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Let E be a dual Banach space. E is said to have quasi-weak*-normal
structure if for each weak* compact convex subset K of E there exists
x e K such that ||* - y\\ < άiam(K) for all y e K. E is said to satisfy
Lim's condition if whenever { xa } is a bounded net in E converging to 0
in the weak* topology and lim | |xα | | = s then limα \\xa + y\\ = s + \\y\\
for any y e E. Lim's condition implies (quasi) weak*-normal structure.
Let H be a Hilbert space. In this paper, we prove that &~(H), the space
of trace class operators on //, always has quasi-weak*-normal structure
for any H; tΓ(H) satisfies Lim's condition if and only if H is finite
dimensional. We also prove that the space of bounded linear operator on
H has quasi-weak*-normal structure if and only if H is finite dimen-
sional; the space of compact operators on // has quasi-weak-normal
structure if and only if H is separable. Finally we prove that if X is a
locally compact Hausdorff space, then C0(X)* satisfies Lim's condition
if and only if C0(X)* is isometrically isomorphic to /i(Γ) for some
non-empty set Γ.

1. Introduction. Let £ be a Banach space. A bounded convex
subset K of E has normal structure if every non-trivial convex subset H of
K contains a point x0 such that

sup{||jc0 — y\\:y e H) < diam(i/).

Here diam(i/) = sup{ ||x - y\\: x,y e H) denotes the diameter of H. The
Banach space E is said to have normal structure if every bounded closed
convex subset of E has normal structure. If E is a dual space then E is
said to have weak* normal structure if every weak* compact convex
subset of E has normal structure. In [6] Lim introduced the notion of
weak* normal structure and proved that lλ has this property. It also
follows from the proof of Theorem 3 in [4] that lλ(T) has the same
property for any non-empty set Γ. Furthermore, an application of Pro-
position 2 in [9] shows that /^(Γ) has weak* normal structure if and only
if Γ is a finite set.

Let / ί b e a Hilbert space. Let &{H) be the space of bounded linear
operators from H into itself with the operator norm. Let ^(H) be the
closed ideal of compact operators in &(H). Then, as is well known,
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* = a(H) and «>(#)* can be identified w i t h ^ ( # ) , the trace-class
operators on H with the trace norm (see [12, pp. 63-64]). When H is
infinite dimensional, it is known that ^(H) and^(H) contain isometric
copies of c0 and ll9 respectively [12, Proposition 1.4 and Theorem 1.6 p.
62]. It follows, then, that the Banach spaces tf(H), SΓ{H) and &(H) do
not have normal structure unless H is finite dimensional [1].

A concept weaker than that of normal structure was introduced by
Soardi in [11], A bounded convex subset K of a Banach space has
quasi-normal structure (or close-to-normal structure [13]) if for every
non-trivial closed convex subset H of K, there exists x e H such that
||JC — y\\ < diam(i/) for all y e H, A Banach space has quasi-normal
structure (quasi-weak-normal structure) if every bounded (weakly com-
pact) closed convex subset has quasi-normal structure. If, in addition , it is
a dual Banach space then it has quasi-weak *-normal structure if every
weak* compact convex subset has quasi-normal structure.

In §2 of this paper, we prove, among other things, three theorems on
quasi-normal structure and its generalizations for certain spaces of opera-
tors on a Hubert space H. First, we prove that &{H) has quasi-weak*-
normal structure if and only if H is finite dimensional (Theorem 1).
Secondly, we prove that 3Γ{ H) has quasi-weak*-normal structure for any
H (Theorem 2). Finally, we prove that ^(H) has quasi-weak-normal
structure if and only if H is separable (Theorem 3). A table summarizing
our results is provided at the end.

Let E be a Banach space. Then E* is said to satisfy Lim's condition if
whenever {φα} is a bounded net in £*, φα converges to 0 in the weak*
topology and limα | |φj| = s, then lim J|φΛ + ψ|| = s + ||ψ|| for any ψ E £ * .
In [6], Lim showed that lx satisfies this condition for sequences. Also a
simple modification of the proof of Theorem 3 [4] shows that Lim's
condition implies weak* normal structure (see Lemma 4). We prove in
section 4 that (Theorem 4) if X is a locally compact Hausdorff space, then
the dual Banach space C0(X)* satisfy Lim's condition if and only if
C0(X)* is isometric isomorphic to /X(Γ) for some non-empty set Γ. We
also prove that (Theorem 5) if H is a Hubert space, then ^(H) satisfy
Lim's condition if and only if H is finite dimensional.

As known [6, Theorem 1], if is is dual Banach space with weak*
normal structure, then every nonexpansive mapping T of a non-empty
weak* compact convex subset K of E (i.e. ||7JC — Ty\\ < \\x — y\\ for any
x, y e K) into itself has a fixed point. Also [13, Theorem 1] if E is a
Banach space with quasi-weak-normal structure if and only if every
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Kannan map T of a non-empty weakly compact convex subset K of E (i.e.
\\Tx - Ty\\ < (||JC - 7JC|| + \\y - Ty\\)/2, for any x j E ί ) into itself has
a fixed point.

2. Quasi-normal structures.

THEOREM 1. Let H be a Hubert space. Then SS(H) has quasi-weak*-
normal structure if and only if H is finite dimensional.

Proof. If H is finite dimensional, then SS(H) is finite dimensional.
Hence £8(H) has normal structure.

Conversely if H is infinite dimensional, write H = /2(Γ) where Γ is a
complete orthonormal basis of H. Consider the map p: /^(Γ) -
defined by

Then p is an isometry and algebra isomorphism of /^(Γ) into SS(12(T))
which is continuous when /^(Γ) has the weak* topology and &(H) has
the weak operator topology. By Proposition 2 in [9], there exists a weak*
compact convex subset K of /^(Γ) such that for each / e K, there exists
g e K with | | / - gH^ = diam(ΛΓ) > 0. Since weak* topology and the
weak operator topology agree on bounded subset of &(H), p(K) is also a
weak* compact convex subset of 3$(H) with positive diameter. In particu-
lar 38(H) does not have the quasi-weak*-normal structure.

LEMMA 1. Let E be a dual Banach space. Then E has quasi-weak*-nor-
mal structure if it satisfies

whenever {xa} is a net in E, xa converges to x in the
(**) weak* topology and \\xa\\ converges to \\x\\, then xa

converges to x in norm.

Proof. Suppose there exists a weak* compact convex subset K of E,
diam(^) > 0, such that for each x G K, there exists Γ(i) G I with
||JC - Γ(JC)|| = diam(^). Following an idea of Wong [13, Theorem 2], let
W(K) denote the supremum of {\H\; H is a diametral subset of K) (H is
d i a m e t r a l i f \\xλ - x2\\ = d i & m ( K ) w h e n e v e r x l 9 x 2 G //, x χ φ x 2 ) . A s

shown in the proof of Theorem 2 in [13], W(K) is infinite. Let {xn) be a
sequence in K such that ||JCW — xm\\ = diam(^Γ), n Φ m. Since K is weak*
compact, there exists a subnet {xn } of {xn} such that xn converges to
some z G K in the weak*-topology. Passing to a subnet if necessary, we
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may assume that the net {||JC — ^(z))]} also converges. Then

d i a m ( i θ = \\z - T(z)\\ < lim \\xna - T(z)\\ < diam(A ).

So limα | |jcWα - T(z)\\ = diam(Λ:) Since {xna - T(z)} converges in the

weak* topology to z - Γ(z), and limJ|jrΛ] - T(z)\\ = \\z - T(z)\\, it

follows that {x — T(z)} converges in norm to z — T(z). In particular,

the net {xn } converges in norm to z also. This contradicts the choice of

the sequence {xn}.

The next lemma is due to K. McKennon [7, Lemma, 3.2]. For the sake

of completeness, we give a short proof.

LEMMA 2 (McKennon [7]). Let A be a C*-algebra and {ea} be an

approximate identity of A, ea > 0 and \\ea\\ < 1. Let {φβ} be a net in A*

such that φβ —> φ in the weak* topology and \\φβ\\ -» | |φ| | . Then for any

ε > 0, there exists α 0 , β0 such that

(1) \\ReJ

and

(2) \\R*fβ

for all β > β0, where Reφ(x) = φ(xe).

Proof. Let x & A, | | Λ : | | < 1 . Then using [5, Lemma 3.3] and some

properties of positive linear functionals, we obtain the following estimate

φ - φ , x ) \ 2 = \(φ, x ea- x ) \ 2 = | < φ , x - ( 1 - e a ) ) \ 2

where 1 is the identity in the enveloping von Neumann algebra A** of A

and |φ | is the absolute value of φ. Since the net {ea) converges to 1 in the

weak* topology of A**9 (1) follows from the above estimate.

A similar estimate as above shows that

Using [5, Lemma 3.5] and the fact that for each positive form

II \Φβ\ II = WΦβW = IΦ/sl(l)? Λe right side of the above estimate converges to
IIΨIIIΦP " eα o). Hence (2) follows.
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THEOREM 2. Let H be a Hilbert space. Then ^{H) has the quasi-

weak *-normal structure.

Proof. By Lemma 1, it suffices to show that ^(H) = <g(H)* has

property (**). Let ^ d e n o t e all orthogonal projections of H onto a finite

dimensional subspace of H. Order & by: P > Q iff QP = PQ = Q. Then

( ^ , < ) is an approximate identity for ^(H). Since every Γ G &(H) can

be written in the form T = Tγ + iT2, Tt self-adjoint, / = 1,2, it suffices to

show that if T is self-adjoint, then lim \\TP - Γ|| = lim \\PT - T\\ = 0.

Indeed, if T e ^ (//) and T is self-adjoint, then by the spectral theorem

T = Σ ^ λ j P , where λ, -> 0 as / -^ oc and Pι G ̂ . Given ε > 0 choose n

such that | |Γ - Σ ^ λ PJI < ε. Let Q e &> be such that Q > Pi9 i =

1,2,...,w. Then for all P > β,

| |ΓP - Γ|| < ||77> - SnP\\ + | |SΛP - S j | + \\Sn - T\\ < 2e,

where 5W = Σ ^ x λ , ^ . Similarly, we can show lim \\PT - T\\ = 0. We also

note that each P e ^ i s positive and has norm one.

Let {φβ} be a net in ^ ( / / ) * converging to some φ G ^(H)* in the

weak* topology and Hψ̂H -* ||ψ||. By Lemma 2, there exists P o e ^ a n d Ŝo

such that

(3) \\RPoφ - φ\\ < ε/2 and \\Rpfo-φβ\\< ε/2

for all β > β0. By considering the reversed C*-algebra, we may also

assume that

(4) \\LPoφ - φ\\ < ε/2 and \\LPoφβ-φβ\\< ε/2.

where (LPoφ)(T) = Φ ί P o 7 ^ Γ G * ( ^ ) Consequently, if β > βQ9

(5) \\RPLPoφ - φ\\ < \\RPLPoφ - RPoφ\\ + ||i?Poφ - φ|| < ε

since \\RPJ\ < \\P0\\ = 1 by (3) and (4). Similarly

(6) WRp0

Lp0Φβ - Φβ\\ < ε

Also, P0

<£(H)P0 is a finite dimensional algebra over C. Hence, {Φβ},

restricted to P0

(£(H)P0 converges to φ in norm. Consequently, there exists

βλ > β0 such that

( 7 ) WTPo

LP<ί>β-RPoLPo4<£

if β > βv Now if β > βv we have

||φ^ - φ|| < ||φ^ - RPLPoφβ\\ + \\RPLPoφβ - RPLPoφ\\

+ \\RPLPoφ-φ\\<3ε.

by (5), (6) and (7).
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REMARK. Clearly if a dual Banach space E has the weak* normal
structure then E has the quasi-weak*-normal structure. But the converse is
false. Indeed, let E the space of absolutely summable real sequences with
norm

where x+, x~ denote the positive and negative part of x respectively and
H-xld = ΣjLilX/l Then, as shown by Lim [6] (Lemma 1 and Example 1), E
is a dual Banach space which does not have weak* normal structure.
However, since E is separable, an argument similar to that of Wong [13,
Theorem 2] shows that E has quasi-weak *-normal structure.

Problem 1. Does the trace class operator ̂ (H) = ^ ( i / ) * with dual
norm have the weak* normal structure or the weak normal structure?

LEMMA 3. Let Γ be a non-empty set. Then co(Γ) has the quasi-weak-
normal structure if and only ifT is countable.

Proof, If Γ is countable then co(Γ) is norm separable. Hence each
weakly compact convex subset of co(Γ) has quasi-normal structure by
Theorem 2 in [13].

Conversely, if Γ is not countable, consider Γ as a group (say the free
group on |Γ| generators). Pick α e Γ . Let/ = 8a i.e./(x) = 1 if JC = a and
f(x) = 0 if x Φ a. Let K denotes the closed convex hull of {lxf\ x e Γ},
where (lxf)(t) = f(xt), t e Γ. Then K is weakly compact ([2, Corollary
3.7]) and diam(^) = 1. Now if g e K, let σ c Γ be a countable set such
that g(t) = 0 if / e Γ ~ σ. Pick z e Γ ~ σ and let h = 8Z. Then h <Ξ K
and ||g — Alb = 1. Hence K does not have quasi-normal structure.

THEOREM 3. Let H be a Hilbert space. Then H is separable if and only if
has quasi-weak-normal structure.

Proof. If H is separable, then tf(H)* is separable [10, Proposition
2.1.10]). Hence ^(H) is separable. Consequently every weakly compact
convex subset of ^(H) has quasi-normal structure by [13, Theorem 2].

Conversely, if H is not separable, then H is isomoφhic to /2(Γ) for an
uncountable set Γ. Consider the map p: co(Γ) -> 3$(12(T)) defined by

P(f)(h)(t)=f(t)h(t), / e Γ ,

then p is an isometry and an algebra isomorphism of co(Γ) into ̂ ?(/2(Γ)).
Furthermore, ρ(/) is compact for each / e co(Γ). By Lemma 3, there
exists a weakly compact convex subset K in co(Γ) which does not have
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quasi-normal structure. In particular, p(K) is a weakly compact convex

subset of ^(H) which does not have quasi-normal structure also.

Summary. In the Table we shall abbreviate normal structure by n.s.,

quasi-normal structure by q.n.s., etc. We assume Γ is not finite and H is

not finite dimensional.

No n.s. No n.s. No n.s.

q.w.n.s. w*.n.s. Noq.w*.n.s

ί
Γ is countable w.n.s.

No n.s. No n.s. No n.s.

q.w.n.s. w*.n.s.(?) Noq.w*.n.s.

ί
H is separable w.n.s.(?)

q.w*.n.s.

3. On Lim's condition. Let E be a Banach space. Then E * is said

to satisfy Lim's condition if whether {φa} is a bounded net in £*,

φα converges to 0 in the weak* topology and limα | |φj | = s, then

limj|φα + ψll = s + HΨII for any ψ e E*.

In [6], Lim showed that lλ satisfies this condition for sequences.

LEMMA 4. Let E be a Banach space. If E* satisfies Lim's condition,

then E* has the following properties:

(a) Norm and weak* topology agree on S = {φ e £ * ; | |φ | | = 1}

(b) /br any 0 < ε < 2, if {φa} is a net in £ * , | | φ j | < 1, φa -> φ /« //ẑ

weak*-topology and \\xa - xβ\\ > ε for all a Φ β, then \\φ\\ < 1 — ε/2.

/« particular, E* has the Radon Nikodym Property and weak* normal

structure.

Proof, (a) Let {φa} be a net in S, φ e 5* such that φa -> φ in the

weak*-topology. Suppose | |φα — φ|| -> 0. Then we may assume, by passing

to a subnet if necessary, that \\φa — φ\\ > ε for each a. Since {\\φa - φ||} is

bounded by 2, we may further assume that l imj |φ α — φ|| = s > ε > 0 .
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Let ψα = φa — φ. Then ψα -> 0 in the weak*-topology but

which is impossible.
(b) We may assume that \\φa — φ\\ > ε/2 for each α, and

Then by Lim's condition,

lim | |φj| = lim \\(φa - φ) + φ\\ = s + \\φ\\

i.e. s + Hφll < 1 or ||φ|| < 1 - s < 1 - ε/2.
The last statement follows from Corollary 8 and Proposition 9 in [8],

and the proof of Theorem 3 [4] (That E* has weak* normal structure also
follows simple modification of Lim's proof of Theorem 3 in [6]).

Given a locally compact Hausdorff space X, let C0(X) denote the
C*-algebra of complex-valued continuous functions/on X such that for
any ε > 0 there exists a compact subset σ of X such that |/(x) | < ε for
χ G l ~ σ with the supremum norm.

THEOREM 4. Let X be a locally compact Hausdorff space. The dual
Banach space C0(X)* satisfies Lim's condition if and only if C0(X)* is
isometric isomorphic to lx(T) for some non-empty set Γ.

Proof. If C0(Ύ)* satisfies Lim's condition, then, by Lemma 4, Co(
has the Radon Nikodym Property. Since Co( X)** = M is the enveloping
von Neumann algebra of the C*-algebra C0(X), it follows from Theorem
4 in [3] that M is the direct sum of Type I factors i.e. M is isomorphic to
Σ α e Γ θ 3#{Ha). Since M is commutative, Ha= C for each a e Γ. In
particular, C0(X)* « lλ(T).

Suppose C0(X)* is isometric isomorphic to ^(Γ) for some non empty
set Γ. We may assume that Γ is infinite. Let {fa} be a bounded net in
/X(Γ) such that fa -> 0 in the weak*-topology and Iimj|/J | = s. Let
g e ^(Γ). Since \\fa - g\\ < | |/J| + ||g|| for each α, we may assume, by
passing to a subnet if necessary, that limα \\fa — g\\ = t exists. Clearly we
have / < s + \\g\\. To see that we actually have equality, let ε > 0. Observe
thatin/^Γ),

a) ιι/β-giι^ιι/j-ιι«ιι+2Σ(igωι-ι/βωi)
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for any subset σ of Σ. Now let σ be a finite subset such that ΣsξΞσ\g(s)\ >

\\g\\ — ε. For this σ, we can choose α 0, using the weak* convergence of fa

and the convergence of | |/J|, so that for all a > a0 we have Σs€Ξσ\fa(s)\ < ε

and H/JI > s — ε. Then for all a > α 0 we have from (1)

\\fa ~ g \ \ > s - ε - \\g\\ + 2||g|| - 2ε - 2ε = s + \\g\\ - 5ε.

Thus/ > <? + ||g||.

Problem 2. Let X be a locally compact Hausdorff space. When does

C0(X)* have the weak* normal structure?

THEOREM 5. Let H be a Hubert space. Then ^(H) satisfies Lim's

condition if and only if H is finite dimensional.

Proof. If H is finite dimensional, then ^{H) is finite dimensional.

H e n c e ^ ( H ) satisfies Lim's condition.

If H is infinite dimensional, let {ξn9 n = 1,2,...} be an orthonormal

sequence in H. For each n = 1,2,..., define φM(Γ) = (T^i, £Λ) Then

φΛ? G ̂ ( f ί ) , HΦJI = 1 and φπ -» 0 weakly. Indeed, if Γ G ^ ( ^ ) , then

«e/ w = l n=\

where { | α } α e / is a complete orthonormal set of H containing {£„}. So

φ,7(Γ) -^ 0. Also \\φn - φJI < ]/2 for each Λ. Hence ϊϊϊnw | |φn - φ x | | < 4Ϊ

i.e. lim^ ||φM — φ 1 | | ^ lim | |φ n | | 4- | |φ x | | . In par t icular ,^//) does not satisfy

Lim's condition.
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