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HORSESHOE MAPS AND INVERSE LIMITS

MARCY BARGE

Inverse limits of interval maps are used to show that certain
homeomorphisms of the disk into itself factor over a standard »-fold
horseshoe map on attracting sets and to give a topological classification
of the attracting sets of horseshoe maps.

1. Introduction. In [S] Smale defined the horseshoe map on the two-
sphere and gave a complete description of its complicated nonwandering
set. Horseshoe maps occur in a wide variety of dynamical systems and an
understanding of their properties is crucial in analyzing the dynamics of
such systems.

Here we consider the full attracting set for the horseshoe map. This
attracting set is a type of snakelike continuum called a Knaster continuum
[B, W]. By realizing these continua as inverse limit spaces for a map of the
interval we can, in some situations, construct a particular surjection of one
of these continua onto another and, in so doing, provide a dynamical
factorization of one horseshoe map over another (at least on attracting
sets). This is carried out in §§2 and 3. Similar techniques are used by
Block in [B1].

In the final section of this paper we use a result of Watkins [W] to
give a topological classification of the attracting sets for horseshoe maps.

2. Let I be the interval I = [0,1], and let D? be the two-dimen-
sional disk D2 =1 X I U A U B where A and B are half disks attached
to opposite sides {0} X I and {1} X I of the square I X I as in Figure 1.

Now let P: D? > I by

P(4) = {0}, P(B)= {1},
and
P((x,y))=x forall(x,y)eIXI.

For each integer n > 2 we define an n-fold horseshoe map F,: D? — D?
to be a homeomorphism (into) having the following properties:
() FE(PY(P(2))) € PTY(P(F(2))) forall z € D

29
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Ficure 1

(ii) F,(A) C interior(A4) and
F,(B) C interior(A) for n even,
F,(B) C interior(B) for n odd;
(iii) for all x € I, P~}(x) N F,(D?) has exactly n components; and
(iv) diameter (FX(P~'(P(z)))) = 0 uniformly in z € D? as k - oo.
The attracting set for the n-fold horseshoe map F, is the set A, =

Ny .o FX(D?). Thatis, given z € D, the distance between F¥(z) and A,
goes to zero as k goes to infinity.

AR A A
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Fe(D%)
FIGURE 2

For each n > 2, F, induces a continuous map of the interval, f,:
I — I, defined by

fu(x) = P(E,(P(x)))-

The map f, has the following properties:

£40) = 05
0, neven
1 ={ ’ 3
£.Q) 1, nodd;
and there exists @, € I, 0 = ay < a; < - -+ < @, < a,,,,; = 1 such that
f, is strictly monotone on [a,;_1, ay}fori =1,2,...,n and

£l @i azian]) = {{0}, i 0dd,

{1}, ieven.
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il

FIGURE 3

Associated with a continuous map of the interval, f: I — I, is the
inverse limit space

(1,f) = { (xg,x),...)|]x, € T and f(x,,,) = x,,i=0,1,2,...}.
We give (1, f) the topology induced by the metric

N

Then (I, f) is a compact connected metric space. Finally, let f: (1, f) —
(1, f) be the homeomorphism defined by

f((x09x1"")) = (f(xO)’xO’xl"“)'

Notice that f~! is just the shift:
fﬁl((xo’xlaxz,-u)) = (xl,xz,...).

Now let F, be an n-fold horseshoe map of the two disk with attracting set
A, and let f, be the induced map of the interval.

THEOREM 1. The function P: A, — (1, f,) given by

P(z) = (P(2), P(F,\(2)), P(F,%(2)),...)

is a homeomorphism (onto) and the diagram of homeomorphisms

An - A}’l
Pl Pl
(r.f,) = (Lf)

commutes.
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Proof Since f,( P(F, “*Y(z))) = P(E,(F;@*Y(2))) = P(E;(2)), we
see that P(z) is indeed an element of (I, £ )

P is clearly continuous. To see that P is one-to-one and onto, let
X = (xg, Xy,-..) € (1, f,) and let

C, = FY(P'(x,)) fork=0,1,2,....
Then C, is a closed, nonempty subset of D? for each k > 0, and since

Fn(P—l(xk+1)) C P [ (x4x1)) = P7H(xp)s
we have C, ., € C, for k =0,1,2,.... Thus N, ,,C, is a nonempty set
and if z €N,,,C,, then P(z)=x, P(F,'(z))=x,.... That is,
P(z) = x. Moreover, if P(z) = x then z must be in Ny - oC,- But since
diameter( E¥(P7(x,))) = 0 as k = oo (condition (iv) in the definition of
F,), wehaveN,.,C, = {z} and P is one-to-one as well as onto.

3. Given continuous maps F: A - A and G: ' —» T, we say that F
factors over G if there is a continuous surjection H: A — I' such that
Ho F= GoH. If His a homeomorphism then F and G are said to be
conjugate. For example, Theorem 1 states that F,|, and £, are conjugate.

We will see in §3 that the attracting sets for any two n-fold horseshoe
maps F, and G, are homeomorphic. It is not necessarily the case,
however, that F, and G, are conjugate on their attracting sets. Nonethe-
less, there is a “standard” n-fold horseshoe map S, such that every other
n-fold horseshoe map factors over S, (on attracting sets). Actually every
(n + 2k)-fold horseshoe map F, , ,, factors over S, on attracting sets and,
in fact, maps that in rough detail resemble an n-fold horseshoe map factor
over S, on attracting sets.

In order to be more specific we will work on the level of interval
maps. Let s, be a continuous map of the interval I = [0,1] with the

following properties: there are points b,, 0 = b, < b, < --- <b,, <
b,,.1 = 1 such that
{0}, iodd
by, by, =
sn([ 2 21+1]) {{1}’ i even
and s, is linear on [b,,_;, b,;}, i = 1,2,.... Now let ¢, be any continuous

map of the interval satisfying: there exists points a,, 0 = a5 <a; < ---
< a,, < a,,,; = 1such that
i odd

t ([azn‘12,+1]) {g)i’ ieveI;, i=0,---,2n.

Notice that ¢,([a,;,_;,a,,])) =[0,1] for i=1,...,n: but we make no
assumptions about how ¢, behaves on [a,,;_;, a,,].
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FIGURE 4
Graph of Se

THEOREM 2. Given s, and t, as above, there is a continuous surjection
h: I — Isuchthats,ch=nhet, onl.

Proof. So that we have room for future subscripting, let s = s, and
=1, ,

We will construct the surjection # in steps. Assume that n > 2 is
even. For odd n the construction is much the same.

Step 1. Let 9, = U"_,[a,;, a,;,,]- In this step we simply define 4 on
2, such that h|;, , ,isanincreasing homeomorphism from [a,;, a,,,]
onto [b,;, b,;,;] for each i = 0,1,...,n. Denote 4|2, by h,. Then it is
clear that for x € @, s(hy(x)) = hy(t(x)).

Step 2. Let 9,, =t "(%,) for m =0,1,2,... andlet 2=U,,.,,9,,.
Since t(2,) € &, we have 9,,,, 2 2,, for all m > 0. In this step we
extend A, to 2. To do this first define

s T [by oy, by i=1,....n

to be the inverse of 5|, _ , ;. Also, for x € I such that t“(x) € I — 2,
for k =0,1,...,m — 1, define

a, = a,(x) =i provided t*"}(x) € (a,,_,,a,)fork=1,...,m.

Now let x € 9. Then x€ 9, or x€ 2, — 2,,_, for some m=> 1. If

x €D, let h(x)=hy(x)1lfx€eD, -2, _, forsomem > 1, let

h(x)=szto - o5, tohyot™(x)

am

where a, = a,(x), k = 1,..., m. This is well defined since x & &, _,. We
will show that /4 is continuous on &2 and that sech = hot on 2.
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Uxe2,.,~—9,,, thenth(x)e 2, —9,_, and

— o1 ... -1 -1 -1 m k
h(x) =s.to © 8y ©Su .. ° o5t ohgot™et*(x)

[ -1 -1 R -1 m k

_Sal ° osduko(sak“o OSa,ﬂ,kohOot )ot (JC)

S s | k

=5, ° osukOhOt(x)

since a,(t*(x)) = a,,,(x) for i =1,..., m. In particular, for x € 9, ,,
~ 9, and m =0, we have h(x)=s,'ohot(x) so that soh(x)=
sos tohot(x)=hot(x). Thussoh =hotonallof 9.

Let x € 2. Then t"(x) = 0 for some m > 0 (n even). Thus, if y is
sufficiently close to x, t"(y) € [0, a,) C Z,. It follows that & is open.

To establish the continuity of 2 on 2, we will first show that 4 is
continuous on Z,. If x € @, — 2, then for y sufficiently close to x (and
yE€ Z,)wehave y € 9, — 9D, a; = ay(y) = a;(x), and

h(y) =sq ohoot(y) = st ehget(x) = h(x).

If x € interior(2,) then for y sufficiently close to x, y € interior(%,),
and

h(y) = ho(y) = ho(x) = h(x).
If x € 9, — interior(Z,)) = {ay,a,,...,a,,}, say x = a, then h(x) =
ho(x) = b,. Now, note that if j is odd then s;'(0) = b,,_, and s,'(1) =
b,,, and if j is even then s; '(0) = b, and s;'(1) = b,,_,. Let y € 9, —
2, be close to x. We consider four cases.
If i=0 mod4 then y € (a;,_,a,), a; =i/2 is even, t(a,) =0 so
t{(y) =0, and
h(y) = syt ohgot(y)osy'ehe(0) = s5,(0) = by, = b, = h(x).
If i=1mod4 then y € (a;,a,,,), &, = (i —1)/2 + 1 is odd, t(a,)
=0sot(y)=0,and
h(y)=satohgot(y)=s,"oho(0) =s,'(0) = by, 1 = b, = h(x).
If i=2 mod4 theny € (a,_,,a,), oy =i/2 is odd, t(a;) =1 so
t(y) =1, and
h(y) =sgtohgot(y) =s.toho(l) =s (1) = by, = b, = h(x).
If i=3mod4then y € (a,,a,,,), «;, = (i — 1)/2 + 1 is even, t(a;)
=1sot(y)=1,and
h(y) = 5;11° hyoz(y) = 5;11°h0(1) = 3;11(1) = b2a1~1 =b,= h(x).

Thus we see that & is continuous on 2,.
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Now let x€9, —92,_, for some m>1. Then :"*(x) e

interior(9,) so if y is sufficiently close to x then t"*!(y) € 9, andy €
D,,..- Also, for y close to x, t*(y) € I — 9, for k = 0,1,...,m — 1 and
a(y)=oa(x)=a,fork=1,...,m. Then
h(p) =szte - o5, e hla, ot™(y)
=g to o5 lo hlg o1™(x) = h(x)

since 4 is continuous on 2. Thus, 4 is continuous on 2.
Step 3. We now extend 4 to 9.

Let x€ 9~ 2. Since x € 9, t“(x) eI — 9, for all k> 0. Thus
a,(x) is defined for all kK > 1 and for each m > 0 there is an ¢, > 0 such
that ¢,, > 0 as m — oo and, if |x — y| <e¢,, then a,(y) is defined and

equals a,(x) fork=1,2,...,m.
Now for y,z € 2 such that |x — y| <eg, and |x — z| < ¢, we have
a,(y)=a(z)=a,fork=1,...,mand

h(y) =szlo o5 lohot™(y),
h(z) = s7te v oslohotm(z).

Ay

Let A, be the slope of s|,, . ;andlet A =min,_; ,(|A,). Then
A > 1and
diameter(s;l1 °o--: o0 s;ml(l)) < %,,;
Hence, letting B,(x) = {y € I||x — y| < €}, we see that
diameter(h(Bem(x) N @)) -0 asm— oo.
Thus /4 extends continuously to 9. We see in fact that
h(x) = Jgnw sple o5 1(z) foreveryz e I

Clearlyseh = hoton 2.

Step 4. We now extend £ to all of I.

Let x € I — 2 and let U be the component of I — & containing x.
Say U = (y, z). Since 2 is itself open, y and z are in 9 — 2. Now, it
must be the case that a,(y) = a,(z) for all kK > 1 (these numbers are
defined since y,z ¢ &); otherwise there would be a k > 0 such that
t*(Ly, z]) 2 [a,,, a,;,,) for some i in which case UN @, + 0. But U C
I-9c1-9,.
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Thus we see that

h(y) = lim (s3he oo o5zl (w))

= lim (s;}z)o os;ml(z)(w)) = h(z)

m-— oo
for any w € I (see Step 3). Now define
h(x) = mli_zrlw(s;_x%x) O o« oS;ml(x)(x))
for x € I — 9. Then h is continuous on all of /. It is a simple matter to
check that se & = hot on all of I.

COROLLARY 3. Suppose that s, and t, are as in Theorem 2 except that,
in addition, t, is linear on [a,;,_,,a,;] for i =1,2,...,n. Then there is a
homeomorphism h: I — I such that s,oh = hot, on all of 1. That is, s
and t, are conjugate on I.

n

Proof. The surjection h constructed in Theorem 2 is a homeomor-
phism in this case. In fact, if one constructs a continuous surjection k:
I - ] as in the theorem, beginning with k,: U’ ,[b,,, by,1q1] =
U ola,;, as;.1] given by k, = hy! and reversing the roles of s and ¢, then
k=ht

Now suppose that S,: D? — D? in an n-fold horseshoe map with the
property that the induced map on the interval, s,: I — I, is linear on
[b,,_1,b5), i=1,2,...,n (as in the earlier definition of s,). Let
T: D? > D? be any homeomorphism satisfying: there exists a projection
®: D? -> I such that T(® Y(®(z))) € ® Y D®(T(z))) for all z € D?
diameter(T*(® " 1(®(z)))) = 0 uniformly in z € D?> as k — oo; and
the induced map of the interval #: I — I has the property that

{0} forieven
t([aZi’a2i+1]) - {{1} for i odd
forsome0 =a,<a; < -+ <a,,,, =1L

Let A, =Ny oSK(D*and T =N, T D?).

COROLLARY 4. There is a continuous surjection H: I' — A, such that
the diagram

T
r - T
H|] H
An —; An

commutes. That is, T on T factors over S, on A .
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Proof. Theorems 1 and 2 provide the following commutative diagram

T
T - r

o) d )
(L) = (L)
hy h
(Is) > (Is,)
P P1
A, 3 a,

® and P are homeomorphisms and h: (I,7) — (I, s,) is the continuous
surjection given by

il((x0>xl"")) = (h(xo)>h(x1)’-~-)

where h is given by Theorem 2. Let H = P~'oho ®.

Thus we see that if m > n and m and » have the same parity, then
the m-fold horseshoe map F,, factors over the standard n-fold horseshoe
map S, on their attracting sets.

In the next section we give a topological classification of the spaces
A

ne

4. We first define a standard model for the spaces A,,.
Let g,: I = I, n > 2, be defined by

i) _ /0, ieven, _
and g, is linearon[i/n, (i + 1)/n), i =0,...,n — 1. Let

(1,g,) = { (x9, X15--)|x, €1, g, (x;11) = x;, i = 0,1,...}

be the inverse limit space. Another description of the space (7, g,) is as
follows. Let 2, = {(ay,a,,...)|la, € {1,...,n}} and give =, the topology
induced by the metric

d((apaz,...),(ﬁl’/}z,_“ ) i a, —Bl

Let I X 2, have the product topology and define P,: I X =, - (I,g,)
by P,(x,a) = x where x = (x,, X;,...) is the unique element of (7, g,)
such that x, = x and x; € [a,;/n, (a; + 1) /n].
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P, is at most two-to-one and if we define the equivalence relation ~
by (x,@) ~ (7,B) if and only if P,((x,a)) = P,((».B)) then (I X 3,)/~
with the quotient topology is homeomorphic with (1, g,,).

More specifically, in I X 2, we identify (x, &) with (y, B) if and only
if one of the following applies.

1) If ¢y =2j—1and B, =2 for some j and o, = B, for i > 1
then (1, a) ~ (1, B).

2) If nisodd and a;=B,=n for i=1,....m; a,.,=2j—1,
B, .1 = 2j for some j; and a, = B, for i > m + 1; then (1, a) ~ (1, B).

BUfa=8=1lori=12,....,m; a,,,=2jand B8,,, =2 for
some j; and «, = B, for i > m + 1; then (0, @) ~ (0, B).

@Unisevenand ;= B,=1fori=1,...,m; a,,,; =B, = 1;
a,.,,=2j—1and B,,,=2j for some j; and a, = B, for i > m + 2;
then (0, o) ~ (0, B).

Now let f, be the interval map corresponding to an n-fold horseshoe
map F,.

THEOREM 5. (1, f,) is homeomorphic with (1, g,).

Proof. Let J =[5, 31C I and let =, be as above. Define Q,:
JxZ - (If) by O,(x,a)=x where x = (x,, X;,...) 1S the unique
element of (7, f,) such that x, = 2(x — §) and x, € [a,, _;, a,, ] Here
0=a,<a, < -+ <a,,,; =1 as in the description of f, in §1. Then
Q,, is a homeomorphism of J X X, onto its image. ([, f,) — Q,(J X )
is a collection of arcs. We extend Q, to (I X 2,)/~ by mapping the arcs
in (I XZ,)/~)—(JX2Z,) onto the corresponding arcs in (7, f,) —

Q,(J X Z,).
For example, let « and B be as in Case (1) above in the description of

the identifications made in (I X £,)/~ . Then Q,((3, a)) =
(1,a,, 5,...) =xand Q,((3,B)) = (1,a,,_,,...) = y for some j. Then

A, = {t =(Lt,ty,...) € (L f)|ag, , <t <ay
RS [aza,-laaza,]}
is an arc joining X to y in (Z, f,). Now let Q, map the arc
(3, U X {a} ULE, 11X {B}/~
in(l X X,)/~ onto A, by
0,((s,a))=t=(1,1,,1,,...) € 4,
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where
= (a, - a4j;2)(2s -3)+ ay;s;
and
0,((s,8)) =t=(1,1,1,,...) € 4,
where

L= (‘14;72 - adj—l)(zs - %) tay, -

If we extend Q,, over all the arcsin ((I X 2,)/~) — (J X Z,) in this way
(depending on Case 1, 2, 3 or 4), the result is a homeomorphism of
(I X Z2,)/~ onto(1,f,).

The spaces (1, g,) are classified in the following theorem of Watkins
[W].

THEOREM. (1, g,) is homeomorphic wiht (1, g,,) if and only if n and m
have exactly the same prime factors.

COROLLARY. A, is homeomorphic with A, if and only if n and m have
exactly the same prime factors.
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