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Analogous to the celebrated Rogers-Ramanujan partition theorems,
we obtain four partition theorems wherein the minimal difference for
4 about the first half of the parts of a partition (arranged in non-increas-
ing order of magnitude) is 2. For example, we prove that the number of
partitions of n, such that the minimal difference of the * first half of the
summands' (that is, first [(/ + l)/2] summands in a partition into t
summands) of any partition is 2, equals the number of partitions n into
summands congruent to ± 1, ± 2, ± 5, ± 6, ± 8, ± 9 (mod 20).

1. Introduction. Throughout this paper, |JC| < 1 and we use the nota-

tion:

(*)„ = (1 - x)(l - x 2 ) ' " ( l - * Ό , /i = 1,2,...;

φ(α, JC) = (1 - a)(l - ax)(l - ax2) to oo.

φ(x) = φ(x,x).

πt(n) denotes a partition of n into t parts arranged in non-increasing order

of magnitude, say,

( 1 . 1 ) π t ( n ) = n λ + n 2 + + n t ; n x > n 2 > > n r

For convenience, we shall refer to nl9 n2,... as the first, second,... part in

πt(n). The differences nι — n2,n2 — «3,.. are referred to as the first,

second,... differences of the parts of πt(n). The "first half of the parts in

πt(n)" are defined to be the parts nv n2,...,n[(t+1)/2], where [JC] denotes

the greatest integer function. Thus these parts are

nι, ft2,... ,nt/2 if t is even,

and

«i, w2> >Λ(H-i)/2 if ^ is odd.

These are also described as the parts in the first half of the partition. We

shall also have occasion to speak frequently about the minimal differences

of the first half of the parts in πt{n). This will be the minimum of the

differences
nλ — n2, n2 — n3,... ,n^t_l)/2-^ — n^t+1y2]y

the last of these being "the last difference in the first half of the

summands of πt(n)".
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The celebrated Rogers-Ramanujan identities have a well-known parti-

tion-theoretic interpretation first noticed by MacMahon and can be stated

thus ([1], Theorems 364, 365):

(1.2) The number of partitions of n into parts with minimal difference

2 equals the number of partitions of n into parts which are = ± 1 (mod 5).

(1.3) The number of partitions of n with minimal part 2 and minimal

difference 2 equals the number of partitions of n into parts which are

= ±2 (mod5).

In this paper, we obtain analogous theorems for partitions wherein

the minimal difference of the parts in the first half of the partition is 2

(with one possible exception in the cases of some theorems).

For establishing our theorems, we utilize some identities of Slater [3].

Four of these identities were earlier used by Hirschhorn [2] to establish

entirely different combinatorial results. However the partition theorems

that we obtain here from these four identities are much more analogous in

structure to the Rogers-Ramanujan partitions than those obtained by

Hirschhorn.

2. The partition theorems.

2.1. THEOREM. The number of partitions of n such that the parts in the

first half of each partition have minimal difference 2 is equal to the number of

partitions of n into parts which are congruent to ± 1 , ± 2 , ± 5 , ± 6 , ± 8 , ± 9

(mod 20).

2.2. THEOREM. The number of partitions of n such that the parts in the

first half of each partition have minimal difference 2—with the possible

exception of the last difference which is at least 1—is equal to the number of

partitions of n into parts which are congruent to ± 1 , ± 3 , ± 4 , ± 5 , ± 7 , ± 9

(mod 20).

2.3. THEOREM. The number of partitions of n into parts not less than 2

and such that in any partition into t parts, the first [t/2] parts have minimal

size [t/2] + 1 or [t/2] + 3 according as t is even or odd and minimal

difference 2, equals the number of partitions of n into parts which are

congruent to ± 2 , ± 3 , ± 4 , ± 5 (mod 16). Equivalently, the number of parti-

tions of n with n = ax + + a2s-v where ax — a2> 2,.. .,as_2 - as_γ

> 2, as_x > s + 2, as > as+ι > > als_1 > 2, or with n = ax +

••• 4- a2s with aλ- a2> 2,...,as__λ - as > 2, as>s + l, as+1 > as+2

> > a2s > 2 = number of partitions of n with parts congruent to

±2, ±3, ±4, ±5 (mod 16).
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2.4. THEOREM. The number of partitions of n into parts not less than 2

and such that for the first [t/2] parts of a partition of n into t parts, the

minimum difference is 2 and minimum part [(t + l)/2] -f 1, and further, if t

is odd, the middle part {i.e. the (t -f l)/2-th) is at least (t 4- l)/2, equals

the numbers of partitions of n into parts congruent to ± 1 , ± 4 , ± 6 , ± 7

(mod 16).

3. Proofs of the theorems.

3.1. Proof of Theorem 2.1. Consider a partition τrt(n), satisfying the

conditions on the differences of parts stated in the first part of the

theorem. Let

τ r t { n ) = n x + n 2 4- ••• + « , ,

the parts being in non-increasing order of magnitude.

Case 1. / even = 2s. Then we have

1 < n2s < nl5_x < n2s_2 < < ns+ι < ns;

further

n s - ι ^ n s + 2> n s - i ̂  n s - \ + 2 > n 2 > n 3 + 2 , n ι > n 2 + 3 .

Hence

ns > 1, ns_λ > 3 , ns_2> 5,...,n1>2s - 1.

It follows that

«i + ni + * * •+• ns ^ ( ( 2 ^ - 1) + (2s - 3) -h •• + l ) = ί 2

and

" , + i + Λ , + 2
 + + Λ 2 J ^ 1 + 1 + . . . + 1 = 5 .

Thus

n - ( s 2 + s) == (nx ~(2s- 1)) + ( » 2 - ( 2 J - 3))-f ••• + ( n s - 1)

+ ( Λ J + 1 - 1) + ( Λ , + 2 - 1) + + ( Λ 2 J - 1),

which represents a partition ofw — ( s 2 + s) into at most 2s parts. Thus

the partitions of the type π2s(n) with the stated restrictions on differences

of parts are generated by xs +s/(x)2s (^ = 1,2,...).

Case 2. t odd = 2s — 1. A typical partition ^2s-i(n) ι$ °f the form
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with

nx > n2 + 2, n2 > n3 + 2,

riS—l — S ' " s — # * 5 + l 5 ' * 5 + l ~ f * 5 + 2 >

Hence we have that each of

while

π , > l , «5_! > 3, ns_2 > 5 , . . . ,π 2 > 25 - 3, ^ > 25 - 1.

Hence

n _(^2 + j _ x)

= (« ! + * * * + Π 2 j _ J ~((25 ~ 1) +(25 - 3) + + 1) - 5

= ( Λ l - ( 2 5 - 1)) + ( π 2 - ( 2 5 - 3)) + . +(AZ5 - 1)

+ («, + ! - 1 ) + ••* + ( " 2 , - 1 - 1),

and this represents a partition o f f t - ( 5 2 + 5 — 1) into at most 2 5 - 1

parts. Thus the partitions of the type fiτ25-i(Λ) w ^ ^ ^ e stated restrictions

on the parts are generated by xs2+s~ + ι/(x)2s_ι(s = 1,2,...). Noting that

oo ( s2 + s - l y.s2 + s \ oo s2 + s

1 + Σ \fxT- + fxT~ r Σ τ f ) — '
5 = 1 \ VΛ;2,-1 \ X ) 2 S ) S = 0 \ Λ ) 2 S + 1

we get Theorem 2.1 in view of the following identity of L. J. Slater ([3],

94):

oo r

2 + r

r = 0 \X)2r+l

φ(x\ x20) φ(x\ x20) φ(xλ\ x20) φ(x1 2, x2 0)

φ(x 1 4 , x 2 0 ) φ(x 1 5 , x 2 0 ) . φ(xι\ x 2 0 ) φ(x 1 9 , x 2 0 ) }" 1 .

3.2. Indication of the proof of the other theorems. As suggested by the

referee, we omit proofs of the other theorems, since they are analogous to

that of Theorem 2.1. For Theorems 2.2,2.3,2.4, we utilize, respectively,

the identities 79,98, 39,83 and 38, 86 of Slater [3]. We only observe that

if

ax - a2 > 2,...,as_2 - as_λ > 2, as_λ > s + 2,

as>as+1 > ••• > als_x > 2,
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then

*i + ••• + ais-ι ^ 2 * 2 ;

while if

ax - a2 > 2,...,as_x - as > 2, as > s + 1,

then

The interested reader can no doubt supply the details, or obtain them
from the author.

The author thanks the referee for his helpful comments.
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Takaŝi Kusano, Charles Andrew Swanson and Hiroyuki Usami, Pairs of

positive solutions of quasilinear elliptic equations in exterior domains . . . 385
Angel Rafael Larotonda and Ignacio Zalduendo, Spectral sets as Banach

manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
J. Martínez-Maurica and C. Pérez García, A new approach to the

Kreı̆n-Milman theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Christian Pommerenke, On the boundary continuity of conformal maps . . . . 423
M. V. Subba Rao, Some Rogers-Ramanujan type partition theorems . . . . . . . . 431
Stephen Edwin Wilson, Bicontactual regular maps . . . . . . . . . . . . . . . . . . . . . . . 437
Jaap C. S. P. van der Woude, Characterizations of (H)PI extensions . . . . . . . 453
Kichoon Yang, Deformation of submanifolds of real projective space . . . . . . . 469
Subhashis Nag, Errata: “On the holomorphy of maps from a complex to a

real manifold” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Pacific
JournalofM

athem
atics

1985
Vol.120,N

o.2

http://dx.doi.org/10.2140/pjm.1985.120.257
http://dx.doi.org/10.2140/pjm.1985.120.257
http://dx.doi.org/10.2140/pjm.1985.120.269
http://dx.doi.org/10.2140/pjm.1985.120.279
http://dx.doi.org/10.2140/pjm.1985.120.279
http://dx.doi.org/10.2140/pjm.1985.120.289
http://dx.doi.org/10.2140/pjm.1985.120.289
http://dx.doi.org/10.2140/pjm.1985.120.295
http://dx.doi.org/10.2140/pjm.1985.120.295
http://dx.doi.org/10.2140/pjm.1985.120.327
http://dx.doi.org/10.2140/pjm.1985.120.331
http://dx.doi.org/10.2140/pjm.1985.120.331
http://dx.doi.org/10.2140/pjm.1985.120.345
http://dx.doi.org/10.2140/pjm.1985.120.345
http://dx.doi.org/10.2140/pjm.1985.120.357
http://dx.doi.org/10.2140/pjm.1985.120.357
http://dx.doi.org/10.2140/pjm.1985.120.385
http://dx.doi.org/10.2140/pjm.1985.120.385
http://dx.doi.org/10.2140/pjm.1985.120.401
http://dx.doi.org/10.2140/pjm.1985.120.401
http://dx.doi.org/10.2140/pjm.1985.120.417
http://dx.doi.org/10.2140/pjm.1985.120.417
http://dx.doi.org/10.2140/pjm.1985.120.423
http://dx.doi.org/10.2140/pjm.1985.120.437
http://dx.doi.org/10.2140/pjm.1985.120.453
http://dx.doi.org/10.2140/pjm.1985.120.469
http://dx.doi.org/10.2140/pjm.1985.120.493
http://dx.doi.org/10.2140/pjm.1985.120.493

	
	
	

