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The purpose of this paper is to prove a new characterisation of
Banach spaces having a Radon-Nikodym dual, namely that if £ is a
Banach space, then Er has the Radon-Nikodym property if and only if
there exists an equivalent norm on E such that for each ZΓ-valued
measure m of bounded variation, there exists an £-valued function /
with norm 1 |m|-a.e. such that \m\ = f.m.

1. Introduction. In [1], we have proved that if E is a Banach space,
m an E-valued measure defined on a σ-algebra si of subsets of a set T,
with bounded variation \m\, and if ε is any positive number, then there
exists an E '-valued strongly measurable function / defined on the set Γ,
such that 11/11 < 1 4- ε and \m\(A) = jAfdm for each A inj/.

A very natural question which arises is the following: Does there
always exist an E '-valued strongly measurable function with norm 1 such
that Im\(A) = jAfdm for each A in J / ? Following the example given in
[1], this seems to be possible.

Finally, an answer to that question was provided by F. Delbaen who
proved the following unpublished theorem: If £ is a Banach space, the
following are equivalent:

(a) E' has the Radon-Nikodym property
(b) For each equivalent norm on E, for each ^-valued measure m of

bounded variation defined on a σ-algebra si of subsets of a set Γ, there
exists a \m[-strongly measurable function/ from TtoE' such that | |/ | | = 1
|ra|-a.e. and \m\{A) = jAf dm for each^l msi.

The purpose of this paper is to provide a positive answer to the
following question: Is it possible to weaken assertion (b) by requiring the
existence of an equivalent norm on the space having the property instead
of assuming it for each equivalent norm on E,

2. Proof of the theorem. Before proving our theorem let us recall
the Mazur density theorem and prove two lemmas.
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THEOREM {Mazur density theorem [5] p. 171). // E is a separable

Banach space, then for each equivalent norm on E, the set of smooth points

of the unit sphere of E is dense in the unit sphere.

LEMMA 1. Let E be a Banach space such that E' is not separable, B a

dense subset of S(E) = {x\x G E, ||JC|| = 1} and ε > 0. If we denote by Ω

the first uncountable ordinal and by S the set {i\i < Ω}, then for each i in S,

there exists xt in B and x\ in S(E'), the unit sphere of E' such that

xί(xf.) = 1 and\\x\ - x]\\ > 1 - ε if i Φj.

Proof. Let / in S and suppose that the families (Xj) and (xj) are
chosen for 7 < i.

As E' is not separable, n y < / K e r x J Φ {0}.

L e t * <E S(E) Π Π 7 < z KerxJ and choose xz in 5 such that || x - JC,.|| < ε.

Now, if we choose x\ in S(E') such that x\(xt) = 1 it is easy to see
that we are done.

II*; - Xj\\ > 1 - ε follows from the fact that if j < ι, (x^ - Xj)(xt) >
1 - ε.

LEMMA 2. For the same set S as in Lemma 2, there exists a positive

scalar measure μ on the σ-algebra &>(S) of the subsets of S such that

μ(S) = 1 and μ(A) = 0 if A is countable.

Proof. Let / in S and define μt as the evaluation measure at the point

i. As the set of measures on the σ-algebra of the subsets of S is the dual of

the space of continuous bounded functions on S for a locally convex

topology, the family of measures has a cluster point which is a measure

satisfying our requirement.

We are now ready for the proof of the following

THEOREM. For any Banach space E, the following are equivalent:

(1) E' has the Radon-Nikodymproperty.

(2) For each equivalent norm on E, for each E-valued measure m of

bounded variation defined on a σ-algebra stf of subsets of a set T, there exists

a function f from T into Ef \m\-strongly measurable such that ||/(OII = 1

\m\-a.e. and\m\(A) = fAfdm for each A insί\

(3) There exists an equivalent norm on E such that for each E-valued

measure m of bounded variation defined on a σ-algebra s/of subsets of a set

T, there exists a function f from T into E' \m\-strongly measurable such that

| | / ( 0 | | = 1 \m\-a.e. and\m\(A) = jA f dm for each A ins/.
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Proof. (1) => (2) It follows from the theorem we proved in [1] that for
each integer n, there exists a function fn from T into E' such that fn is
|ra|-strongly measurable, 1 < ||/n(OII < 1 + 1/Λ and \m\(A) = jAfndm
for eachyί inj/.

Let G be the Banach subspace of E' generated by Ό^ιfn(T).
As G is separable and E' has Radon-Nikodym property, there exists a

Banach space F such that F' is separable and G Q F' ([3]). Let / be a
pointwise σ(F\ jF)-cluster point of the sequence (/„). /is G-valued, thus
E '-valued.

It is clear that | |/ | | < 1 and that /is σ(F\ immeasurable. As \m\{A)
= jAf dm for each A in J / , if we prove that / is strongly measurable, the
norm of/will be greater than 1 and our assertion will be proved.

Let m0 fromj/into Ff defined by mo(A)(y) = fA(f9 y) d\m\.
It is clear that m0 is a measure with finite variation and that

\mo\ = \m\.
As F has the Radon-Nikodym property, there exists a measurable

function g from Γinto F' such that mo(A) = fA g d\m\ for each^l insf.
It follows that if y e F9 mo(A)(y) = Xι(g, j ) rf|/n| which shows that

(g> y) = <Λ ^>^ |w|-a.e. for each;; in F.
As i 7 is separable, it follows that / = g |m|-a.e. and that / is strongly

measurable which proves the first assertion.
As (2) => (3) is obvious, it remains to show that
(3) => (1) It is easy to prove that if property (3) is satisfied for E it is

also satisfied for each Banach subspace of E. Now as we have to prove
that each separable subspace of E has a separable dual, we only have to
prove that if a separable Banach space satisfies (3), it has a separable dual.

Let us suppose that there exists a separable Banach space E satisfying
property (3) and such that E' is not separable. Let B be the set of smooth
points of the unit sphere S(E) of E which is dense in S(E) by Mazur
density theorem, ε = 1/4 and apply Lemma 1.

We define the function / from 5 to E by /(/) = xr If j/ is defined as
the set of inverse images by/of the open subsets of S(E), the function/is
strongly measurable. Let us choose onj/a positive scalar measure μ such
that μ(S) = 1 and μ(^ί) = Oifylis countable. Such a μ exists by Lemma
2. Now we define m fromJ/to E by m(A) = jAfdμ.

m is clearly a measure of bounded variation and \m\ = μ. So there
exists a function g from S into Ef which is μ-strongly measurable, ||g|| = 1
μ-a.e. and μ(A) = fA gdm for each A ins/.

It follows that μ(A) = /^(/, g) c/jut for eachyl i n l a n d that (/, g> = 1
μ-a.e.
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So there exists a μ-negligible subset N of S such that g( /)(/(/)) = 1 if
i £ N and g(S\N) is separable If i £ N,g(i)(f(i)) = £(/)(>,) = 1.

As x is a smooth point and ||g(ι)|| = 1, g(/) = Λ;,-,
It follows that \\g(i) - g(j)\\ > 1 - e = 3/4 for / Φ j in S \ N which

shows that g(S \ N) is discrete.
As it is separable, it has to be countable. So S \ N has to be countable

which is impossible.
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