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We define the p-dimensional collar Col,(M,g) of a compact
torsion-free Riemannian manifold (M, g) to be the greatest lower bound
of the masses of all the p-dimensional currents which represent non-triv-
ial integral homology classes. When the cohomology ring of M satisfies
a certain non-degeneracy condition there is an inequality giving a lower
bound on the volume of (M, g) in terms of certain p-dimensional collars
of (M, g). This is a version of the stable isosystolic inequality using
currents rather than singular homology.

In addition to deriving this version of the stable isosystolic inequal-
ity, we show for one class of manifolds that it is a sharp inequality.

THEOREM A. Let (M, g) be a compact oriented n-dimensional Rieman-
nian manifold with H(M,Z) = Z. Then

Vol(M, g) = Col,(M, g)Col, (M, g).

Furthermore, equality holds if and only if there is a Riemannian submersion
of (M, g) onto the circle of length Col,(M, g) such that each level hyper-
surface (i.e. fiber) is a connected minimal submanifold of volume
COln—l(M’ g)

It is interesting to contrast Theorem A with Loewner’s inequality (2],
[8] which gives a lower bound on the area of a torus in terms of the length
of the shortest non-contractible closed curve. In Loewner’s theorem equal-
ity holds for a class of metrics which differ from one another by a
constant multiple. Whereas in Theorem A equality can hold for many very
different Riemannian metrics. As an example let M = S! X §?2. Certainly
the equation Vol( M, g) = Col,(M, g)Col,(M, g) will hold for any of the
various product metrics g. It also will hold for some non-product metrics.
One of the latter can be constructed as follows. Let S* be given the
canonical constant curvature metric, and let f be a non-trivial orientation
preserving isometry of S2. Then the group of integers acts as a properly
discontinuous group of isometries on the Riemannian product R X S? by
defining n(t,x) = (¢t + n, f"(x)) where f” is the nth iterate of f. The
quotient space under this action is diffeomorphic to M. Hence the metric
on R X S? passes down to a non-product metric on M for which (1) the
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projection on the first factor is a Riemannian submersion and (2) the level
surfaces of the projection are connected minimal submanifolds. Thus by
Theorem A the volume of this metric equals the product of the 1- and
2-dimensional collars.

It is easy to see that the cohomology rings of the complex and
quaternionic projective spaces and of the product of spheres satisfy
appropriate non-degeneracy conditions, and thus that the stable isosys-
tolic inequalities hold for these spaces. (See Gromov [6], [7].) We show
that the cohomology ring of CP™ X CP" satisfies a strong non-degener-
acy condition. Consequently the following theorem holds.

THEOREM B. Let M = CP™ X CP”". Given any positive integers
iys...,0, Such that iy + - +i, = m + n there is a constant C(iy,...,i;)
> 0 such that

Vol(M, g) = C(iy,...,i;) Col,, (M, g) --- Coly, (M, g)

for each Riemannian metric g on M.

There are analogous inequalities for the product of two quaternionic
projective spaces and the product of two Cayley planes. This can be
proved by modifications in the proof of Theorem B.

We conclude with an inequality bounding the first eigenvalue of the
Laplacian of (M, g) from above in terms of some of the collars of (M, g).

Norms on forms and cohomology. Let (M, g) be a connected com-
pact oriented n-dimensional Riemannian manifold. The canonical volume
form of (M, g) will be denoted by v,. Thus Vol(M, g) = [y, v, is the
volume of (M, g). The pointwise inner product of two p-forms w and ¢
on M is the function (w, ¢) defined by

w A\ xQ = (w,q;)vg
where * is the Hodge-star operator on forms. The corresponding pointwise

norm of the p-form w will be denoted by |w|. The following properties are
well known [5, 10].

*1 = v,

wrw = (=1)"7PPg for all p-forms w,

|*w|=|w| for all p-forms w, and,
(1) o A | < Ci(p,q;n)|w||p| forall p-forms w

and g-forms ¢ where C,( p, g; n) is a constant
depending only on p, g, and n.
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REMARK. Always

1/2
Cp,q;n) < (p ; q) ,

and if either p or ¢q equals 0,1,n — 1, or n, then C,(p, g; n) = 1 because
in this case at least one of the two forms is simple. Clearly C,( p, q; n) =
Ci(g, p; n). See[5].

By integrating over M one obtains the global inner product on forms:

((w,<p>>=fM<w,cp>ug for p-forms w and ¢.

By Hodge Theory and the de Rham isomorphism, every real cohomology
class a € H?( M, R) is uniquely represented by a harmonic p-form. We
define the inner product of two cohomology classes a, 8 € H?(M, R) by

the formula
((a, 8)) =({w,9))

where w and ¢ are the harmonic p-forms representing « and B respec-
tively. || || will denote the corresponding norms for forms and for
cohomology classes.
The comass of a p-form w at the point x in M is
lw,lo = sup{w (X): X € A?T,M is a simple p-vector of length < 1},
and the comass of w is

lollo = supf{Js,lo: x € M).

REMARK. One always has the following inequalities between the

pointwise norm and the comass of w which are valid at every point of M:
o) [0lo <@l
lo| < C(p;n)lwlo

where C,( p; n) < (}) is a constant depending only on # and p. Further-
more, C,(p;n)=11if p equals 0, 1, n—1, or n, and C,(p;n) =
C,(n — p; n). See [5, 11].

Norms on homology. A p-dimensional current is a continuous linear
functional on the vector space of all p-forms endowed with the C*-topol-
ogy. The mass |T'| of a p-dimensional current T is defined by

|T|= sup{T(w): wisa p-form with ||w[o < 1}.
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Recall that if T is integration over a submanifold of M, then |T| is the
volume of the submanifold, and that if 7 is a singular chain, then |T'| is
the mass of 7 defined in Gromov [7]. The boundary of the p-dimensional
current 7T is the ( p-1)-dimensional current 97 satisfying 7(w) = T(dw)
for every ( p — 1)-form w. This turns the collection of all currents into a
differential complex whose homology is canonically isomorphic to the real
homology of M [9]. We define the mass of a real homology class
a € H,(M, R) by
|al|=inf{|T|: T € a}.

This definition of mass compares with Gromov’s Vol as follows.

lla]] < Volg(a) at least when a is an integral homology class.

The norms defined in this and the preceding section all depend upon
the Riemannian metric g.

Duality. D(a) € H" ?(M, R) denotes the Poincaré dual class of
a € H,(M, R). Likewise, D(a) € H,_,(M, R) denotes the Poincaré dual
of « € H?(M, R). Thus,ifa-b € H (M, R) is the intersection class

ptq—n

correspondinig to a € H,(M,R) and b € H (M, R), then D(a-b)=
D(a) v D(b) where v is the cup product.

LEMMA 1. For every a € H,(M, R) and every (n — p)-form  repre-
senting D(a),

lall< C(psn) [ fely,.

Proof. Define a p-dimensional current 7 by the formula

T(<P)=wa/\qD

for every p-form ¢. Then T € a. It follows from (2) that |p| < C,(p; n)
for every p-form ¢ satisfying ||@||, < 1. Hence, if ||p]|, < 1,

T(p) =wa X =fM (xo,9)v,

< [, Iralloleg < Cpin [ lol

where we have integrated Schwarz’s inequality for the pointwise inner
product on forms and used |*w| = |w|. Thus

lal<ITI< Co(psn) [ |olo,.
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LemMa 2. Ifa€ H, (M, R) andb € H,_ (M, R), then

ID(a) || D(B) | = Cs(p,g;n)|a- bl
where C;(p,q;n) = (Cy(p,q; n)Co(p + g3 n)) 7.

Proof. Let w and ¢ be the harmonic forms representing D(a) and
D(b) respectively. By applying in succession Schwarz’s inequality, (1), and
Lemma 1, we have

ID(a) | 1D(b) 1= ( flefug)”( [ l(plzvg)m

-1 .
2 [ lollol, = ¢ (p.aim) [ o A ol

> i (p.g;n)Cii(p + g3 n)|a- b
because w A ¢ is a form dual to the class a- b and C)(n — p — ¢; n) =
G(p + g;n).
COROLLARY 3. For everya € H,_ (M, R)
(Vol(M, £))*[ D(a) |2 Cu( p; n)llal

where C,(p; n) = C;'(p; n). If equality holds then the pointwise norm of
the harmonic form representing D(a) is constant.

Proof. Let w be the harmonic form representing D(a). Then by
Lemma 1 and Schwarz’s inequality,

lall< Co(pin) [ Jolo,

< G(p; n)(fM |w|zvg)l/2(fM 1zvg)

= G,(p; n)|| D(a) [[(Vol( M, g))"”.

If equality holds then |w]|is constant by Schwarz’s inequality.

1/2

The collars of (M, g). From now on suppose M is torsion free. Thus
the integral homology H ,(M, Z) and the integral cohomology H *(M, Z)
may be identified with subsets of H,(M, R) and H*(M, R) respectively
which form lattices of these real vector spaces.
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The p-dimensional collar Col ,(M, g) of (M, g) is defined by
Col (M, g) = inf{||a||: ac€ H(M,Z),a+ 0}.

ReMARK. Col (M, g) = Vol(M, g).

Let det( H?(M, Z)) denote the determinant of the lattice H?(M, Z)
in the inner product space H?( M, R). Recall the theorem of Minkowski
which states

det(H? (M, Z)) > u(b,) X%
where A = min{||a|: « € H(M, Z), a # 0} and where u(b,) is a posi-

tive constant related to the Hermite constant depending only on the pth
Betti number b, of M. We will have need of the following inequality [4].

LEMMA 4. det( HP(M, Z)) = u(b,)A, - -- )\bp where \{ < -+ < }\bp
are the successive minimums of the lattice H?(M, Z).

For notational convenience we set h(k) = (u(k))/*.

We say M satisfies the dual lattice condition in degree p if for all
a € HP(M,R),(aLB) [M] € Z for every B € H" P(M, Z) implies a €
HP(M, Z). This condition is important because of the following lemma.

LEMMA 5. (Berger [2).) If M satisfies the dual lattice condition in degree
p, then

det(H?(M, Z)) det(H" (M, Z)) = 1.

This condition is satisfied in all degrees by compact orientable
surfaces, the product of spheres, the complex and quaternionic projective
spaces, and the Cayley plane. Details may be found in [2]. Similar
computations to those in [2] show that CP™ X CP", HP™ X HP", and
OP? X OP? also satisfy the dual lattice condition in all degrees.

PROPOSITION 6. Suppose M satisfies the dual lattice condition in degree
p, then

Vol(M, g) > C}(p;n)h*(b,)Col (M, g)Col,_,(M,g).

Proof. Let a € H?(M,Z) and B € H" ?(M,Z) be the minimum
lattice points. Then D(a) € H,_,(M,Z) and D(B) € H,(M, Z) are
both non-zero. Hence by Corollary 3 and the definition of the collars of
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(M, g),
(Vol(M, g))"*llall= C,(p;n)| D(a)]
> Cy(p;n)Col,_,(M, g)
and
(Vol(M, g))'”*| B = C,(n — p; n)| D(B)|
> Cy(n — p;n)Col (M, g).
By Lemmas 4 and 5,

1 = det(H?(M, Z)) det(H"?(M, Z))

bP
> u(b,)llel"u(b,,)IB
from which follows the inequality
1> k() «ll | 8]
by taking b, roots since b, = b, _,. Therefore

Vol(M, g) = Vol(M, g)h*(b,)|l«|l [|B]

bu_p

> h*(b,)Cy(p; n)Cy(n — p; n)Col (M, g)Col,_,(M, g)
> h*(b,)Ci(p; n)Col (M, g)Col, ,(M,g)

since C,(n — p; n) = C,(p; n).

Proof of Theorem A. Let (M, g) be a compact oriented n-dimen-
sional Riemannian manifold with H,(M,Z) = Z. Since M is oriented,
H,_ (M, Z) is torsion-free. Thus it is evident that M satisfies the dual
lattice condition in degree one. Thus by Proposttion 6

VOI(M, g) = COll(M7 g) COln——l(M7 g)

because h(1) = C,(1; n) = 1.

Suppose f: M — R/LZ is a Riemannian submersion onto the circle
of length L such that every level surface (or fiber) is a connected minimal
hypersurface of (M, g). Let w = f *(dt) where dt is the canonical volume
form on the circle R/LZ. Then |w|=1 because f is a Riemannian
submersion. Thus *w = *w/|w| restricts to the volume form on each fiber
of f. Hence a simple calculation shows that d(*w) = 7 A *w where 7 is
the 1-form defined by n(X) = -g(H, X), H being the mean curvature
vector of the fibers of f. Consequently, d(*w) = 0 because the fibers are
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minimal submanifolds. Hence all the fibers have the same volume V.
Because f is a Riemannian submersion, we may calculate Vol( M, g) by
first integrating over the fibers and then over the circle R/LZ. Therefore
Vol(M,g)=LV.

Let a € H(M, Z) = Z be a generator. Then, because the fibers of f
are connected, f,a generates H(R/LZ, Z). Thus if s is a closed curve

representing a,
[al-|f

s °s

= L.

If T is any current in the homology class a, then [, and T are
homologous, i.e.

f —T=2S
for some 2-dimensional current S. Thus
fw — T(w) = 38(w) = S(dw) = S(0) = 0.

Therefore, because ||w||, = 1 (since |w|, = |w]| = 1)

[eo

s

IT|2|T(w)|=| [ w|=L.

Consequently, Col,(M, g) > L.

Let be H,_(M,Z)=Z be a generator and 7 a current in the
homology class b. Since the fibers of f also represent b, integration over
any fiber W is homologous to 7. Therefore, since d(*w) = 0,

T(xw) = fw xw = V.

But [|*w|, = |*w| =|w| =1. Hence |T|= |T(*w)|= V. Consequently,
Col,_,(M, g) = V. Therefore

Col,(M, g)Col,_,(M,g) = LV =Vol(M, g).

Since we have already proved the reverse inequality we conclude
Col,(M,g)= L, Col,_(M,g)=V, and Vol(M, g) =
Col (M, g)Col,_,(M, g).

Conversely, suppose Vol(M, g) = Col,(M, g)Col,_,(M, g). Let w be
the harmonic 1-form representing a generator « € H'(M, Z). Then |w] is
constant by Corollary 3 because by the proof of Proposition 6, if equality
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holds in Proposition 6, then it holds in Corollary 3. Therefore ¢ = w/|w|
is a harmonic 1-form with |p| = 1. Since H,( M, Z) = Z, the periods of ¢
are all integral multiples of a fixed number L > 0. (In fact L = [w|™)
Thus we may define a map f: M - R/LZ such that f*(dt) = ¢ by first
fixing a point x, in M and then defining f(x) to be the value modulo L
of the integral of ¢ along any path joining x, to x. (See [2].) f is a
Riemannian submersion because |f*(dt)| = |p| = 1. Consequently ¢
restricts to the volume form on the fibers of f. Therefore, because
d(x¢@) = 0 since ¢ is harmonic, the fibers of f are all minimal submani-
folds of M. Furthermore, they must be connected since each fiber repre-
sents the generator D(a) of H,_ (M, Z). Finally the first part of the
proof shows that L = Col,(M, g) and that Col,_,(M, g) is the volume of
a fiber.

Fully non-degenerate bilinear maps. Let E, F, and W be three
finite-dimensional real vector spaces, and let B: E X F — W be a bilin-
ear map. Choose bases e,...,e;of E and f,..., f, of F. Thus/ = dim(FE)
and k = dim(F). We will assume [ < k. Form the [/ X k matrix 4 =
(B(e,, f,)) whose entries are elements of W. The set of /X [/ submatrices
of A formed by deleting k — / columns can be indexed by the set II
consisting of all subsets = of {1,2,3,..., k} of cardinality / so that the
submatrix A4 is obtained by deleting the jth column if and only if j & .
There are (¥) such matrices.

If we consider the entries of 4, to be in the real symmetric algebra
over W, we can form the determinant det(4_) which is a homogeneous
element of degree / in the symmetric algebra.

Suppose the set {det(A,): = € II} is linearly independent over R in
the symmetric algebra. It is a simple matter to show that this condition is
independent of the choice of bases of £ and F. For first suppose

ey,...,e; is a second basis of E related to e,...,e, in one of the
following three ways:
Case 1.

Case 2.
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Case 3.
e, Ii#iy,J
ej=1(¢€, =i
e, 1=Jp

Thus, if we let 4’ be the matrix (B(e], f;)) and A, be the submatrix
corresponding to 7 € II, then, by the properties of the determinant, we
have:

Case 1. det(A,) = cdet(A4,,)

Case 2. det(A4,) = det(4,)

Case 3. det(A4,) = —det(4,,).
Clearly {det(A4,): = € I} is linearly independent in every case.

Now suppose f/,..., f; is a second basis of E related to f,..., f, in
one of the following three ways:
Case 1.
P fi i+
! o, i=ig.
Case 2.

Case 3.
fi i#F iy, Jo
f = f, i=1p
Ly 1=Jo

Thus, if we let A" be the matrix (B(e;, f/)) and A; be the submatrix
corresponding to « € II, then, by the properties of determinants, we
have:

Case 1.
cdet(4,) ifijen
det(4) = 4
et(4)) det(4,)  ifiy & 7.
Case 2.
det(4,) if either iy & = or
both iy, j, €7
det( 4]) =
© ( ”) det(A4,) + cdet(4,) ifijen, j,&n

and 7" = 7w U{j,} —{i,}.
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Case 3.
det(4,) ifig, jo&E
~det(4,) ifiy, joE™
det(4,) ifijem, jo&7
det(A’,,) = ° °

and 7’ =7 U{jo} —{io}
det(4,,) ifij&m, joET
and 7" =7 U{io} —{jo}

Once again, in every case, {det(A,): = € II} is linearly independent.

Since any two pairs of bases for E and F are related to each other by
a sequence of the elementary changes of bases just described, we see that
{det(A4,): = € I} is linearly independent for every pair of bases for E
and F if it is for one such pair. We will say B is fully non-degenerate if
the set {det(A,): = € II} is linearly independent in the symmetric
algebra over W.

Suppose B is fully non-degenerate. Then for any bases e,,..., e, of E
and f;,...,f, of F and for every = € II, det(A4,) # 0. Recall that
det(A4,) is the sum of terms where each term is +1 times a product of /
entries chosen from A in such a way that an entry has been chosen from
each row and column exactly once. Since det(4,) # 0, one of these terms
must be non-zero. Thus we are able to choose / non-zero entries from 4,
such that any entry has been chosen from each row and column exactly
once. Therefore, doing this for each 7, we can choose (¥)/ non-zero entries
from A so that an entry has been chosen exactly (¥)-times from each row
and exactly (¥~ !')-times from each column. Some entries may have been
chosen more than once.

LemmaA 7. Suppose . HP(M,R) X HY{(M,R) - H?*9 M, R) with
p + q < nis fully non-degenerate. Then

(det( H? (M, Z)))*/"(det( HY(M, 2)))*

> h(b,)h(b,)C;(p,q;n)Col,_, (M,g).

Proof. Let b,=1, b,=k, and assume /< k. Let a;,...,, and
By, ..., B, be bases of H?(M, R) and HY M, R) respectively which are
the successive minimums of the lattices H?(M, Z) and HY M, Z). Since
o is fully non-degenerate, we can choose (¥)/ pairs (a,, B;) with
a; v B; # 0 so that each a; is a member of a pair exactly (¥)-times and
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each B, is a member of a pair exactly (f7')-times. For each pair (e, 8)),

0+ D(a,)- D(B) € H,_,_,(M, Z). Thus, by Lemma 2,
la,ll 8/l = Cs(p,g5n)Col,_,_ (M, g).
Multiplying all (¥)/ of these inequalities together gives
) =D
(el === e 1) °CHBLM -~ - BN
oY
= (C3(p’q;n)C01n—p~q(M7g)) .
Thus, by Lemma 4,
(det(H7(M, 2)))"(det( HY(M, Z)))*"
! sy 1
> u(1)Pu(k)(Cy(p, s n) Col, ,_,(M, g)"".

The desired inequality follows by taking ( ¥)/-roots.

PROPOSITION 8. Suppose M satisfies the dual lattice condition in degree
p for all 0 <p<n, and suppose u: HP(M,R)X HY(M,R) -
HP?*9(M, R) is fully non-degenerate for all p, q with p + q < n. Then,
given any positive integers iy, ...,i, such that i, + --- +i, = n, there is a
constant Cy,(i,...,i;) > 0 such that
Vol(M, g) = Cy(iy,...,i;)Col, (M, g) - Col,(M,g)

for every Riemannian metric g on M.

Proof. Set C(p,q) = h(b,)h(b,)Cs(p,q;n) and H? = H?(M, R).
Then by applying Lemma 7 k times,

v

(det(H°))™ (det(H" 1)) »

b

(det( H")) " (det( H =) -

C(0,n ~ ) Col, (M. g)

v

C(ij,n— i, — iz)ColQ(M, g)

(det( H"~)) " *(det(H°))™ < C(n - i,,0) Col, (M, g).

Since det(H°) = (Vol(M, g))'/* and b, = b,_,, the proof is completed

after multiplying these inequalities and applying Lemma 5.

REMARK. This is a version of the stable isosystolic inequality. It bears
comparison with the stable isosystolic inequality 7.4.C in Gromov [7]. In
fact his result implies ours. For if M satisfies the hypothesis of Proposi-
tion 8 and i, ..., i, are positive integers satisfying i, + --- +i, = n, then
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the hypothesis that the cup products are fully non-degenerate implies that
the cup product form H*(M) X --- X H*(M) - H"(M) is non-degen-
erate in the sense of §7.4 of [7]. Thus Gromov’s result 7.4.C gives a
constant C and non-zero homology classes 4; in Hij(M, Z) such that
Volg(hy) - Volg(h,) < CVol(M, g). Since ColiJ(M, g) < Volg(h))
Proposition 8 follows. However we will prove Theorem B by showing the
cohomology ring of CP™ X CP" satisfies the hypothesis of Proposition 8.

Proof of Theorem B. Let M = CP™ X CP" with m > n. H*(M, R)
is generated as an algebra by two elements x, y € H*(M, R) satisfying
xy = yx, x™*l =0 and y"*! = 0. Thus H??(M, R) has a basis consist-
ing of

-1 -2,,2 :
xP, xP7y, xPTy s L pP if p<n,
x?, xP7ly, xPTlp? L xPTy" ifn<p<m,or

xmyp=m xm=lypmm=1. xP7"ynif p > m.

Thus if e;,...,e, is this basis for H*?(M, R) and f,,..., f, is this basis
for H*%( M, R) where we assume [ = b,, <k =b,, and p + g<m + n,
then e, v f, =e, v f, whenever i+ j=i"+j’. Hence, if we let
z;,; = €;u f;then the matrix 4 of the bilinear map v: H?’(M, R) X
H?%( M, R) > H?***?9(M, R) is of the form

Z 23 Zs T Zkn
23 Z4 Zs T Zk42
24 Zs Z6 T Zkas |,
Ziv1 Ziv2 Ziv3 T Zpak

The z, are distinct elements of the basis for H2?*29( M, R) except that the
first few z,’s and the last few, namely z,,...,z, and z,,,,..., z,,,, may
possibly be zero when p + g is large enough. In any case,
Zys1s Z1a2s - - 5 214 1 ar€ linearly independent elements of H*?"29( M, R).

Again recall that the determinant of a square matrix is the sum of
terms where each term is +1 times a product of entries chosen from the
matrix so that an entry is chosen once from each row and each column.
For 7 € 11, we break down the determinant of A4, as follows:

det(4,)=D,+ E,
where D, is the sum of the terms involving only z,,,...,2,,,, and E, is

the sum of the terms that contain at least one of z,,...,2;, 2z, ,5,..., 2,4 4-
We will prove the set {det(4,): = € II} to be linearly independent by
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first proving that {det(4,): = € II} is linearly independent if {D,:
« € II} is linearly independent, and then by proving that { D,: = € 11} is
linearly independent.

Suppose { D,: = € 11} is linearly independent, and let

Y a,det(4,)=0.
Thus
Z a,D, + Z a E_=0.

But > a,D, is contained in the subspace of the symmetric algebra over
H?P*249(M, R) spanned by simple homogeneous elements of degree /
involving only z,,,,...,2,,, while Xa,E_ is contained in the subspace
spanned by simple homogeneous elements of degree / each of which
contains at least one of z,,...,2,, z;,,,...,2,,4 Since these two sub-
spaces have only zero in common.

Zaerw = _ZanEﬂ = 0.

Hence, a, = 0 for all # € Il by the linear independence of the D,.
Therefore {det(A,): = € II} is linearly independent.

We next prove {D,: « € Il} is linearly independent by double
induction on / and k.

Clearly, {D,: = € I1} is linearly independent if /=1 and k> 1
since z,, ..., z;,, is linearly independent. Also, if / = k, { D,: w € II} =
{(z,,,)"} is linearly independent because z,,; # 0.

Now suppose that 1 </ < k and that we have linear independence
for matrices of dimensions (/ — 1) X (k — 1) and !/ X (k — 1). Decom-
pose 1I into two disjoint subsets

I=M,uTl,

where 11 is the set of all subsets of {1,2,...,k — 1} of cardinality /, and
II, is the set of all subsets of {1,2,...,k} of cardinality / which contain
k. 11, is in one-to-one correspondence with the set II’ of all subsets of
{1,2,...,k — 1} of cardinality / — 1 where 7 € II, corresponds to 7’ €
II’ifand only if 7 = 7w’ U {k}.

Let A° be the I X (k — 1) matrix
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obtained from A by deleting the last column. Then, for 7 € II let
det(4°) = D? + E?

where D? is the sum of the terms involving only z,, ,, ..., z,. By induction
{D?2: m € I1,)} is linearly independent. Observe also that if = € II,, then

D, =D?+F,
where D is as above and F, is the sum of the terms in D, which contain
Zk+1-
Let A' be the (I — 1) X (k — 1) matrix
23 24 . o Zk
24 25 tee Zk+1
Zivr Ziv2 T Zktia

obtained from A by deleting the last column and the first row. For
a’ e I, let

det(4L) = D, + E.,

where D, is the sum of the terms involving only z,,,,..., 2z, and E,, are
the other terms. By induction, { D,.: =’ € II'} is linearly independent.
Observe that if = € II, corresponds to #’ € 1I’, then

D,=z,.,(D,+F})

where the terms in F,, must contain z,_,. If we set D} = (D, + F/),
then D, =z, ,D} and the set { D}: = € I1,} is linearly independent. The
linear independence of the D} follows easily from the linear independence
of the D], and the fact that the D, lie in the subspace of the symmetric
algebra over H??*24( M, R) spanned by simple homogeneous elements of
degree / — 1 involving only z,_,,..., z, while the F,, lie in the subspace
spanned by the simple homogeneous elements that involve z, ;. In short,
the D/, and the F,, lie in two different subspaces which have only zero in
common.
Now, suppose
Y a,D, + Y, a,D,=0.

nell, rell;

Then
Z a'er'r(r)+ Z a'lrl;;+ Z avrzk+1D'r1r=0'

rell, mell, zell;
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But the first term of the last equation lies in the subspace spanned by
terms involving only z,,,,..., z, whereas the last two terms lie in the
subspace spanned by terms which all involve z, ;. Since these two
subspaces have only zero in common,

Z a'er'l(r) =0= Z aﬂF'}T + Z aﬂzk+1D;'

nell, rell, rell,

Since the D? are linearly independent, a, = 0 for all 7 € II,,. Therefore
Y a,z.,D;=0.

nell,
Therefore
Y a,D:=0.

nrell;
Therefore a, = 0 for all # € I1, since the D} are linearly independent.
This completes the induction step proving that { D,: = € II} is linearly
independent.
Therefore U is fully non-degenerate. Hence Theorem B follows from
Proposition 8.

Example. Proposition 8 does not apply to the product of more than
two projective spaces. For example, let M = CP? X CP? X CP?, and let
X, y,z € H?>(M, R) be generators of H*(M, R) which satisfy x> = y> =
2% = 0 and commute. With respect to the basis { x2, xy, y?, xz, z?, yz} for
H*(M, R) and the basis { x2y, x’z, xy?, y?z, xz?%, yz?, xyz} for H (M, R)
the bilinear map v : H*(M, R) X H%( M, R) » H'(M, R) has the ma-
trix

0 0 0 x2y?z 0 x2yz? 0

0 0 0 0 xtyz?  xy?z?  x%y%z

0 x%y%z 0 0 xy*z? 0 0

0 0 x%y?2z  xy?’z? 0 0 xyz2|
x2yz? 0 xy?z? 0 0 0 0
x%y2z  x2yz? 0 0 0 0 xy?*z?

By direct calculation the submatrix formed by deleting the last column
has determinant equal to zero. This shows that o is not fully non-degen-
erate.

On the other hand, it seems safe to conjecture that the product of
more than two complex projective spaces satisfies stable isosystolic in-
equalities. To prove this one would need to show that the cohomology
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ring of the product of several complex projective spaces satisfies the
appropriate non-degeneracy conditions in the hypothesis of Gromov’s
version of the stable isosystolic inequality.

The First Eigenvalue.

PROPOSITION 9. Let A (M, g) denote the first eigenvalue of the Lapla-
cian of (M, g). Suppose M satisfies the dual lattice condition in degree 1,
then

472(Vol(M, g))’

AN(M,g) < 2 .
(.8) (h(b,)) Colf(M, g)Col’_ (M, g)

Proof. Set p, = inf{||all: 6 € HP(M, Z), a + 0}. Berger [3] proves
A, < 47%~%u} where c is the (n — 1)-dimensional carcan of (M, g) which
he defines as the infimum of the volumes of all compact oriented
(n — 1)-dimensional submanifolds of M whose fundamental class is not
null-homologous in M. Since integration over every such submanifold
defines an (n — 1)-dimensional current whose mass equals the volume of
the submanifold, Col,_,(M, g) < c. Thus, by Lemma 4,

(det(H'(M, Z)))*" |

A(M,g)Col2_(M,g) < dn’u] < 47 p
(h(by))

Now by Corollary 3 and Lemma 4,
Col (M, g) < p,_,(Vol(M, g))"”

-1
bn~1

- (det(H""Y(M, Z2)))
B h(b,_,)

Raising the last inequality to the fourth power and multiplying it with the
previous inequality gives

A (M, g)Col{(M, g)Col?_ (M, g)

(Vol(M, g))'">.

< (G ML Z) ™ (det( BN ML Z) P L

(h(by))* (h(b,_,))*

which by Lemma 5 is equivalent to the inequality to be proved since
by =1b, .
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