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Asymptotic spectral decomposition for an operator on a Banach
space is studied in light of the well-known theory of decomposable
operators of Foias type. It is proved that adjoints of strongly quasidecom-
posable operators have the single-valued extension property. Duality
theorems for strongly decomposable operators are given, for example, an
operator has strongly decomposable adjoint iff it has a rich supply of
strongly analytic subspaces. For reflexive spaces sharper results are
obtained. Decomposable operators are characterized as those quasi-de-
composable operators satisfying an additional duality property. Also an
asymptotic spectral decomposition with strongly analytic subspaces im-
plies decomposability. Strongly bi-decomposable operators are also
studied.

1. Introduction. The theory of decomposable operators, initiated
by Foias [11], and given substantial development by him and others in the
period 1963-1975, can now be said to have reached a satisfactory matur-
ity. It is known, in particular, that decomposable operators enjoy a
"completely symmetric duality theory," i.e., an operator is decomposable
exactly when its adjoint is. It has also been proven by the author [20] and
independently by E. Albrecht [3] and B. Nagy [23] that decomposable
operators form the widest class of operators having "linear spanning"
spectral decompositions (see below). (For other special properties of
decomposable operators, see [5].)

There has also been parallel development of spectral theory along the
separate but related path of "asymptotic decompositions." To be precise,
let T be a bounded linear operator on the Banach space X. We say that T
has an asymptotic spectral decomposition if, for each finite open cover {Gf.
1 < / < n) of the complex plane, there is a system of Γ-invariant sub-
spaces {Ml9 M29...9Mn} such that

n

(ASD) X = V M and o{T\Mt) c Gt for i = 1, . . . ,« .
z = l

Our notation is standard: X is the closed span of {Mt).
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By imposing further restrictions on the class of invariant subspaces
that can be used in the (ASD), we may achieve different classes of
operators. We survey briefly those classes that have been studied exten-
sively. An operator T is decomposable (D) if each Mx in (ASD) is spectral
maximal and the Mi span X linearly:

(1) ί = M 1 + M 2 + +Mn.

(A T'-invariant subspace M is spectral maximal if for any 7f-invariant
subspace N the inclusion σ(T\N) c σ(T\M) implies N c M.) In §2 we
give the most important facts of this theory. If for each spectral maximal
space M it happens that the restriction T\M is also decomposable, we say
T is strongly decomposable (SD) [4]. Obviously (SD) =» (D).

Colojoara and Foias remark in the appendix of their monograph on
decomposable operators [7] that a weakening of condition (1) to (ASD)
(this is the historical order) might lead to successful generalizations. In his
1974 thesis, A. Jafarian [15] undertook this study of so-called weakly
decomposable operators and did indeed prove many analogs of the earlier
theory. But since at that time many important questions on decomposable
operators were still open, there has been little progress in the (ASD)
theory. By 1981 these questions had largely been answered; in particular,
Frunza [13] and Liu and Wang [22] proved the necessity and sufficiency,
resp., of the theorem: T is decomposable iff its adjoint is (see Corollary
1). One aim of the present paper is to take up again the question of
duality for the (ASD). We shall see that in general the problem is
complicated even in the case of reflexive spaces.

Let us recall that T is weakly decomposable (WD) if the subspaces in
(ASD) are spectral maximal. The author [17] studied still another class
called analytically decomposable operators (AD). An operator T is in class
(AD) if the invariant subspaces in the (ASD) are taken to be analytically
invariant [14] (see §3 for a definition). Frunza proved [14] that every
spectral maximal space is analytically invariant, hence (WD) => (AD).
Combining all of the implications above, we obtain the chain (SD) => (D)
=> (WD) => (AD). The converses of the first two of these implications are
false. Albrecht gave counterexamples to the first and second of these in [2]
and [1], resp. Whether (AD) => (WD) is still an open question. In the
following section, we give the chief facts on decomposable operators, both
for reference in later sections and as an illustration of how well-behaved
decomposable operators are. In what follows, T will always be a bounded
linear operator on the complex Banach space X with respective adjoints
Γ* and I * . If M is a Γ-invariant subspace, we write T\M for the
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restriction and TM for the operator induced by T on the quotient X/M.
For M c X, let M ± be its annihilator in X*. We use σ(T) for spectrum
of T and p(T) for its resolvent set, and we let C denote the (finite)
complex plane. The complement of A in B is written B — A, and we put
A or A~ for the closure of A in an appropriate topology.

2. Decomposable operators.

THEOREM 1. For an operator T9 the following are equivalent.
(i) T is decomposable.

(ii) T has an (ASD) with arbitrary subspaces; and (1) is satisfied.
(iii) For every open set G in C, there is a T-invariant subspace M such

that σ(T\M) c G and σ(TM) c C - G .

Proof. The equivalence (i) <=> (iii) was proven in [21], p. 403, while
(1) <=> (ii) was proven in three different ways in [3], [20] and [23]. (Actu-
ally, (iii) implies that T is 2-decomposable, but then it is decomposable by
[24].)

Assertion (ii) is remarkable because in order to prove an operator
decomposable, one can bypass the need for spectral maximal spaces. We
now illustrate the utility of condition (iii). First, we note that a close
examination of the proof of (iii) => (i) in [21], p. 403, reveals that it is
sufficient for decomposability to establish (iii) for open sets G in C for
which C — G = (C - G)~. With this reduction, we can easily prove the
following corollary.

COROLLARY 1. T is decomposable if and only if Γ* is.

Proof. Suppose that T is decomposable and G is open and satisfies
the restriction above. Since T satisfies (iii) by Theorem 1, let M be a
T - invariant subspace of X such that σ(T\M) c C - G and σ(TM) c G.
Hence by the usual duality relations a ( r * | M x ) c G and σ(T*M±) c C
— G. Again by Theorem 1, Γ* is decomposable. To obtain the converse,
we note that by [21, Lemma 6] for decomposable Γ* each of its spectral
maximal spaces M in X* is weak* closed. From this it follows that
M = N -1 for some Γ-invariant subspace N c X. The rest of the proof
follows as in the converse case.

In the case of strongly decomposable operators, the sufficiency of the
analog of Corollary 1 may fail. Recently, S. Wang [27] has announced the
existence of a strongly decomposable dual operator T* whose predual T
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is not strongly decomposable. See also Theorem 4 below in connection

with this problem. In general, the duality question for larger classes of the

(ASD) is still open (see §3).

3. Asymptotic decompositions. All the operators mentioned in the

Introduction have the single-valued extension property (svep). An opera-

tor T has the svep if for each X-valued analytic function / defined on

F c C such that (λ - Γ)/(λ) = 0 for λ e V, we have / = 0 on V. The

svep allows for the definition of spectral manifold for T. We let XT(F) be

the set of all u e X such that u = (λ — T)f(λ) for some (necessarily

unique) analytic function /: C - F -> X. Then XT{F) is a Γ-invariant

linear manifold in X [7, p. 2]. If T is decomposable and F is closed in C,

then XT{F) is norm closed in X: moreover, in this case XT(F) is spectral

maximal such that σ(T\Xτ(F)) c F. If T is weakly decomposable (WD),

then it is not known that XT(F) is closed even if F is, but a (WD)

operator T for which this is the case is called quasi-decomposable (QD)

[15]. In fact, Albrecht's example (WD) =*> (D) [1] is in the class (QD), thus

(QD) must be supplemented with extra hypotheses to achieve (D). One

such case is the following.

THEOREM 2. Let T be quasi-decomposable. If for each open G c C the

spectral inclusion

(2) σ(τ*\Xτ(G)x)<zC-G

holds, then T is decomposable.

Proof. By duality relations it is easy to see that the spectrum of the

operator induced by Γ* on X*/XT(G) ^ is contained in G. By Theorem

1 (iii) and the remark following its proof it follows that T * is decomposa-

ble, hence so is T by Corollary 1.

We now see that in Albrecht's example it must happen that property

(2) fails for at least one G. Hence the adjoint of a quasi-decomposable

operator is in general not decomposable. Can anything be said in the

general case? To this question we have the following answer.

PROPOSITION 1. Let T be quasi-decomposable. Let G be open and put

M = XT(G)±. Then

(i) σ(Γ*M) c Gand

(ii) for each λ e Gy λ — T* is injective on M.
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Proof. Part (i) follows from the usual duality relations and the fact
that σ(T\Xτ(G)') c G (since XT(G) is closed). Let λ € G and let Ί> c G
be a disc with center λ. Then G and H = C — D cover C, hence
X = XT(G)-V XT(H)~. Let w e M such that (λ - Γ*)w - 0. For x2 e
XT(H)~, the bijectivity of λ — Γ on XT{H)~ implies that there is x2

 G

XT{H)~ such that x2 = (λ - T)x'2. Hence

It is clear that (xv u) = 0 for each xx e XT(G)~, hence since all such
sums JCX 4- JC2 are dense in X, we see u e AT x , or w = 0. This proves (ii).

To get a stronger conclusion than Proposition 1, we must strengthen
slightly the hypotheses on T of class (QD). We say T is strongly quasi-de-
composable (SQD) if each restriction to XT(F)9 Fclosed, is also quasi-de-
composable.

For our next theorem, we also require the notion of an analytically
invariant subspace (in the sense of Frunza [14]). A Γ-invariant subspace
M is analytically invariant if for any analytic function /: V -> X such that
(λ - Γ)/(λ) e M for all λ e V we have also /(λ) e M for λ e V.
Frunza proved that M is analytically invariant iff TM has the svep [14, p.
1062].

THEOREM 3. Let T be in class (SQD). Then for each open G in C, the

subspace XT(G) ^ is analytically invariant for T*.

Proof. Clearly XT(G)± is Γ*-invariant since XT(G) is a Γ-invariant
linear manifold. Let W = XT(G)± a n d let M = XT(G)~, the norm closure
in X. Suppose /: V -> X is analytic on V such that (λ - T*)f(λ) e Ĥ
for all λ G F, and we may further suppose that F is connected. Since the
hypothesis guarantees that XT(G) is closed, it follows that σ(T\M) c G.
Now first assume that VD (C — G) Φ 0, and let D be an open disc in
this intersection. For fixed λ e Z) and for all w e M, we have the duality
relation

Since λ - T is bijective on M, we have /(λ) € M x = ΪF for A G D ,
hence /(λ) G MΓ for all λ € F by analytic continuation. This proves that
W is analytically invariant in this case. Next, suppose that F c G, hence
F c G since F is open. It is clear that there are two open sets Hx and H2

such that G = HXU H2 and V Π (G - Ht) Φ 0 for / = 1,2. By the
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previous part of the proof, the range of / lies in each XT{Ht)
x (/ = 1,2),

hence in XT{HX)
L ΠXT(H2)

± . We finish the proof by showing that W is

precisely this intersection. Jafarian has shown that if T is (SQD), it obeys

the asymptotic decomposition [15, Theorem 8.3]

M = XT(GY= XriH.yy Xτ(H2y

for G = Hλ U H2 (all open), hence

and the proof is complete.

COROLLARY 2. // T is strongly quasi-decomposable, then T* has the

svep.

Proof. It follows from Theorem 3 that if G 2 σ(Γ), then XT(G) -1 =

X1- = (0) in X* is analytically invariant. This is precisely the fact that Γ*

has the svep.

Hence every (SQD) operator has an adjoint with the svep, so the

manifolds Xfi*(F) are defined, but we do not know if they are closed. In

any case, since Albrecht's example of a quasi-decomposable operator

which is not decomposable is actually (SQD), then its adjoint has non-

trivial spectral manifolds.

We have already remarked in §2 that the predual question for a

strongly decomposable operator was answered no, i.e. Γ*(SD) does not

imply Γ(SD), but the converse question is still open. Shulberg has shown

[25, Prop. 3.6, p. 151] that if M is spectral maximal for the strongly

decomposable T9 then T*\M -1 is decomposable. In Theorem 4 we show

that there are many more decomposable restrictions of T*.

THEOREM 4. Let T be strongly decomposable. Let G be an open set in C

and let M = XT{G)". Then T*\M L is decomposable if G and M satisfy

(i) (σ(T) - G)= σ(T)_- G Φ 0 , and

(ii) σ(T\M) = σ(T) Π G.

The proof of Theorem 4 uses the following lemma.

LEMMA 1. Let T be decomposable and let M and G satisfy (i) above.

Then

(3) σ(^)=[
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Proof. Since clearly σ(T\M) c G, we have α ( Γ ) - G c σ ( Γ ) -

σ(T\M). By [8, Prop. 2.2, p. 15] σ(T) - σ(T\M) c σ(TM), and by [21,

Theorem 1 (6)] σ(ΓM) c σ(Γ) c σ(Γ) - G. We thus have the chain of

inclusions

(.) (σ(Γ) - G)"c [a(T) - o{T\M)Y<z o{TM) c a(T) - G,

and so (3), is true if the first and last members of (*) are equal. But this is

the case by hypothesis (i).

REMARKS. Note that (3) fails if σ(T) - G = 0 e.g., let T be multi-

plication by the independent variable on C[0,1]. Then σ(T) = [0,1]. If G

is the open disc with center zero and radius 1, then σ(T) = σ(T\M) = 0

and σ(TM) = (1). Moreover, in the statement of Theorem 3 we may

assume G Π σ(T) Φ 0,for otherwise the conclusion is vacuously true.

Proof of Theorem 4. We prove that TM is decomposable, for then

T*\M ± is decomposable by Corollary 1. Let H be an open set. We shall

show that there is N c X/M such that

(4a) σ(TM\N) c Ή

(4b) o({TM)N)<2C-H9

for then Theorem l(iii) is applicable. Without loss of generality we may

suppose H Π σ(TM) Φ 0, so that Ή - GΦ 0 . Let L = XT(Ή U G).

We claim that N = L/M is the desired subspace. If we put S = T\L then

it is easy to see that M = LS(G)~ (S is decomposable by hypothesis).

First note that (TM)N = (TM)L/M = TL. By [21, Theorem 1(4)],

σ ( Γ L ) c C-(HU G ) c C - i / ,

so (4b) is proved. Since T\L is decomposable, as in the proof of Lemma 1

we get

σ(T\L) - Gc σ(T\L) - σ(T\M) c σ(Γ|L)Mc σ(T\L) - G.

We claim [σ(T\L) - G] = σ(T\L) - G. If the left side is properly con-

tained in the right side, let λ lie in σ{T\L) - G but not in [σ(T\L) - G]~.

It is then easy to see (since σ(T\L) — G Φ 0) that the distance from λ to

σ(T\L) — G is positive, which contradicts the choice of λ. Hence

σ((T\L)M) = [σ(T\L) - σ(T\M)]~. Now(Γ|L)M = TM\(L/M) = TM\N,

so

σ(T\N) = [σ(T\L) -σ(T\M)]~cz {(H U G) Πσ(T) - G Π σ ( Γ ) }
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where we have used hypothesis (ii) and the obvious inclusion σ(T\L) c
σ(T) Π (G U H). This proves (4a), hence the theorem follows by Theorem
l(iii).

The next theorem gives a criterion for a strongly decomposable dual
operator, but first we need the notion of strongly analytic subspace [18]
which is closely related to the following condition: We say T has property
(β) [6, p. 394] if

(β) for every sequence of analytic functions fn: D -> X such
that (λ— T)fn(λ) -> 0 uniformly (in norm) on compact
sets in D it follows that fn -> 0 uniformly on compact sets
in D.

Since J. Snader has recently proved that M is strongly analytic iff TM has
property (β) [26], we shall say that M is strongly analytic if TM satisfies
(β). Let us also recall that Foias proved that every decomposable operator
satisfies (β) [12, Prop. 1]. Our theorem now runs thus.

THEOREM 5. The adjoint T* is strongly decomposable iff T is decom-

posable and XT(G)~ is strongly analytic for each open G.

Proof. Let Γ* be strongly decomposable. By Corollary 1 T is
decomposable and XT{G)± , G open, is a spectral maximal space of Γ*
(see [13]). Put M = XT(G)~, so that (X/M)* = M x (in the sense of
isomorphism). But Γ* is decomposable on M 1 by assumption, hence
TM is decomposable by Corollary 1. By [12] M is strongly analytic. Since
G was arbitrary, the necessity is proved.

Conversely, with the notation as above, we shall prove that if M is
strongly analytic for decomposable Γ, then Γ* is decomposable o n M 1 .
It suffices by Corollary 1 to prove that TM is decomposable. Let {Hv H2}
be an open cover of C. Then it is obvious that X = Xτ(Hλ) + XT(H2) +
M. Let Ki = (Xτ(Hj) + M)' and L, = Kt/M (i = 1,2). Since obviously
X/M = Lx + L2, we need only prove σ(TM\Li) c Ht (i = 1,2) in order
to apply Theorem l(ii). Fix i = 1 or 2. Since TM has the svep, we need
only prove that λ - TM is surjective on L, if λ £ //,.. For x' e Li9 there
is x e Kt such that x' = x + M. There are sequences {yn} c XT{Ht) and
{zn} c M such that yn + zn -» x. Moreover, on C — Hi there is an
analytic function fn such that yn = (λ — Γ)/W(λ), λ £ i/,. Denote cosets
in iίΓ/M by JC', etc. Then for each λ έ //„ (λ - TM)fn(λ)' = ̂  -* ^7.
Fix λ and suppose that {/^(λ)'} does not converge. Then there is p > 0
and a subsequence of {/w(λ)'} which we write as {fk(λ)'} such that
IIΛ(λ)' ~~Λ+i(λ)ΊI >P for each k. But the corresponding subsequence
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{y'k} converges to x\ so vk= y'k - y'k + 1 ^> 0. Put g,(λ) = fk{\)' -

Λ + i(λ) ' ; hence (λ - TM)gk{\) = υk -> 0. Since M is strongly analytic,

g*(λ) -> 0, a contradiction. Thus ^ ( λ ) ' -> wλ G L,. Clearly x ' =

(λ - Γ M )w λ , so λ - TM is surjective on Lz for λ £ //j. It follows that

σ(TM\L() c Hn so the theorem is proved.

4. Reflexive spaces. In order to get sharper results, we shall assume

in this section that X is reflexive except as otherwise indicated.

By Corollary 1 it is clear that the adjoint of a decomposable operator

is quasi-decomposable. But since decomposable operators need not be

strongly decomposable, it is not clear that such an operator is strongly

quasi-decomposble. Our next theorem shows that this is nearly the case.

First we have

PROPOSITION 2. Let X be reflexive. If T* is decomposable, then the

restriction T\XT(G)~ is quasi-decomposable for each G.

Proof. We first prove that if G and H are open, XT(G U H)~ =

XT(G)- VXT(H)~. We compute

(5) XT(GU H)±= X**[C - ( G U i / ) ] = X**(C - G) Π l * ( C - H)

= XT(G)± ΠXT(H)\

where we use a consequence of Theorem 1 and the fact that Xτ(-)

preserves intersections. By reflexivity an equivalent version of (5) is

(6) XT(G U H)= [XT(G)-+ Xr(H)-}~= XT(G)'V XT(H)\

Now let G be any open set and let {Hl9 H2} be an open cover of C. By

(6)

XT(G)~= XT(HX Π G)~V XT(G Π H2)\

Let M = XT(G)~ and S = T\M. It is easy to prove that M^//,) = M Π

XriH,) is spectral maximal for S, and clearly Xτ(Hι Π G)~c Ms(Ht) c

M, hence S is quasidecomposable, and the proof is complete.

Let us remark that condition (6) above is a necessary one for an

(SQD) operator [15, Theorem 8.3].

THEOREM 6. For T on reflexive X, the following are equivalent:

(i) T is decomposable;

(ii) T\XT{G)~ is quasi-decomposable for each open G and (2) of

Theorem 2 holds;

(iii) T is quasi-decomposable and (2) holds.
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Proof. Clearly (ii) => (Hi), and (iii) => (i) by Theorem 2. Finally (i) =>
(ii) follows from Proposition 2.

Our results indicate that duality properties for (QD) operators may be
hard to obtain without additional hypotheses like (2). We now seek
alternative hypotheses which promote (ASD) to (D).

We noted above that a decomposable operator satisfies (/?). Earlier
Bishop had proved that if T and Γ* both have property (β) on a
reflexive space, T has an (ASD) [6, Theorem 5]. More recently, the author
sharpened this result as follows.

THEOREM 7 [19]. Let X be reflexive. Then T is decomposable iff T and
Γ* both satisfy (β).

If T alone satisfies (/?), it need not have an (ASD), e.g., the shift on
Hubert space. Nor is it known if (β) and (ASD) together imply decom-
posability. However, if T has (ASD) consisting of strongly analytic
subspaces, then it is decomposable.

THEOREM 8. Let X be reflexive. If T has the (ASD) such that each
invariant subspace may be chosen strongly analytic, then T is decomposable.

First, observe that the hypotheses of Theorem 8 imply that T has
property (β). For let M be a strongly analytic subspace of T in the
(ASD) corresponding to G in the cover {G9 H} of C such that G Π σ(T)
= 0 . By [18, p. 19] σ(T\M) c σ(Γ), so it follows that σ(Γ|) = 0, hence
M = 0. Thus T has property (β).

The proof of Theorem 8 is broken into two lemmas, each having its
own interest (we assume the hypotheses of Theorem 8).

LEMMA 2. Let F be closed in C and let {Ma) be a family of strongly
analytic subspaces with σ(T\Ma) c F for each a. If M = VαMα, then
σ(T\M) c F.

Proof. Since T satisfies (β) T and T\M have the svep. Hence it
suffices to prove that λ - T is surjective on M for λ <£ F [8, Prop. 1.2].
Let x G M. For each n = 1,2,..., there is xn e Mn = Man G {Ma) such
that xn -> x. The corresponding sequence of analytic functions fn defined
by Λ(μ) = R(μ; T\Mn)xn on C - F has the property that (μ - T)fn(μ)
—> x uniformly on C — F. We claim that {fn} is uniformly bounded on
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compact sets in C - F. If not, there exists a compact D c C — F and (if

necessary) a subsequence of {fn} also denoted {fn } such that | |/Λ(μn)\\ > n

for some μn €Ξ D. Then clearly (μ - T)(n'ιfn{μ)) -> 0 on C - F. Since T

has property (/?), n~ιfn -> 0 uniformly on D, a contradiction. So for

λ ί F, since X is reflexive {fn(λ)} has a subsequence converging weakly

to M G I The convexity of M implies w e M, and weak continuity of T

implies x = (λ - T)u. Hence λ - T is surjective on M and σ(T\M) c jp.

LEMMA 3. With the hypotheses of Lemma 2 and F = G for G open, we

also have σ(TM) c C - G.

Proof. Let G be open and let { Ha} be the family of all open Ha such

that {G, Ha) covers C for each a. (Note: f]aHa = C - G.) Without loss

of generality, we may suppose that for each a there exist strongly analytic

spaces Ma9 Na such that X = Mα VNa and σ ( Γ | M J c G and σ(T\Na) c

Ha. We prove that σ(Ta) c Ha for each α where Ta is the induced

operator on X/Ma. Since Γα has the svep (each α), we need only prove

that λ - Ta is surjective for λ <£ i/α. For arbitrary x e X, let {^} c Mα

and {zw) c 7Vα such that yn + zn -+ x. On C - Ha the analytic functions

/„ defined by/ Λ (λ) = i?(λ; T\Na)zn satisfy

( ) | | > 0 onC-Ha

In X/Mα with xr = x 4- Ma, etc.,

) | 0 onC-Ha.

As in the proof of Lemma 2, xr = (λ - Ta)w for some w e X/Ma. So

σ(Γα) c ^ α for each α.

Moreover, since σ(Γα) = σ(Γ*|M/) for each α, if M = VαMα it

follows that σ ( Γ * | M ± ) c σ ( Γ * | M / ) c ^ α , all α. Hence σ(TM) =

σ ( Γ * | M ± ) c n ^ α = C - G, and Lemma 2 is proved.

To prove Theorem 8, merely apply Lemmas 2 and 3 and Theorem 1

COROLLARY 3. On a reflexive space, the following are equivalent:

(i) 7"* is strongly decomposable',

(ii) T is quasi-decomposable and XT(G)~ is strongly analytic for each

open G.

(iii) T * is strongly quasi-decomposable and each of its spectral maximal

spaces is strongly analytic.
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Proof, (i) <=> (ii). Clearly (i) => (ii) by Theorem 5. For the converse,

use Theorems 8 and 5. (i) <=» (iii). If (i) holds, then T*M is decomposable

for each spectral maximal M for Γ* [4], so each such M is strongly

analytic for Γ*. For the converse, apply Theorem 8.

REMARK. Assertion (ii) of Corollary 3 is similar to a recent result of

Snader [26, Theorem 3.1].

5. Strongly bi-decomposable operators. It has already been ob-

served that (D) =» (SD) may fail and strong decomposability may not be

preserved under duality. But these counter-examples are defined on non-

reflexive Banach spaces. Hence the questions (D) => (SD) and (SD) =>

(SD)* are still open for operators on reflexive spaces. In this section, we

present some results which might be pertinent to these questions. To

simplify terminology, we call T strongly bi-decomposable if both T and T *

are strongly decomposable. By [22, Cor. 3] T * is strongly bi-decomposa-

ble if Γ*** is.

We begin with an observation.

PROPOSITION 3. // (QD) => (D) on reflexive spaces, then TM is

decomposable if T is decomposable and M is spectral maximal. In addition,

if (D) => (SQD), then every decomposable operator is strongly bi-decom-

posable.

Proof. Let T be decomposable with spectral maximal space M. By

Theorem 6, Γ* is quasi-decomposable on M ± = Xfi*(G)~ for some open

G. By hypothesis this restriction T*\M± is decomposable, hence TM is

decomposable by Corollary 1. If the hypothesis (D) => (SQD) holds, then

each restriction of T to a spectral maximal M is quasi-decomposable, so

T\M is also decomposable. Hence T is strongly decomposable, and

similarly T * is strongly decomposable.

Thus the conclusion of Theorem 6 (ii) is not quite strong enough to

ensure strong bi-decomposability. Our next theorem gives criteria for this

property. If G is open and F is closed, let TG [TF] denote the operator

induced by XT(G)~ [XT(F)].

THEOREM 9. Let X be reflexive. Then the following are equivalent:

(i) T is strongly bi-decomposable.

(ii) For each open G and closed i7, TG is decomposable and TF is

strongly decomposable.
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(iii) T is (SQD) and for each open G and closed F subspaces XT(G)~

and XT(F) are strongly analytic.

(iv) T is decomposable and for each open G the subspace XT(G)~

[X**(G)-] is strongly analytic for T [T*].

Proof. The equivalence (i) <=> (iv) follows from Theorem 5. If (i) holds,

then Γ*|X**(C - G) = T*\XT(G) -1 is decomposable. Hence TG is de-

composable by Corollary 1. Since T is strongly decomposable also, TF is

strongly decomposable by [4, Th. 1.8]. (ii) <=> (iii). If TG and TF are

decomposable, then XT(G)~ and XT(F) are strongly analytic by a result

of Foias [12]. Since TF is also strongly decomposable, (iii) follows by

taking F = 0 . If (iii) is true, then T\XT(F) is quasidecomposable, so T is

strongly decomposable by Theorem 8. Since each XT(G)~, G open, is

strongly analytic, T* is strongly decomposable by Theorem 5. Hence

(iii) <=» (i) and the proof is complete.

We next consider some necessary conditions for an operator to be

strongly bi-decomposable. We say T satisfies (a) if the following holds:

(α) i f σ ( Γ ) has more than one point, there exist nonzero

strongly analytic subspaces Mλ and M2 such that σ(Γ|My)

are disjoint.

PROPOSITION 4. Let X be reflexive. If T is strongly decomposable, then
Tand 7"* both satisfy (a).

Proof. If σ(T) has only one point, then T and Γ* have property (a)

vacuously. In case σ(T) has more than one point, there exist open sets Gl9

G2 with disjoint closures such that σ(T) Π GtΦ 0 (i = 1,2). Hence

Mt = Xτ(Gt) are spectral maximal spaces such that a(T\M^) Π σ(T\M2)

= 0 . Since Mi are both strongly analytic (Cor. 3), T satisfies (a). Also by

Corollary 3, each X$*(G)~ is strongly analytic for each open G, so Γ* has

property (a) by similar reasoning.

PROPOSITION 5. If X is reflexive, then T satisfies (β) if it satisfies (a).

Proof. Let M and N be nonzero subspaces in (a). We claim M + N

is direct. If so, M + N is closed, hence by [18, Prop. 7] the intersection

M Π N = (0) is strongly analytic, i.e., T satisfies (β). To prove our claim,

put L = M V N and S = T\L. Then σ(SN) c σ(T\M). This last asser-

tion is proved just as in the proof of Lemma 3. Since M and N are
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strongly analytic for S as well as Γ, we obtain the inclusions

σ(S\M) U σ(S\N) c σ(S) c σ(SN) U σ(S\N)

c σ(S\M)Uσ(S\N),

which prove that σ(S) is the disjoint union of σ(S\M) and σ(S\N). Let

P be the Riesz projection on L corresponding to the (Dunford) spectral

set σ(S |M).Wehve

σ(S\PL) = σ(S\M); σ(S\(l - P)L) = σ(S\N)

hence M c PL and N <z (I — P)L since these ranges are spectral maxi-

mal for S [7, p. 17]. Clearly M + N is a direct sum, and the proof is

complete.

We collect these results in

THEOREM 10. Let X be reflexive and consider the following statements:

(i) T is strongly bi-decomposable;

(ii) either T or T* is strongly decomposable;

(iii) T and T* both satisfy (a);

(iv) T and Γ* both satisfy (/?);

(v) T and T* are both decomposable.

Then (i) => (ii) => (iii) => (iv) <=> (v).

Hence if (D) => (SD) on reflexive spaces, (i)-(v) are equivalent. The

existence of a counter-example would then be assured by a failure of any

converse of the first three implications.

For completeness, we now discuss a condition sufficient for an

operator to be strongly bi-decomposable (see (8) below). We first show

that this condition is also sufficient for the following criterion due to

Wang [27].

PROPOSITION 6. Let X be arbitrary. Then T [resp. T*] is strongly

decomposable iff for each two open sets G and H

(7a) ^ ( G U J / j ^ c X**{G£)
W + X**{H)W

(7b) [resp. XT(G U H)~<z Xτ(Gε)~+ XT{H)~]

where Aw denotes weak* closure of A and Gε is the e-neighborhood of G.

PROPOSITION 7. Let T be decomposable on the Banach space X.

Suppose that for each closed F and open G

(8) XT(
F) + XΛGY is n o r m closed in X.

IfT= S* for some S, then (7a) holds; (7b) holds in any case.
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Proof. We prove (7a); the proof of (7b) is similar. Let ε > 0 and let K

be open such that G c K c K c Ge. For an arbitrary z e XΓ(G U H)w,

let {xΛ} c X Γ (G U H) be a net converging weak* to z. Since T has

"almost localized spectrum" [24], for each α there are ua e XT(H) and

* β e JT r(G) with xα = wα + ι;β. Clearly xa e X Γ ( # ) + X Γ ( Z ) . By (8)

the last manifold is closed, so by the closed graph theorem, there is R > 0

such that for each a we have u'a, υ'a in XT(H)~, XT(K) resp. such that

*« = K + ̂ « and

Since ||jcα|| is uniformly bounded, we can find subnets of {u'a] and {v'a}

converging weak* to w0, v0 e X Clearly z = w0 + υ0 G XT{H)W +

ΛΓΓ(Gε)^, and (7a) is proved.

THEOREM 11. Le/ X fee reflexive. If T is decomposable and (8) holds,

then T is strongly bi-decomposable.

Proof. By Propositions 6 and 7, Γ* is strongly decomposable. If F is

closed and G is open, since X is reflexive, we have the relations

X**(F) = XT(C - F)± and X**(G)~= XT{C - G)± .

By (8) XT(C - G) + XT(C - F)~ is closed, hence X**(F) + X*>(G)- is

also closed by [16, Lemma 4.9, p. 221]. Again, T is strongly decomposable

by Propositions 6 and 7.

In fact, Theorem 11 can be generalized as follows. Let T satisfy (8) on

arbitrary X. As before, X£{F) = XT(C - F)±, but now XT(C - G) x =

X£{G)W. Then Xf*{F) + Xf*{G)w is norm closed [16, p. 221] and the

proof of (7a) proceeds as in Proposition 7.

We mention finally that R. Evans [9] has studied "boundedly de-

composable" operators. Each such operator satisfies (8) and is therefore

strongly bi-decomposable by the last remark. Details are left to the reader.
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