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If f is a bounded measurable function on the circle =, then
[, log |f | dm > —oo expresses the necessary and sufficient condition on
f# 0 to be of the form f=g - h where g, h € H*. This question was
proposed by Douglas and Rudin in [1], where they approximate unimodu-
lar functions on 7 by quotients of Blaschke products.

Introduction. = stands for the circle group and m its normalized
invariant measure. H* will be considered as a (closed) subalgebra of
L*® = L*(«). In [2], Douglas and Rudin consider the set O of these
functions in L* which are of the form ¢y with ¢, ¢ H®-functions. They
noticed that then, by Jensen’s inequality if f = ¢y # 0

[ 1oglfldm = [ (loglg| + logly]) dm > oo

has to be true and asked whether this property was also sufficient. If
log| f]in L'(#), we may define the outer function

(2) = exp| [ 1oglf () g2 m(a0)|

for which |A(z)| = |f(0)|if z = e” a.e. Thus h~'(e’)f(6) is an unimodu-
lar function on 7 and can be written as e’ where a in L®(7) takes values
in |-, 7[.

PROPOSITION. There are Blaschke products B,, B, such that

<c

Bl
A la — ArgF
2

[oe]

where s¥denotes the Hilbert-transform and c is numerical. We consider Arg
as [—m, [ valued.
If b = a — ArgB,/B,, we obtain the decomposition
eia — BleiFBze—iF

taking F in H* with b = 2 Re F. This will imply the result stated in the
abstract.
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_Notice that as corollary L* = H*H* + C and fin L'(7) belongs to
H?H? iff log|f|in L' (or f = 0).
To verify the first assertion, let f € L* and define g, = f + e'’. Then,
applying Jensen’s inequality in the f-variable

f{f loglgel} m(de) /f log|f($)e " + 1{m(df) m(dy) > 0.
Hence [ log|g,| m(d0) = 0, g, € H*H™ for some 6.
The second property is seen by writing
f = fe “FF
where a = log|f|is in L', F = exp3(a + is#[a)) is the boundary value of
an H’-function. Finally fe™“ is again unimodular and hence in H*H*.

Proof of Proposition. The argument is constructive. It will be based on
L'-approximation of L% functions by elements of Re H* and the con-
structive proof given by P. Jones of the Douglas-Rudin approximation
theorem (see [3]).

LEMMA 1. If a in L¥(7) and & > 0, there is b in L¥(7) satisfying
lla — bll; < ellall,, and||bll,, + IF°[]ll,, < c;log(1/¢)llall,.

Proof. We may clearly suppose ||a||,, < 1. Define the BMOA function
A = a + i5#[a] and the outer function 7

7(z) exp{f loga(ﬁ)

Since 7 = a exp i [log a] on 7, it follows that for |z| = 1
4| = ald] < §7!
and hence b = Re 74 satisfies ||| , + ||Z[b]|],, < V2871 Also
l|a — b| <|1 — Re7||a] +|Im 7| |A|

Il

m(d@)} where o' = max(1, §|4]).

implying
la — bll, <|[1 — acos 5 [log a]|, + §{sin 5 [log ]|,

<|1 = all + 287! [log a] |,
m[|4| > 8§77 + 23-1{/

[14)>87"]

, 1,2
(log 8]4]) }

Since m[|A4| > A] < ¢ 'e~* for numerical ¢ > 0, the latter quantity is
dominated by c,e"¢/*®. Taking 8 ~ (log1/¢)~!, the lemma follows.
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The next fact is a consequence of the proof of Th. 5.1 in [2].

LEMMA 2. Assume a in L®(w) taking values in [-w, w[ and a =0
outside some measurable set U of w. Then, for given € > 0, there are
Blaschke products B,, B, fulfilling

B
a-— A1rng1 <e and Y (1—]z]) < %m(U).
2 fleo

B,(2)B,(2)=0

The method consists in covering U by a countable family of disjoint
intervals which union has approximately the same measure as U and then
starting consecutive approximations in L'-norm using Lemma 5.5 of [2].
The construction yields moreover that the zeros of B,, B, form an
interpolating sequence, which will, however, not be used here.

Proof of the Proposition. We make an iteration construction which is
again in the spirit of the proof of Theorem 5.1 of [2]. Starting from a in
L>*(7) with values in [-m, 7[, a first application of Lemma 2 permits to
replace a by a function of small L*-norm. We show now that if a in
LZ( =) satisfies ||a||,, < v (v > 0 sufficiently small), there is a decomposi-
tion

B,
a=b+ ArgB +a; (ay, breal)

where
@) [1bll, + 9101, < e5(log1/7)y
(i) X,y 8,=0(1 — 12D < ¢57
(idi) flay]l., < 272
Iteration provides then the required Blaschke products B;, B; in the form
B! =TI,B® (j = 1,2), where (ii) bounds Zg(z=0(1 — |z) by the sum of
an obviously converging series. The difference

’ o0

B B(S)
a —Arg; )y (a — Arg B0 am) = b,

2 =

then has a bounded Hilbert transform in view of (i).
To prove the decomposition stated above, apply first Lemma 1 with
= y* to obtain b satisfying

1
bl + 192 [b]l. < 4c1(log;)y and |la — bll; < y°>.
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For y small, the function a — b is still |-#, #[ valued. Moreover, the set
U = [|a — b| > y?] has measure less than y>. Application of Lemma 2 to
the function f = (a — b)x, gives Blaschke products B, and B, so that

2

<y? and Y (1—z]) < ey
0 B,(z)B,(z)=0

B,
f— Arg“B-2

Put @, = a — b — Arg(B,/B,), then ||a,||,, < 2y?, completing the proof.
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