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The main result of this note states that a function module of Banach
spaces has the Dunford-Pettis Property, provided that all summands are
spaces of the form L,(n). As a corollary we obtain that every injective
Banach lattice has the Dunford-Pettis Property. Another corollary states
that certain spaces of compact operators have the Dunford-Pettis Prop-

erty.

1. Introduction. In 1940, Nelson Dunford and Bill Pettis published
their now classical result that weakly compact operators defined on L,(1)
are completely continuous. Ten years later Grothendieck showed that the
space of real-valued continuous functions on any compact topological
space enjoys the same property which today is called the Dunford-Pettis
Property. Specifically:

DEFINITION. Let E be a Banach space and assume that every weakly
compact operator T:E — F, F a Banach space, sends weakly compact
subsets of E into norm compact subsets of F. Then we say that E has the
Dunford-Pettis Property.

Since the early 50’s the Dunford-Pettis Property has attracted much
attention in the theory of Banach spaces (see the survey article of J.
Diestel [5] for the historical development). However, up to today it is not
quite clear which Banach spaces have the Dunford-Pettis Property. Until
one or two years ago, even the following question was unanswered:

Question. If X is a compact Hausdorff space and if E is a Banach
space with the Dunford-Pettis Property, does the space of all vector
valued continuous functions C( X, E) also have the Dunford-Pettis Prop-
erty?
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74 GERHARD GIERZ

In 1983, M. Talagrand [18] answered this question in the negative by
constructing a Banach space E which had the Dunford-Pettis Property,
but C(J0,1} E) did not have the Dunford-Pettis Property. However, for
important classes of Banach spaces, the above question has a positive
answer. This is for instance the case, if E is a Schur space (see I. Dobrakov
[6]) or if E is a space of type L,(p) (see J. Bourgain [2]). (A Schur space is
a Banach space in which every weakly convergent sequence is norm
convergent.)

In this note, we will change the above question a little bit and
consider function modules of Banach spaces instead of spaces of continu-
ous functions with values in a fixed Banach space E. There are two
reasons to do so:

(1) Function modules of Banach spaces contain, among other exam-
ples, spaces of continuous functions defined on a locally compact space
vanishing at infinity, spaces of continuous functions equipped with a
weighted norm, and Banach spaces of continuous vector fields on a
differentiable manifold.

(2) Function modules are an important tool in the representation
theory of C *-algebras.

The major result of this note extends Bourgain’s result on C( X, L,(u))
in the following way: If all stalks of a function module are 4L-spaces,
then this function module has the Dunford-Pettis Property. The proof
utilizes some properties of the local structure of function modules which
are obtained in §3. An interesting corollary of the main result states that
every injective Banach lattice (in the sense of [3]) is a Dunford-Pettis
space.

Throughout this paper, we will follow the terminology of [16]. Espe-
cially, Banach spaces will be denoted by E, F..., and their (topological)
duals by E’, etc. The letter X always denotes a compact Hausdorff space
and the term ‘compact’ always includes the Hausdorff separation axiom.
If E,,i € I, is a family of Banach spaces, then their /_-sum is denoted by
I1,c, E, and their /;-sum is denoted by @ ,_, E..

2. Notations. In this preliminary section, we will recall the defini-
tion of function modules of Banach spaces:

Let us suppose that we start with a compact Hausdorff space X and a
family of Banach spaces (E,),cy. Assume further that we are given a
closed linear subspace

Ec J]E, = {(o(x))xex: o(x) € E, for all x and sup |o(x)|| < oo}

x€X xeX



DUNFORD-PETTIS PROPERTY 75

such that the following conditions are satisfied:

(a) For every x € X and every a € E, there exists an element 6 € E
such that o(x) = a.

(b) The mapping x = ||o(x)|: X = R is upper semicontinuous for
everyo € E.

(¢) If 0 € E and a continuous real-valued function f € C(X) are
given, then fo belongs to E, where fo is defined by (fo)(x) = f(x)o(x)
for all x € X.

Then E is called a function module over X. For a given x € X, the
Banach space E | is called the stalk over x.

Banach spaces E which satisfy these conditions are also called upper
semicontinuous function spaces (see [4]) or continuous sums of the Banach
spaces E_, x € X (see R. Godement [10], I. Kaplansky [12], and Gelfand
and Naimark [15]). They also occur as spaces of sections in bundles of
Banach spaces (see [9] for the details of this last equivalence). Our
notation is the one of E. Behrends [1].

Function modules E are C( X)-convex C( X )-modules in the following
sense: Given elements o, 7 € E such that ||o|, ||7|| < 1, and given a
continuous function f € C(X) such that 0 < f < 1, then ||fo + (1 — f)7]|
< 1. This generalizes to convex combinations of more than two elements
in the following way (see [9, 7.14] for details):

Giveno, € E1 < i < n, and a partition of unity (f;),_,., of X, then

n
Z fi0;
i=1

If all the stalks of a function module E are AL-spaces, 1.e. spaces of
the form L,(pn) for a positive measure p, then E is called a function
module of 4L-spaces. Function modules of 4L-spaces are important in
the representation theory of injective Banach lattices (see [3] for the
definition of injective Banach lattices). Every injective Banach lattice may
be represented as a function module of AL-spaces. Furthermore, it is
possible to characterize exactly those function modules of AL-spaces
which in fact yield injective Banach lattices (see [7] and [11]).

Another important class of Banach spaces which can be represented
as function modules are Grothendieck’s G-spaces. Recall that a closed
linear subspace G C C(K), K compact, is called a G-space, provided that
there are triples (x,, y,7,) EKX KX R, i € I, such that G={f €
C(K): f(x;)=r,f(y;) for all i € I'}. In order to avoid technical diffi-
culties, we will assume that 0 is not in the weak *-closure of the extreme

< max |a]|.
1<i<n
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points of the dual unit ball of G. In this case we have

2.1. THEOREM ( Moller [14]). Let G be a G-space and assume that O is
not an element of the weak *-closure of the extreme points of the dual unit
ball of G. Then there exists a function module E over a compact space X such
that G is isometrically isomorphic to E. Moreover, all the stalks of this
function module are one-dimensional.

The proof of this result follows from [14, 4.1], [14, 3.6(vi)], and the fact
that for compact spaces X the notions of sections in bundles and function
modules are equivalent. O

3. The local structure of bundles of 4L-spaces. In this section we
will be dealing with finite dimensional subspaces of function modules of
AL-spaces over compact spaces X. Let E be such a function module and
let U C E be a finite dimensional subspace. For every given ¢ > 0 we will
construct a finite dimensional subspace V' such that

GUucy,

(ii) There are finite dimensional AL-spaces /,(n,),...,/(n,,) having
the property that the Banach-Mazur distance between V and the /_-sum
Li(n) X -+ X 1li(n,)islessthan 1 + e.

We need a technical notation:

If E is a function module over X, if 8§ > 0, and if F C E, then we let

peaks(F) = {x € X: ||o]| — 8 <|lo(x)] foralle € F}.

Note that the upper semicontinuity of the norm implies that peak s( F) is
closed in X.

3.1. LEMMA. Let 8 > 0 be a positive real number, let E be a function
module over a compact base space X, and let o, ,E€EE 1<i<n and
1 <j < ny, be a finite set of elements such that |||o; || — 1| < 8 for all i, j.
Furthermore, let U,,...,U, C X be a ( finite) open cover of X such that
condition (x) is satisfied:

(%) For every 1 < i < n there exist pairwise different elements

x; € peak,({o, 1 <j<n})NU,
such that

nl
Z rjoi,j(xi)
j=1

= {-:1 Irl “0,-,,(36,»)”

holds for every choice of real numbersr; € R,1 <j < n,.
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Then there exists a partition of unity subordinated to the open cover
(U)i<icns 5aY ([;)1<i<n» SUch that the Banach-Mazur distance between the
linear span of { fi0, 21 <i<n,1 <j<n;}andthel -sumIl]_Li(n,)is
less than or equal to (1 +8)/(1 — 28).

Proof. Every function module E is a C(X)-convex C(X)-module.
Hence for every choice of real numbers (7; ;)i <, 1<i<. and every
partition of unit ( f;), ;., we have

i

<
1<1<n

Zz/z]

We now choose a special partition of unity: Forevery 1 < i < nlet
V.= Ui\{szl stn,jaéi}.

(1 —8) max Y |r, [.
1si5nj=1 ’

Then, since the x; are pairwise distinct and therefore x, € V,, the V,’s are
still an open cover of X. Let (f;),.;., be any partition of unity sub-
ordinate to (V)), .., Further, since for every i we have L7_; f(x;) = 1
and x; &€ V, for j # i, we conclude that f,(x,) = 1. For every 1 <k <n
we obtain the inequality

n n,
Z Z llj
i=1j =1

e g

M
= Z rk,jok,j(xk)
j=1

= g:l |rk,j| “Uk,j(xk)”

v

L I llew )= 8)= (1 = 20) X I

and therefore

()

n;

> (1 — 28) max ZI

1<t<n

Define a linear operator T by
T: ]_Il(n)—><f,o,1 <i<nl<j<n,)

n
X("i,p-'-»"i,n,)ls,-s,, — Z 1. ifi0; ;.
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Then equation (1) implies that ||T|| < (1 + §), whereas the second equa-
tion yields that ||T7Y| < 1/(1 — 28). Hence the Banach-Mazur distance
between the linear span of { fio;, ;1 <i<n,1<j<n;} andII_,/(n)
is less than or equal to (1 + §) /(1 — 286). O

Another notation: If G C E is a linear subspace of a function module
E over X, then we define G, = {o(x): 6 € G}. Note that G, is a linear
subspace of the stalk E, .

3.2. LEMMA. Let E be a function module of AL-spaces with base space X
and let G C E be a finite dimensional subspace. Let 6,,...,0,, € G be a base
of G consisting of elements of norm 1. Then for every € > 0 there exists a
finite dimensional subspace H C E such that

(i) For every element of the base o, there is an element vy, € H such that
vl = 1and|lo, — vl < e

(i) The Banach-Mazur distance between H and a Banach space of the
formI17_, 1,(n;) is less than or equal to 1 + &.

Proof. Choose § > O such that 26 <eand (1 + 8)/(1 —28) <1 + &
For every x € X consider G,. Since the stalk E, is an AL-space, there
exists a finite dimensional subspace V, C E_ such that

(a) V, is isometrically isomorphic to a space of the form /;(x,).

(b) For every o, there exists an element of a, € V, such that||o,(x) —
a.ll <.

Leto,,...,0,, € E bechosen such that the o, ,(x) € V| correspond
to the unit vector base in V, = [,(n,). In this case we have

© Iy ro, ()| = Xz ]l e, ;(x)]| for every choice of real num-
bersr,e R, 1 <j<n,

Moreover, since [|o, (x)|| = 1, we can find an open neighborhood
Uc X of x such that ||(a), (y)|l <1+ & for every y € U. Pick a
continuous function f: X — R which takes its values in the unit interval,
is equal to O off the open set U, and equal to 1 at x. Then we have
[l fo, |l — 1] < & and (fo, ;)(x) = o, ;(x). Hence, by passing from o, ;’s
to fo, ’s if necessary, we may assume that

(@) llo, ;I = 1| < d and x € peak,(o, ;) foralll <j <n,.

Let V™ be the linear span of the o, ;, 1 <j < n,. Then (V*), = V..
Hence, by statement (b) above, for every k € {1,...,m} there is an
element v, , € V* such that |lo,(x) — v, ,(x)|| < 8. Using the upper
semicontinuity of the norm function again, we can find an open neighbor-
hood U, of x such that

@ flo (¥) = VoY)l < dforally € U andallk € {1,...,m}.
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Clearly, the open sets U, x € X, cover X. Hence there are finitely
many pairwise distinct elements x,,...,x, € X such that X = U VU
+++ U U, . Define

U=U, foralll<i<n,
niznx,’

o, foralll<i<n,1<j<n,

0= Ox,j

Then, by (c) and (d), the conditions of Lemma (3.1) are satisfied. Pick a
partition of unity ( f;); subordinate to the U, as promised in (3.1) and let H
be the linear span of { fi0, : 1 <i<n,1<j<n;}. Then the Banach-
Mazur distance between H and the m-product [T, /,(n;) will be less than
orequalto(1 +48)/(1 —28)<1+e

It remains to construct the elements y, € H: Define elements 7, € H
by

n
T = Z fin,,k-
i=1

From (e) and the fact that the support of the function f; is contained in
U, = U, we conclude that

'glfi(ok - Yx,,k)

||°k - "'k”=
= sup | 3 £0)(0x(0) - yx,,k<y>)||
YeEX|i=1
<sup Y, f(y)d <é.
YEX i=1

Therefore, ||o, || = 1 implies | ||7|| — 1] < §. Define

Then

low = il <llox = mill +lime = ¥l

<é+|1

- L)ufrkn= 5l — 1 <25 <s.
”'Tk”

Finally, vy, € H: Indeed, v, , € V™ for all x € X implies

n n
Y € ZfiVx'= Zfi<oi,1""’ai,n,>cH' a
i=1 i=1
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Now the same perturbation argument as in [13, p. 198] shows

3.3. PROPOSITION. Let E be a function module of AL-spaces and let
U C E be a finite dimensional subspace. Then for every positive € > Q there
exists a finite dimensional subspace V C E such that

GUcv/,

(ii) There are finite dimensional AL-spaces l,(n,),...,l,(n,,) such that
the Banach-Mazur distance between V and the m-product 117, 1(n,) is less
than 1 + e. O

The results of this section remain true if one changes from function
modules of 4L-spaces to function modules of Z,-spaces for a fixed p,
1 < p < oo. For the case p = oo one gets as an interesting corollary:

Let E be a function module of Banach spaces over a compact base
space and assume that every stalk E_ is a predual of an AL-space. Then E
is a predual of an 4 L-space.

4. The Dunford-Pettis Property for function modules of AL-spaces.
In this section we apply some results (and their proofs) of J. Bourgain [2]
to function modules of AL-spaces. The proof of the next result is an
immediate consequence of (3.3) and [2, Theorem 5]:

4.1. THEOREM. Let E be a function module over a compact base space X
and assume that all the stalks are AL-spaces. Then E and all duals of E have
the Dunford-Pettis Property. O

Of course, this result contains Bourgain’s theorem that C(X, L!) is a
Dunford-Pettis space as a special case. However, we used the key part of
Bourgain’s proof in our present result (namely Bourgain’s Theorem 5).

4.2. COROLLARY. Every injective Banach lattice has the Dunford-Pettis
Property.

Proof. Every injective Banach lattice may be represented as a func-
tion module of 4 L-spaces (see [7] or [11]). Hence (4.2) follows. O

4.3. COROLLARY. Let E be a Banach lattice satisfying Cartwright’s
splitting property.
For all 0 < a,, a,, b € E and all real numbers r,, r, such
that |a|j| <r, and |a, + a, + b| < r, + r, there are
0<b, b€ E with by +b,=b and |a,+ bl <r,
i=12
Then E and all its duals have the Dunford-Pettis Property.

(©)
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Proof. Under the assumption (C), the second dual E” of E is an
injective Banach lattice (see [3]). Hence (4.3) follows from (4.2). O

Our last corollary deals with spaces of compact operators:

4.4. COROLLARY. Let F be a predual of a L,-space and let G be a
G-space such that 0 is not an element of the weak *-closure of the unit ball of
G'. Then the space of all compact operators K(F, G) equipped with the
operator norm has the Dunford-Pettis Property.

Proof. By (2.1), we may assume that G is a function module over a
compact space X such that all stalks are one-dimensional. Therefore, it
follows from [8, 2.7] that K( F, G) is isomorphic to a function module over
the same space X with stalks F’, i.e., K( F, G) is isomorphic to a function
module of 4L-spaces. Hence (4.4) follows from (4.1). a

This last corollary leads to the conjecture that the space of all
compact operators between two preducals of L,-spaces is always a Dun-
ford-Pettis space.
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