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Let ¥(X, E) be the space of continuous functions from the com-
pletely regular Hausdorff space X into the Hausdorff locally convex
space E, endowed with the compact-open topology. Our aim is to
characterize the % (X, E) spaces which have the following property:
weak-star and weak sequential convergences coincide in the equicontinu-
ous subsets of € (X, E)’. These spaces are here called Grothendieck
spaces. It is shown that in the equicontinuous subsets of £’ the 6( E’, E)-
and B(E’, E)-sequential convergences coincide, if %(X, E) is a
Grothendieck space and X contains an infinite compact subset. Con-
versely, if X is a G-space and E is a strict inductive limit of
Fréchet-Montel spaces €( X, E) is a Grothendieck space. Therefore, it
is proved that if E is a separable Fréchet space, then E is a Montel space
if and only if there is an infinite compact Hausdorff X such that
% (X, E) is a Grothendieck space.

1. Introduction. In this paper X will always denote a completely
regular Hausdorff topological space, £ a Hausdorff locally convex space,
and €(X, E) the space of continuous functions from X into E, endowed
with the compact-open topology. When FE is the scalar field of reals or
complex numbers, we write €( X) instead €( X, E).

It is well known that € ( X, E) is a Montel space whenever ¢( X) and
E so are, hence, if and only if X is discrete and E is a Montel space (see
[, {16)).

We study what happens when X has the following weaker property:
the compact subsets of X are G-spaces (see below for definitions).

We obtain in Theorem 4.4 that if E is a Fréchet-Montel space and X
has that property, then ¢(X, E) is a Grothendieck locally convex space.
The key in the proof is the following fact: every countable equicontinuous
subset of €(X, E)’ lies, via a Radon-Nikodym theorem, in a suitable
L'(7, Eg). As a consequence of a theorem of Muyjica [10], the same result
is true when E is a strict inductive limit of Fréchet-Montel spaces.

In §3 we study the converse of 4.4. In Corollary 3.3 it is proved that if
X contains an infinite compact subset, E is a Fréchet separable space and
€( X, E) is a Grothendieck space, then E is a Montel space. This property
characterizes the Montel spaces among the Fréchet separable spaces.
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Finally, in §5 we study the Grothendieck property in #(2, E), the
space of Z-totally measurable functions, by using the results for €( X, E).

2. Generalities. A compact Hausdorff topological space K is called
a G-space whenever %(K) is a Grothendieck Banach space, i.e. the
weak-star and weak sequential convergences coincide in €( K )’ [6].

We extend here this concept to completely regular spaces.

2.1. DEFINITION. X is a G-space if every compact subset K of X is a
G-space.

If X is compact, both definitions coincide [6]. Let us remark that there
exist non-compact non-discrete G-spaces. Indeed, the topological subspace
of the Stone-Cech compactification of a countable discrete set obtained
removing a cluster point, is such a space.

We introduce a new definition of Grothendieck locally convex space,
so that ¥( X) is a Grothendieck space if and only if X is a G-space.

2.2. DErFINITION. E is a Grothendieck space whenever the o( E’, E)-
and o(E’, E”)-sequential convergences coincide in the equicontinuous
subsets of E’.

In [17] the TG-spaces are defined as those spaces E in which the
o(E’, E)- and o(E’, E”)-sequential convergences coincide. When one
deals with €( X) spaces, our definition seems to be more reasonable than
that of [17] (see 2.4 and 2.5).

The following permanence properties of the class of Grothendieck
locally convex spaces are easy to see, thus we state them without proof.

2.3. PROPOSITION. (a) E is a Grothendieck space if and only if every, or
some, dense subspace of E so is.

(b) Let T: E — F be a linear continuous operator such that for every
bounded subset B of F there is a bounded subset C of E so that B is contained
in the closure of T(C). Then F is a Grothendieck space if E so is.

(c) If E is the inductive limit of the sequence (E,) of Grothendieck
spaces, and if every bounded subset of E is contained in some E,, then E is a
Grothendieck space.

2.4. THEOREM. € ( X, E) is a Grothendieck space if and only if €(K, E)
so is for every compact subset K of X. In particular, X is a G-space if and
only if €(X) is a Grothendieck space.
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Proof. Let us recall that, if K is a compact subset of X, the restriction
map T is a continuous linear operator from ¢ ( X, E) into ¢(K, E).

If B ¥(K, E) is bounded, then the bounded subset C of €( X, E),
whose elements g can be written g = X, _,, f,(-)e, with f, € ¥(X),0 < f,
<1, X,..f, <1, and e, € U{h(K): h € B}, satisfies T(C) 2 B (see
[14, 1.5.3]).

If €( X, E) is a Grothendieck space, ¥(K, E) so is by 2.3(b).

Conversely, let (g,) be an equicontinuous and
o(¥(X, E)’, 4(X, E))-null sequence. By [14, I11.3 and I11.4], there exist a
compact subset K of X and an equicontinuous sequence (%)) in €(K, E)’
such that g, = h),oT for all n € N. Since (h)) is o(¥(K, E),
T(¢(K, E)))-null and equicontinuous, it is also o(¥ (K, E)’,
%(K, E)’')-null if ¥(K, E) is a Grothendieck space. It follows that (g;)
ise(¥¢(X, E), (X, E)”)-null

2.5. REMARK. We use an example of Haydon [4] to show that, while in
the class of barrelled spaces the 7G-spaces and the Grothendieck spaces
do coincide, this is not true in general.

Choose, for each infinite sequence in N, a cluster point in the
Stone-Cech compactification of N, and let X be the topological subspace
of that compactification, formed by N and these cluster points. Then
every compact subset of X is finite, ¥(X) is infrabarrelled and every
f € ¥(X) is bounded. By Theorem 2.4, X is a G-space. Let f/(f) =
n~Yf(n) for all f € ¥(X) and n € N. Then (f)) is a o(%¢(X)’, €(X))-null
sequence in €(X)’, that is not ¢(%(X)’, ¢(X)")-null because it is not
equicontinuous.

3. Necessary conditions for €( X, F) to be a Grothendieck space. It
is well known, and easy to see, that ¥(X) and E are topologically
isomorphic to complemented subspaces of €( X, E). By 2.3(b), ¢(X) and
E must be Grothendieck spaces if (X, F) is such a space.

However, unless X is pseudofinite, i.e. their compact subsets are finite
(hence %(X, E) is a Grothendieck space if and only if E so is, by
Theorem 2.4), F has a stronger property if €(X, E) is a Grothendieck
space, as we prove in the next theorem. To prove it we recall the following
result of [2]:

THEOREM A. Let E and F be Hausdorff locally convex spaces, and
suppose that F contains a subspace topologically isomorphic to the subspace
of ¢, whose elements have only finitely many non-zero coordinates.

If the injective tensor product F ® E is a Grothendieck space, then the
o(E’, E)- and B(E’, E)-sequential convergences coincide in the equicontinu-
ous subsets of E’.
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As was noted in [2], if X is not pseudofinite, then €( X) contains a
subspace topologically isomorphic to the above mentioned subspace of ¢,.
Moreover, the injective tensor product %(X) ® E can be linear and
topologically identified with a dense subspace of €( X, E), namely, the
subspace of all finite dimensional valued elements of ¥( X, E). Thus we
obtain from Theorem A and Proposition 2.3 (a):

3.1. THEOREM. If ¥( X, E) is a Grothendieck space and X contains an
infinite compact subset, then the 6( E’, E)- and B(E’, E)-sequential conver-
gences coincide in the equicontinuous subsets of E’.

3.2. REMARrk. By Theorem 2.4, if X is pseudofinite and E is a
Grothendieck Banach space, ¥( X, E) is a Grothendieck space. However,
if E is infinite dimensional, the conclusion of Theorem 3.1 does not hold
[11].

Using Theorem 3.1 and [7, 11.6.2], we obtain the following corollary,
converse of Theorem 4.4:

3.3. COROLLARY. If E is a Fréchet separable space, X is not pseudofinite
and € (X, E) is a Grothendieck space, then E is a Montel space.

3.4. REMARK. It is unknown for us if Corollary 3.3 is true without the
separability assumption on E. This is related with the following question
raised in [7, pg. 247]: is a Fréchet space E already a Montel space if every
o( E’, E)-convergent sequence in E’ converges for B(E’, E)?

4. Sufficient conditions for ¥( X, E) to be a Grothendieck space.
We shall need some facts about vector integration, many of those can be
found in [1] and [15].

Let (X, 2, 7) be a complete measure space with 7( X) < 1. We denote
by F(Z, E) (resp. (=, E), L'(7, E), L*(7, E)) the vector space of
2-simple (resp. 2-totally measurable, 7-integrable, 7-essentially bounded)
E-valued (classes of) functions. Recall that ¥ (2, E) and #(Z, E) are
endowed with the uniform convergence topology, and that the topology of
L'(7, E) is defined by the seminorms u — [ p(u(x)) d7(x), where p runs
over the set of all continuous seminorms in £ (unless contrary specifica-
tion, all integrals will be extended to X).

The following Radon-Nikodym theorem is proved in [1]:

THEOREM B. If E is a quasi-complete (CM)-space, p: £ — E is a
countably additive vector measure, of bounded variation and T-absolutely
continuous, then there exists u € L7, E) such that p(A) = [, u(x) d7(x)
for every A € Z.
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Let us recall that F is a quasi-complete (CM)-space, if, for instance, it
is either a Fréchet-Montel space or a (DF)-Montel space [1].

Firstly we extend the classical duality theorem L' — L™ to L'(, Ep),
where E is a Fréchet-Montel space.

The following lemma can be easily proved. As usual, p;, will denote
the gauge of the absolutely convex set L in its linear span.

4.1. LeMMA. If u € (5, E’), namely, u = X,_, x ] with (4,),.,,
disjoint in 2, then
[ poo(u(x)) dr(x) < 7( U A, sup paofe})
ism ism

for every bounded subset B of E.

4.2. THEOREM. Let E be a Fréchet-Montel space. The relation

(1) u'(u) = f u(x)(v(x)) dr(x) forallu s Ll(fr, E[;)

defined for v’ € LX(r, Eg) and v € L®(7, E), is an algebraic isomorphism
between L'(7, Ez)" and L*(r, E).

Proof. Let v € L®(1, E). The map x — u(x)(v(x)) is measurable for
every u € L'(, Eg), because v is strongly measurable and the assertion is
clearly true when v € ¥(Z, E).

Furthermore, if Z € 2 is a 7-null set such that B = v(S\ Z) is
bounded, then we have

() |u(x)(v(x))] < ppo(u(x))
forevery x € X\ Z.

Hence x — u(x)(v(x)) is 7-integrable, and we can define a linear
form u’ on L'(r, Eg) by (1). Moreover, it follows from (2) that u’ is
continuous.

Conversely, fix u’ € LY(r, Eg)’. There exists a bounded subset B of E
such that

(3) pro(u(x)) dr(x) <1 implies |u’'(u)| <1

for every u € L'(7, Eg).
We define amap pu: = — E” by

(4) p(A)(e) = u'(x.4¢’)

for every A € 2 and e’ € E’ (it follows easily from Lemma 4.1 and (3)
that u(A) € E”). Since E is reflexive we can suppose that u(A) € E.
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Clearly, p: £ — E is a finitely additive vector measure. We shall show
that p is countably additive: let 4 be the union of the disjoint sequence
(A4,) in 2. Given an absolutely convex zero-neighborhood U in E and
e > 0, we choose A with 0 < A < oo such that B C AU, and m, € N such
that Ar(U A,) < ¢ for every m > m,. Since

()~ T e n(4,) = w(x s €)

n<m

n>m

it follows from Lemma 4.1 and (3) that

e'(n(4)) = X e'(n(4,))

n<m

<e

for every m > myand e’ € U°, as desired.
Furthermore, if 4 = U, _,, 4, where (4,),_,, is disjoint in X, and if
e > 0, there exists (e), .,, in U such that

L po(p(4,) < L enlu(4,) +e=uw T xaer) +e
n<m n<m n<m
Hence the p -variation of p satisfies the inequality V, u(4) < Ar(4),
from Lemma 4.1 and (3) again.
Thus p is 7-absolutely continuous and has bounded variation. By
Theorem B, there exists v € L'( 7, E) such that

(5) p(A4) = L v(x)dr(x) foreveryA € =.

We claim that v is 7-essentially bounded and satisfies (1). Indeed, let
(U)), be a countable basis in E of absolutely convex zero-neighborhoods.
Choose, for eachj € N, 7\1. such that0 <A; < co and B C AU

By Lemma 4.1, (3), (4) and (5), we have

©) [, o) dr(x)

foralle’ € U, 4 € Zandj € N.

Let (e ;). be a sequence in U® such that pyl(e) = sup,lej (e)] for
everye € E.

By (6), there exists Z € 2 with 7(Z) = 0 such that |e] ,(v(x))| < A;
for all x € X\ Z and allj, k € N. Hence v( X\ Z) is bounded in E.

Finally, it follows from (4) that (1) is true for all u € ¥(Z, E’), and,
by density, for every u € L'(r, Eg). This concludes the proof.

< A;7(4)

Assume that X is compact Hausdorff and X contains the Borel
subsets of X. For each u € L}(r, Eg), denote by », the vector measure of
density u with respect to 7. If p is a continuous seminorm in E, the subset
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F of L'(7, Eg) defined by the condition V,r,(X) < o0, is a linear sub-
space. If u € F then », has bounded semivariation, thus it defines a
continuous linear form on ¥ (2, E), which extends by continuity to the
whole space #(Z, E) [15]. Let Tu € (X, E)’ be the restriction to
€ (X, E) of this linear form, i.e.

(7) (Tu)(g) = [ g(x) dr,(x)

for every g € ¥( X, E).

4.3. LEMMA. The map T: F — ¥(X, E)’ defined by (7) is a linear
continuous operator, when €(X, E)' is endowed with the strong topology
with respect to €( X, E).

Proof. We have, for eachu € F,

(8) (Tu)(g) = [ u(x)(g(x)) dr(x)

for every g € (X, E). Indeed, the dominated convergence theorem and
a standard density argument show that it suffices to see (8) when g
belongs to (2, E), that is trivially true.

Let H be a bounded subset of €( X, E). Then B = U{g(X): g€ H}
is a bounded subset of E. Hence, by (8), (Tu)(g)| < [ ppo(u(x)) dr(x)
and the lemma follows.

We are now ready to prove the sufficient condition:

4.4. THEOREM. Let X be a completely regular Hausdorff G-space and E
a Fréchet-Montel space. Then €( X, E) is a Grothendieck space.

Proof. By 2.4 we can suppose, without loss of generality, that X is
compact.

Let (g.), be an equicontinuous sequence in (X, E)’. By [14, 111.4.5]
there exists a continuous seminorm p in E such that V,p,(X) <1, for
every n € N, where p,, is the representing measure of g, [14, III].

Let 7=2,27"V,p,. 7 is a countably additive [0,1]-valued Borel
measure, by {14, I11.2.5]. Let Z be the completed o-field of the Borel field
of X with respect to 7. We shall denote also by 7 and p, the natural
extensions of the earlier measures to 2.
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Since E is a Montel space, the measure p,: 3 — E; is countably
additive. Clearly V,p, < 2", thus p, has bounded variation and is 7-abso-
lutely continuous (when it is considered as an Eg-valued measure).

We apply Theorem B, obtaining, for each » € N, a function u, €
L'(7, Eg) such that p,, is the vector measure of density u, with respect to
T.

Clearly u, € Fand Tu, = g,, for everyn € N.

Fix g” € (X, E)”. By Lemma 4.3 and Theorem 4.2, there exists
v € L*(7, E) such that g"”(g;) = [ u,(x)(v(x)) d7(x) for everyn € N.

Let Z be a set in £ with 7(Z) =0 and v(X\ Z) bounded. The
function v; = x 4\ 7V is totally measurable, because E is Montel and
metrizable.

Given & > 0, we can choose v, € ¥ (Z, E) such that p(v,(x)) < ¢/2,
for every x € X, if v; = v, — v,. Hence,

O | [ w0 arix) <2

| [ o) ()

for every n € N, because V,p,(X) < 1.

On the other hand, if (g)) is o(¥(X, E)’, ¢(X, E))-null, then
(n,(A)(e)) is a null sequence, for every e € E and A € 2. Indeed, since X
is a G-space, for each e € E, the weak-star null sequence (u,(-)(e)) in
€ (X)’, is also weak null, hence (u,(A4)(e)) is null for every Borel subset 4
of X, and so for every 4 € 2.

Since v, is simple, it follows that

(10) Jim [ u,(x)(02(x)) dr(x) = 0.

By (9) and (10), (g”’(g.)) is a null sequence, and we have shown that (g;)
iso(¥¢(X, E), ¢(X, E)”)-null.

4.5. COROLLARY. Let X be a completely regular Hausdorff G-space and
E the inductive limit of the sequence (E,) of Fréchet-Montel spaces, such
that every bounded subset of E is localized in some E,. Then €(X, E) is a
Grothendieck space.

Proof. We can again suppose X compact. By [10], the inductive limit
of the sequence (4(X, E,)) is a dense topological subspace of ¢(X, E).
By Proposition 2.3 (a) and (c), and Theorem 4.4, it follows that €( X, E)
is a Grothendieck space.
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4.6. COROLLARY. Let E be a Fréchet separable space. The following
conditions are equivalent:

(a) E is a Montel space.

(b) There exists a non-pseudofinite completely regular Hausdorff space
X such that € (X, E) is a Grothendieck space.

(c) For every completely regular Hausdorff G-space X, €(X, E) is a
Grothendieck space.

Proof. Use 4.4 and 3.3.

5. Application to spaces of totally measurable functions. Let X be a
nonempty set and 2 a field of subsets of X. We will say that a subset B of
X is open if for every x € B there is 4 € 2 with x € 4 and 4 C B.
Endowed X with this topology, let X* be the Hausdorff space associated
to X, 7: X — X* the quotient map, and =* = {7(A4): 4 € 2}.

The following lemma is easily established:

5.1. LEMMA (a) X* is a completely regular Hausdorff zero-dimensional
topological space.

(b) The map A € 2 — w(A) € Z* is a Boolean isomorphism.

(c) The map g € B(Z*, E) > gom € #B(Z, E) is a topological iso-
morphism, and its restriction to & (Z*, E) so is onto ¥ (Z, E).

(d) The map x* € X* - {B* € 2*: x* € B*} € P(2*) is one-to-
one.

By using 5.1, when one studies the linear topological properties of
#(Z, E), it can be supposed that X is a dense subspace of a Hausdorff
compact zero-dimensional topological space K (namely, the Stone space of
the Boolean algebra Z), and £ is the trace in X of the Boolean algebra of
open and closed subsets of K. In this context we have the following
theorem:

5.2. THEOREM. There exists a subspace of #(Z, E), containing ¥ (2, E),
that is topologically isomorphic to ¢(K, E).

Proof. 1t is easy to check that the set of restrictions to X of all
elements of ¥(K, E) is such a subspace.

By Proposition 2.3 (a), it follows that #(Z, E) is a Grothendieck
space if and only if ¥(K, E) so is. Hence we can apply to #(Z, E) the
results of §§3 and 4.
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5.3. REMARK. The question of when #(Z) (equivalently, €(K)) is a
Grothendieck space is related to the validity of the Vitali-Hahn-Saks
theorem for finitely additive scalar measures on 2, of bounded variation.
For instance, if 2 is o-complete, or more generally, = has the subsequen-
tial interpolation property, then #(X) is a Grothendieck space (see [13]
and [3]).

Finally, we show that the following result of Mendoza [8], can be
easily deduced from their earlier results in [9] and our Theorem 5.2.

5.4. THEOREM. Suppose 2 infinite. Then #(2, E) is infrabarrelled
(resp. barrelled) if and only if E4 has property (B) of Pietsch [12, 1.5.8], and
E is infrabarrelled (resp. barrelled).

Proof. Let us observe that ¥ (X, E) is a large dense subspace of
#(Z, FE). Indeed, if H is a bounded subset of Z(2, E), then the set of all
g in £L(Z, E) for which there exists # € H with g(X) C h(X), is a
bounded subset of (2, E) whose closure in Z(Z, E) contains H.

Thus Theorem 5.2 implies that #(Z, E) is infrabarrelled whenever
¥ (K, E) so is, hence we have the first equivalence of the theorem, by [9].

If #(Z, E) is barrelled, then FE is barrelled and #(2, E) is infrabar-
relled, so E; has property (B). The converse follows easily because
€(K, E) is topologically isomorphic to a dense subspace of #(Z, E), by
5.2.

5.5. REMARK. We have also shown in 5.4 that, if X is infinite, (2, E)
is infrabarrelled if and only if E; has property (B) and E is infrabarrelled,
a result of Mendoza [8]. In [2] we prove that #(Z, E) is barrelled if and
only if #(2) and E so are, and E is nuclear.
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