from these two facts: (i) a space Y is
compact iff X is H-closed, semiregular, and Urysohn and (ii) a space Y is
Urysohn iff Y, is Urysohn. The first fact is from [K,] and the second fact
is straightforward to prove. 0O
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