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The classical theorem on the angular derivative of an analytic
function on the half-plane Rez > 0 is extended to operator-valued
analytic functions.

1. Let IT denote the open half-plane

(1) II={zeC:Rez>0}.
For a positive number k, let %, denote the set
(2) 2, ={z€C:|Imz|< kRez}.

The following theorem in complex analysis is well-known:

Let f be a function analytic on 11 such that f(11) C IL. If

. . Ref(z)
(3) a= 212}; Rez °
then for any k > 0, we have
. flz) .. Ref(z) .. .. .
(4) Zlim —= Zlim Re; = zlim f(z) =a.
ze¥, zZE2, ZE 2

The limit lim, _, .5 f'(2) is usually called the angular derivative of
f at co. The above classical theorem is the work of several mathemati-
cians: Julia, Nevanlinna, Wolff, Carathéodory, Landau, Valiron. For the
original sources, the reader is referred to [2, p. 216] and [5, p.108]. The
purpose of the present paper is to extend this classical theorem to
operator-valued analytic functions [3, pp. 92-94].

2. Throughout this paper, 5 denotes a complex Hilbert space. By
an operator we always mean a bounded linear operator on J5#. The
identity operator is denoted by 1. For an operator 4 on J#, the adjoint of
A is denoted by A*; the real and imaginary parts of 4 are denoted by
Re A and Im A respectively:

A+ A* A— A*

5> Imd ="

Red =
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For two Hermitian operators A, B on 3, we write 4 > B to indicate
that A — B is a positive operator, i.e., ((4 — B)x, x) > 0 for all x € /.
The strict inequality A > B means that 4 — B is positive and invertible.
The classical theorem stated above can be generalized to the following
result.

THEOREM. Let F be an operator-valued analytic function on the open
half-plane 11 such that for each z € 11, F(z) is an operator on 3 with
Re F(z) > 0. Suppose there is a Hermitian operator A on 5 satisfying

Re F(z)
(5) Rez >A forallzell
and
(6) for any € > 0, there is z, € I such that
Re F(z,)
‘ Rez, All<e
Then for any k > 0 we have
(7) lim llfﬂ_/‘”: lim ”&:{LZ—)—A“
= A gl Bel

= lim |F’(z) — 4| = 0.

ze,
3. In proving our theorem, we shall need the following lemmas.

LEMMA 1. Let F be an analytic function on 11 such that for each z € 11,
F(z) is an operator on 3 with ReF(z) > 0. If z, z, € II and

(8) ¥(F(2), F(z5)) = [Re F(2)]"*[F(2) = F(z,)]

X [F(z) + F(z4)*] ' [Re F(z,)]"?,
then

2

(9) ¥ (F(z), F(2,)) ¥ (F(z), F(z,)) <

z+z,

Proof. This is part (d) of Theorem 3 in [1].
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LEMMA 2. Let F be an analytic function on 11 such that for each z € 11,
F(z) is an operator on 3 with ReF(z)> 0. If F(z,) =1 for some
zo € 11, then

(2] + |z0)°

(10) IF(2)l< Re ) Rez)

forz € I1.
Proof. According to the definition (8) of ¥, we have
Y(F(z),1) = [F(z) = I][F(z) + 1]}

so (9) becomes
2

(1) [F)" + 07 (F) = DFG) = 1EFG) + 17 | 2532 1
for z e Il.
Let
a(z) = j+;z ’

which is clearly < 1 for z € II. From (11) we have for z € II:
[F(2)* = 1[F(z) - I] < a(2)[F(2)* + N[ F(z) + 1],

which can be written

[F(z)* _ 1+ "‘(Z)IHF(Z) - 1;*—"‘-(2—)1} < I—é—q—(i)——l

1-afz) 1 - afz) 1 - a(2)]?
1,2
F(z)—%zi!s%.

Then (10) follows from

|F(2) )< | F(2) - 5

SO eE

- 2a(2)"? 1+ a(z)
“1-a(z) "1-al2)

_ 2 2
- (]z + Zo| + |z — Zo|) (|Z' + |Zo')

HRez)(Rezg) = (Rez)(Rezyy o€t
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4. Proof of the theorem. With the aid of Lemma 2, the proof of
our theorem is an operator-analogue of Landau-Valiron’s proof [4], [5, pp.
87-89] of the classical case. Consider a fixed ¢ > 0. By hypothesis, we can
choose z, € II such that

(12)

Define operator-valued analytic functions £ and G on II by

(13) E(z) = F(z) — Az,

(14)  G(2) = [ReE(zo)]"*[E(2) — ilm E(z,)][Re E(2o)] .
By (5), ReE(z) > O for z € II. As

(15)  ReG(z) = [ReE(z)] " "[ReE(2)][Re E(z,)] 7,

we have also ReG(z) > 0 for z € II. Clearly G(z,) = 1. An application
of Lemma 2 to G gives

(2] + |z,)°

(16) IG(2)] < (Rez)(Rezy) for z € I1.

By (13), (14) and (16), we have for z € II:
| F(z) _ |- IE(2)]

z |z|
= l—i—l”[ReE(zO)]VzG(z)[ReE(zO)]l/z +iIlmE(z,) |
< LR B2 G () ) + EmEL20)l
2] ||
MR E(2o)] 21 (2] + 1zo)” | Jim E(z)]
- Rez, |z|(Re z) |z]
Since
I[Re E(zo)]"I* _ IReE(zo)l| _[|ReF(zo) | _
Rez, Rez, Rez, &
it follows that
2
(17) “ F(z) _Alls Uzl + 120D MmECGON

z “T2I(Rez) H
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For z € 2, we have

(2] + |zo)°
Iz((Rez) (1 *

Zo

) Iz} + |2,
Re:z

< (1 4|20 )(m+ 12l )
Z Re:z
Therefore
I
as |22 —-A”s e(l +|2 )( T+ k2 4 [l ) L Mm E(zo)|
z z Re:z |z|

holds for z € =,. The right-hand side of (18) tends to e/1 + k% as z € 3,
tends to co. Since ¢ > 0 can be arbitrarily small, this proves that

(19) lim‘—F(—Z—)—A}=O.
=
Next, by (13) we have
ReF(z)_A _|IReE(z) <||E(Z)”
Rez Rez |~ Re:z
— ..J.ﬂ_ F_(El — A forzell
Re: z
and therefore
(20) BEI{FE:(TZ)_A‘SV1+I€2 f—(z—z—)——A“ forz € Z,.

From (19) and (20), it follows that
ReF(z) A“ -

(21) lim Res

VAd
ze3,

Given k > 0, choose & > 0 so small that for every z € X, the circle
C,(z) = {w € C: |w— z| = h|z|} is contained in II. Then from Cauchy’s
integral formula [3, p. 96]

__1_/ E(w)aw ¢

E'(z) = orzeX,,

2716, (w - z)
we derive
, 1 1 w‘ Fiw) |
) i Max [EG)= 3 max ][22 ]
F
S1+h Max (w)~A fOI‘Zezk-
weC,(z) w
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This together with (19) implies

(22) lim [F/(2) ~ 4] = lim | E°(2)] = 0.

The proof is complete.
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