Pacific Journal of Mathematics

CORRECTION: "THE SET OF CONTINUOUS NOWHERE DIFFERENTIABLE FUNCTIONS"

R. DANIEL MAULDIN

Vol. 121, No. 1 November 1986

THE SET OF CONTINUOUS NOWHERE DIFFERENTIABLE FUNCTIONS: A CORRECTION

R. Daniel Mauldin

Let M be the set of all continuous real-valued functions defined on the closed unit interval [0,1] which do not have a finite derivative anywhere. The purpose of this note is to complete the argument that M is a coanalytic set and is not a Borel set by correcting an error in the last paragraph of an earlier paper on this topic.

Let C be the space of all real-valued continuous functions defined on [0,1]. We consider C to be provided with the topology of uniform convergence. Let M be the subset of C consisting of all functions which do not have a finite derivative at any point of [0,1]. In [1], the author demonstrated that M forms a coanalytic subset of C. The purpose of [1] was to show that M is not a Borel set. To this end it was shown that there is a countable dense subset $Y = \{y_n\}_{n=1}^{\infty}$ of [0,1] such that

 $D(Y) \equiv \{ f \in C \mid f \text{ has a finite derivative at some point of } [0,1] \setminus Y \}$ forms an analytic subset of C which is not a Borel set. It is then claimed in the last paragraph of [1] that it follows that M is not a Borel set since

$$(*) D(Y) = (C \setminus M) \setminus \bigcup_{n=1}^{\infty} D_n,$$

where $D_n = \{ f \in C \mid f \text{ has a finite derivative at } y_n \}$. The argument was that since each set D_n is an $F_{\sigma\delta}$ subset of C, if M were a Borel set, then because of equation (*), D(Y) would be a Borel set. However, (*) is false. I thank David Preiss and Alexander Kechris for pointing out this elementary error. We complete the argument as follows.

Let us assume Y is a subset of (0,1). (Only minor modifications are needed if 0 or 1 belong to Y.) Let $H = \{(f, \langle \varepsilon_n \rangle) \in C \times \{0, 1\}^N \mid \forall n \ (f \text{ has a finite derivative at } y_n \text{ if and only if } \varepsilon_n = 1)\}$. It can be checked that H is a Borel set and thus, there is a Borel measurable map $h: C \to \{0, 1\}^N$ such that H = Graph(h). Define $g: \{0, 1\}^N \to C$ by setting $g(\langle \varepsilon_n \rangle) = \sum_{k=1}^{\infty} \varepsilon_k 2^{-k} g_k$, where, for each $k, g_k(x) = |x - y_k|$. The continuous map g has the property that $g(\langle \varepsilon_n \rangle)$ has a finite derivative at x if and only if $x \notin \{y_k \mid \varepsilon_k = 1\}$. Let T be the continuous map of $C \times \{0, 1\}^N$ into C defined by $T((f, \langle \varepsilon_n \rangle)) = f + g(\langle \varepsilon_n \rangle)$. We have $(f, h(f)) \in T^{-1}(M) \cap H$

if and only if $f \in C \setminus D(Y)$. If M were a Borel subset of C, then $C \setminus D(Y) = \operatorname{proj}_c(T^{-1}(M) \cap H)$ would be a Borel subset of C. This contradiction establishes the theorem.

REFERENCE

 R. D. Mauldin, The set of continuous nowhere differentiable functions, Pacific J. Math., 83 (1979), 199-205.

Received April 27, 1984.

NORTH TEXAS STATE UNIVERSITY DENTON, TX 76203-5116

PACIFIC JOURNAL OF MATHEMATICS EDITORS

V. S. VARADARAJAN (Managing Editor)

University of California Los Angeles, CA 90024

HEBERT CLEMENS University of Utah Salt Lake City, UT 84112

CHARLES R. DEPRIMA

California Institute of Technology

Pasadena, CA 91125

R. FINN Stanford University Stanford, CA 94305

HERMANN FLASCHKA University of Arizona Tucson, AZ 85721

RAMESH A. GANGOLLI University of Washington Seattle, WA 98195

ROBION KIRBY University of California Berkeley, CA 94720 C. C. MOORE

University of California Berkeley, CA 94720

H. SAMELSON Stanford University Stanford, CA 94305

HAROLD STARK

University of California, San Diego

La Jolla, CA 92093

ASSOCIATE EDITORS

R. Arens E. F. Beckenbach (1906–1982)

B. H. NEUMANN

F. Wolf

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEYOR CATEL UNIVERSITY

NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD LINIVERSITY

STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE IN

WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Pacific Journal of Mathematics

Vol. 121, No. 1 November, 1986

Om P. Agrawal, Douglas Napier Clark and Ronald George Douglas,	
Invariant subspaces in the polydisk	. 1
Christoph Bandt and Gebreselassie Baraki, Metrically invariant measures	
on locally homogeneous spaces and hyperspaces	13
Marcy Mason Barge, Horseshoe maps and inverse limits	29
Russell Gene Bilyeu, Robert Richard Kallman and Paul Weldon Lewis,	
Rearrangements and category	41
Jean Bourgain, A problem of Douglas and Rudin on factorization	47
Hernan Cendra, A normal form and integration in finite terms for a class of	
elementary functions	
Ky Fan, The angular derivative of an operator-valued analytic function	67
Gerhard Gierz, On the Dunford-Pettis property of function modules of	
abstract L-spaces	73
Gabriel Katz, On polynomial generators in the algebra of complex functions	
on a compact space	83
Ridgley Lange, Duality and asymptotic spectral decompositions	93
Anthony To-Ming Lau and Peter F. Mah, Quasinormal structures for	
certain spaces of operators on a Hilbert space	09
R. Daniel Mauldin, Correction: "The set of continuous nowhere	
differentiable functions"	19
Alan Harvey Mekler and Saharon Shelah, ω-elongations and Crawley's	
problem 1:	21
Alan Harvey Mekler and Saharon Shelah, The solution to Crawley's	
problem 1	33
Richard Rochberg, Deformation of uniform algebras on Riemann	
surfaces	
Joseph Roitberg, On weak epimorphisms in homotopy theory	
Jesús M. Ruiz, A remark on fields with the dense orbits property	89
Henry Wente, Counterexample to a conjecture of H. Hopf	93
David G. Wright, Rigid sets in E^n	45