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We give a characterization in terms of G of those parts in the
unitary dual of a locally compact group G, which correspond to closed
normal subgroups of G. These are exactly the sets S c G, which have
the property that for all TΓ, p e S the support of TΓ Θ p is contained in S
and which are closed in a topology on G, which is in general weaker than
the standard topology on G, and which we call the L1 -hull-kernel-topol-
ogy. As an easy consequence we obtain that for * -regular groups G the
mapping N -» N1 = {TΓ e G\π^N = 1 Uς} is a bijection from the set of
closed normal subgroups of G onto the set of closed subsets 5 c G with
the property that TΓ <8> p has support in S for all TΓ, p e S. This gener-
alizes and unifies results of Pontryagin, Helgason and Hauenschild, with
a considerably simplified proof. Furthermore we prove that *-regular
groups have the weak Frobenius property (TP 1), i.e. 1G is weakly
contained in TΓ ® TΓ for all unitary representations TΓ of G, generalizing a
result of £. Kaniuth.

Let G be a locally compact group with unitary dual G and let JΓG

denote the set of closed normal subgroups of G. To every N e JΓG

corresponds a canonical subset of G, namely the annihilator iV"1 = {TΓ e

G\ττ\N = \\jp} of N. By the Gelfand-Raikov theorem N -> N1- is an

injective mapping from JVG into the subsets of G and it is an important

problem in harmonic analysis to describe the image of this mapping in

terms of G.

DEFINITION. A nontrivial subset Sof G is called a subdual of G, if for

all 7r, p e S the tensor product π ® p of π and the conjugate p of p has

support in S. We denote by 5fG the set of closed subduals of G.

It is clear that N -> Nx is an injective mapping from Λ ^ into S?G. Let

[i/] be the class of locally compact groups <?, for which N -> iV-1 is a

surjection o n t o ^ G .

As a well known consequence of the duality theorem of Pontryagin

one obtains that all abelian locally compact groups belong to [H] (see for

example [6], Chap. II, §1.7). S. Helgason proved in [8], Theorem 1, that all

compact groups belong to [H]. It was then W. Hauenschild, who gener-

alized and unified these results in [7], and proved that all Moore groups,
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i.e. all locally compact groups G, which have only finite dimensional

irreducible unitary representations, belong to the class [H],

On the other hand the support Gr of the left regular representation λ G

of a locally compact group G is clearly a closed subdual of G. If Gr = N1-

for some N e JΓG, then N = {e) and Gr = G. Therefore every group G,

which belongs to [H]9 has to be amenable.

We recall that the (standard) topology on G is induced by the

Jacobson topology on the primitive ideal space Prim(G) of the group

C*-algebra C*(G) of G via the mapping π -> kern c * ( G ) TΓ. Let Prim* Lι(G)

denote the space of kernels in Lι(G) of topologically irreducible •-repre-

sentations of Lι(G) in Hubert spaces. Prim* Lι(G) is also a topological

space with the Jacobson topology and the mapping TΓ -> kernLi ( G ) π

defines a second topology on G, which we call the Lι-hull-kernel-topology.

This topology is weaker than the standard one and in general both

topologies are different. Both topologies coincide if and only if the

canonical continuous and surjective mapping Ψ: Prim(G) -> Prim* Lι(G),

given by Ψ(I) = / Π Lι(G), is a homeomorphism, i.e. if G is * -regular.

DEFINITION. Let ^ G * c S?G be the set of subduals of G, which are

closed in the ZΛhull-kernel-topology.

The main result of our paper will be that Sf* is the exact image of the

mapping N -> N-1 for general locally compact groups. The results of Helga-

son and Hauenschild will be an easy consequence. But first we need the

following

PROPOSITION. For every unitary representation of G in a Hilbert space

3^m we have kernLi(G)77 ® π c kerLi ( G ) 1G.

Proof. Let Jίf^ be the adjoint space of J(fπ and denote by η the vector

η G Jί?π considered as element of Jί?π. Then m is the representation 77

considered as a representation acting in 3tifm. We fix a unit vector | G J^m

and an orthonormal basis {£,}/<=/ of JPm. Then for all x G G we have

( π ( j c ) | , | , ) = ( i r (x) i , ξ, ) a n d we obtain for all x G G

1 = (I, f> = (βrWf, ίrίjcjί) = Σ (*(x)ξ, ξ^ixΠ, I).
i'e/

Let J^denote the family of all finite sums of the functions

which are matrix-coefficients of 77 0 TΓ. If φ G Ĵ " then φ is continuous and

0 < φ < 1. Furthermore 1 = supφ€Ξ j F φ.
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Assume now that / e kernLi(G) π ® π. Then Jof(x)φ(x) dx = 0 for
all φ G j ^ . Given ε > 0 choose a compact set Jfa G such that
/F\JTI f(x)\ dx < ε/2. By Dini there exists a sequence {φw}wGN in J*"
(depending on Jf), such that 1 = lim^^^ φn uniformly on Jf. Then

f f(x) dx - lim f f(x)φn(x) dx + ί /(*) ί

= lim
Λ - * 00

J{x) dx - f J(x)φn{x) dx

< 2/ |/(x)|^ < e.

Since ε > 0 was arbitrary, we obtain jGf(x)dx = 0.
The following corollary generalizes a result of E. Kaniuth (see [9],

Lemma 1):

COROLLARY 1. Let G be a * -regular locally compact group. Then for

every unitary representation π of G π <8> π weakly contains the trivial

representation, i.e. every * -regular group has the property (TP 1) of [9].

Proof. For *-regular groups kernLi ( ( 7 ) 77 • π c k e r n L i ( G ) l c implies

that 1G is weakly contained in π π.

REMARK. Corollary 1 shows that a quite big class of amenable groups
has the weak Frobenius property (TP 1). This supports the conjecture that
all amenable groups have the property (TP 1).

THEOREM. For every locally compact group G the mapping N

bijection from JίG onto £?£.
is a

Proof. As we remarked above, the mapping N -> N1- is an injection
from JfG into Sfc. If N e JΓΦ then Nx corresponds to the set of topologi-
cal irreducible ^-representations of Lι(G)9 which are trivial on the kernel
of the canonical homomorphims from Lι(G) onto Lι{G/N). Therefore
N1- e £?£, and we only have to prove that every s e t ^ e 5^* is of the form
N± for some N e ^G.

First observe that by the proposition every S e ^ * has the following
properties:

(i) S contains 1G and T Γ G 5 implies Ϊ Γ G S .

(ii) for all 77, p e S the support of π * p is in5.
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Furthermore since 5 f ± = {x e G\π(x) = 1 | ^ for all π G S} is a closed

normal subgroup of G, we can consider S as a subdual of (G/S1-) , which

separates the points of G/S1- and is closed in the Z^-hull-kernel-topology.

It is therefore sufficient to prove that a set S e Sfg, which separates

the points of G, is equal to G.

Let S be such a set and let & be the set of unitary representations of

G, which have support in S. Since S is closed in G, S and ^ are weakly

equivalent sets of representations of G. Since S has properties (i) and (ii)

above, 0* contains the trivial representation and is closed under the tensor

product and under conjugation. It follows by a Stone-Weierstraβ argu-

ment (see [1], Theorem) that & is /^-separating, i.e. if / e Lι(G) and
π(f) = 0 f°Γ all π G ^ 9 then/ = 0. But then also *S is ^-separating, i.e.

its kernel in Lι(G) is the trivial ideal {0}. Since S is closed in the

ZΛhull-kernel-topology, we obtain S = G.

COROLLARY 2. 4̂ locally compact group belongs to the class [H] if and

only if ίfG = ^ * . Especially every *-regular locally compact group belongs

to [H] and every locally compact group in [H] is amenable.

REMARK. Let G be a locally compact group, such that all quotients

G/N are C*-unique, i.e. L\G/N) has a unique C*-norm (see [5]). The

same arguments as in the proof of the theorem give that G belongs to [H],

We do not know whether this class of groups is really bigger than the class

of * -regular groups.

The following is known about * -regular groups:

(A) Every * -regular group is amenable {see [2]).
(B) All groups G with polynomially growing Haar measure are * -regular

(see [2]).

(C) All semidirect product G = H IX N with abelian H and N are

• -regular (see [4]).
(D) A connected group G is *-regular if and only if all I G Prim(G) are

polynomially induced (see [3]).

It follows from the classification of Moore groups given by C. C.

Moore in [10], that all Moore groups have polynomial growth and so are

* -regular by (B). Therefore the result of W. Hauenschild is an immediate

consequence of the Corollary 2 and (B). It should be noted that the proofs

of the results of Pontryagin, Helgason and Hauenschild depend explicitly

or implicitly on the fact that the groups under consideration are * -regu-

lar. Besides this they make use of central theorems as the Pontryagin

duality theorem, the Peter-Weyl theorem or structure theorems for

Moore groups, which are specific for these classes of groups.
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Recently E. Kaniuth proved by quite different methods that a big

class of amenable groups, including the almost connected amenable groups,

belong to [H]. (Cf. E. Kaniuth, Weak containment and tensor products of

group representations. II, Math. Ann., 270 (1985), 1-15.) There seems to

be some hope that the class [H] coincides with the class of amenable

groups.
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