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Let D be a strictly pseudoconvex domain in C". We prove that for

every θ-closed differential (0, q)-iorm f,q>l, with coefficients of class

tf°°(D X D), and continuous in the set ~D X Z ) \ Δ ( D ) , the equation

ΘM = / admits a solution u with the same boundary regularity properties.

As an application, we prove that certain ideals of analytic functions in

strictly pseudoconvex domains are finitely generated.

1. Introduction. Let D be a bounded strictly pseudoconvex domain

in C" with Ή2 boundary. It is known ([2], Theorem 2) that given a

(0, #)-form / in D with coefficients of class ^°°(D X D) and continuous

in D X D, such that 3/ = 0, q = 1,. . . , In, there exists a (0, q — l)-form

u in D X D such that the coefficients of u are also of class ^°°(D X D)

and continuous in D X D, and such that du = /.

In this paper, using the results from [2], and the method of [6], we

prove the following theorem:

THEOREM 1. Let D be a bounded strictly pseudoconvex domain in Cn

with V2 boundary. Set Q = (D X Z))\{(z,z) |z e 3D}. Suppose that f is

a (09q) d-closed differential form with coefficients in ^ ( D X D) Π # ( β ) .

Then there exists a (0, q — \)-form u with coefficients in ^°°(D X D) Π

), such that du = /.

As an application, we prove a following theorem on the existence of

the decomposition operators in some spaces of holomorphic functions in

the product domain D X D: Let D and Q be as above. Denote by

AQ{D X D) the space of all functions holomorphic in D X D, which are

continuous in Q. Let (yί£) 0 (D X D) be the subspace of AQ(D X D),

consisting of all functions which vanish on Δ(D), the diagonal in D X D.

THEOREM 2. Le/ g l 9 . . . , g^ e ( ^ e ) 0 ( D X D) satisfy the following

properties: (i) {(z, j ) G βlg^z, * ) = - . - = gN(z, s) = 0} = Δ(D); (ii) for

every z ^ D, the germs at (z, z) of the functions g , / = 1,.. . , N, generate
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372 PIOTR JAKOBCZAK

the ideal of germs at (z, z) of holomorphic functions which vanish on

Δ(Z>). Then for every / e (AQ)0(D X D) there exist functions fl9...,fN

eAQ(DX D\ such that / = Σf=1 gj,.

This theorem is an improvement of several results, obtained previ-

ously by different authors. Namely, Ahern and Schneider proved in [1],

that if /<E A(D), then there exist functions ft{z,s) G AQ(D X D), such

that

M -f(s) = Σ (*i ~

Θvrelid showed in [5], that if s e D is fixed and g1 ?..., gN G A(D) are
such that { z e D|g1(z) = - = g^(z) = 0} = {s} and the germs of the
functions gf. at 5 generate the ideal of germs at s of holomorphic
functions which vanish at s, then every / ' G A(D) with f(s) = 0 can be
written in the form

for some fέ ^ A(D). In [4], the validity of Theorem 2 was shown in the
special case, when D = U—the unit disc in C—and under the additional
assumption, that there exists a neighborhood FofΔ(3ί/) inί7X U such
that gl9..., gN have no zeros in V Π (Q \ Δ(C/)). The proof given in [4] is
different from that in the present paper.

It could seem unnatural to omit the boundary diagonal Δ(3D) from
study. However, when / G A(D X D) and / |Λ(^) = 0, g,(z, s) = zz — j f . ,
i = 1,...,«, and

then, as in [1],

M-(z,s) -Λ(z,ί) + Σ U - ί,)#-(^,*),
A: / = 1 k

and so, setting 5 = z, we obtain

therefore, the functions ft need not be in A(D X D), even if / G
yl(Z) X Z>). In the sequel we will always assume that the considered
domains are bounded. We will also use the following notations:

Given a domain β c Cn, we denote by Θ(D) the space of holomor-
phic functions in D, and by A(D) the algebra of all functions holomor-
phic in D and continuous in D.
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If F(D) is a function space in the domain JD, and q = 1,2?..., FOq(D)
denotes the space of all differential forms of type (0, q) with coefficients
in F{D).

Given a set X, Δ( X) is a diagonal in the Cartesian product X X X
This work was done during my stay at Sonderforschungsbereich

"Theoretische Mathematik" at the University in Bonn. I would like to
express my gratitude for the hospitality and support, given to me by this
institution. I am also very indebted to I. Lieb and J. Michel for helpful
discussions.

2. The solution of the 3-equatίon. In this section we give the proof
of Theorem 1. Let D c Cn be a strictly pseudoconvex domain, with the
defining function σ, i.e. σ is of class Ή2 and strictly plurisubharmonic in
some neighborhood D of Z>, D = {z e D\σ{z) < 0}, and dσ(z) Φ 0 for
z e 32λ For ε > 0, set τε(z,w) = σ(z) -f σ(w) - ε\z - w|2, (z9w) G ΰ x
D. Then, if ε is sufficiently close to zero, the domain G ε = { ( z , w ) E ί ) x
£>\τε(z, w) < 0} is strictly pseudoconvex in C2n with the defining function
τε. Moreover, ~D X 2) c Gε, and 3(2) Xfl)Π ΘGε = Δ(3£>); therefore β
c Gε (we recall that β = ( ΰ x Ϊ))\Δ(32))). It follows, that if t < 0 is
sufficiently close to 0, the sets Geί = {(z,w) e ΰ x Z)|τe(z,w) < t) are
strictly pseudoconvex with ^ 2 boundary, and Ge, c Gε ̂  c Ge for t < f
< 0. Set EBtί = Gε, Π ( ΰ X P).

We want to apply [2], Theorem 2 to the domains Eεr Note first, that
if we define the mappings χ7: C" X Cw, -* Cn, i == 1,2, and χ3: C" X C"
^ C " X C " by χ\z,w) = z, χ2(z,w) == w, and χ3(z,w) - (z,w), and
set, for fixed ε > 0 and t < 0, ρx == ρ2 = σ, and ρ3 = τε — ί, then

Therefore, Eε, is a pseudoconvex polyhedron in the sense of [2]. We must
also verify, that Eet satisfies the assumptions (C) and (CR) from [2], p.
523. Set

3/ 3/ 9/ 3/
grad c/ = '(•

and

3/ 3/ 9/ 9/

The condition (C) says, that for every ordered subset A c {1,2,3},
A = { av..., as}, the number mA « rank(grad cχ"\..., gradcx* s) is
constant in the neighborhood of the set
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This condition is trivially satisfied, since the mappings χ1' are linear. It
rests to verify the condition (CR): For every pair of ordered subsets
A,Ba {1,2,3}, A = {«!,...,«,}, B = {&, . . . ,#}, such that for every
fii e 5,

(2.1) rank(grad c χ^grad c χV. . ,g rad c χ α *) > mA9

it follows that

(2.2) rank(gradR(pA o χA),...,gradR(pAo χA), gradRχ<\

... ,gradRχ<\ g r a d R ^ \ . . . , g r a d R ^ ) = t + 2mA

in a neighborhood of the set SAU B. Note that if 3 e A or A = {1,2}, then
m^ = 2π, and hence for any β,

rank(gradc X^, grad c X

α i , . . . ,grad c X

α *) = In = m^,

and so (2.1) is not satisfied. On the other hand, if A = {1} or A = {2},
one can show that for every B c {1,2,3} such that A Π B = 0 , (2.1)
holds. Therefore, in all those cases, we should verify (2.2).

Consider first the case A = {1} and B = {2,3}. Then

Si23 = { ( z ' w ) G b x ^k™ G 9jD> " ε l z

and the matrix

(gradR(p2 o χ

2 ) , gradR(p3 o χ

3 ) , gradRχ\

at a point ( z , w ) e ί ) x l ) has the form

στ(w)

σn(w)

Φ)

- 2ε(zx

- 2ε(zn

- 2ε(ivn

- 2ε(zί

~ 2ε(zn

- 2ε(w1

" 2ε(wπ -o

1

1

1

1
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where we have set σ, = dσ/dζ; and σ = 3σ/3f,. Since z Φ w for (z, w) e

ιS123, this is true also for some neighborhood of Sl23. Moreover,

(σ1(w)9...9σn(w)9 σγ(w),. ..,σH(w)) Φ 0 for w e 3D, since dσ(vv) =£ 0

there. Therefore, in order to prove that the above matrix has rank

2 + 2mA = 2 + 2w, it is sufficent to show, that the vectors

u = (σ 1 (w), . . . ,σ l l (w), Oi(w),...,c^(w)) = (u^ΰj

and

u = (wx -zl9...9wn- zn9w1 -zl9...,wn - zn) = ( i ? ! , ^ ) ,

are linearly independent (over C) in some neighborhood of 5 1 2 3 . But if

z9 w e 3D and u = av for some α G C, a Φ 0, then ux = aυλ and wx =

avv Hence α is real. Therefore the vectors z — w and υ(w) =

(σι(w),..., σ^(w)) (the normal vector to 3D at w) are linearly dependent

over R, as the vectors in R2w. This is impossible, if Z , W E 3D and z is

sufficiently close to w, i.e. if t is sufficiently near 0. Hence, if we choose t

sufficiently close to 0, vectors u and υ are linearly independent over C, for

(z,w) in some neighborhood of S1 2 3, and thus the condition (CR) is

satisfied.

In order to prove (2.2) in the case A = {1} and B = {2} (resp.

B = {3}), it suffices to note, that S12 = {(z,w) e dEεt\σ(z) = σ(w) = 0}

and (σx(w)9...,σM(w), σγ(w),...,σ^(w)) # 0 for w in a neighborhood of

3D (resp. that since

Sis = { (z9w) e 3 £ ε > ( z ) = 0, σ(w) - ε|z - w\2 = /},

then also

! - z 1 ) , . . . , σ Λ ( w ) - 2ε(wn - zn),

στ(w) - 2ε(w 1 - z1)9...9σΉ(w) - 2ε(w r t - zn)) Φ 0 f o r ( z , w )

in some neighborhood of S1 3, provided that ε and t are sufficiently close

toO).

The verification of the condition (CR) for A = {2} is similar. We

obtain therefore the following corollary, which is Theorem 2 from [2] in

this special situation:

COROLLARY 2.1. // D is as above, then there exist ε > 0 and t0 < 0

such that for every t with t0 < t < 0, for every q = 1,. . . , In, for every

/ e « Ό 7 £ ί > t ) n « Ό , ( l j with 9/=0, there exists « e «Ό«_x(£βi/) n
Vfi-riEJ such that du=f.
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In the next part of the proof of Theorem 1 we apply a method used in
[6]. Consider first the case q > 2. Let / e <V?q(D X D) Π VOq(Q) with
3 / = 0 . Take a strictly increasing sequence {tn}™=1 of negative real
numbers, such that l i m ^ ^ tn = 0, and tλ > t0. Set En = Eεtn for simplic-
ity. We shall construct a sequence {u n)"^ of differential forms such that

(2.3) w ^ ^ J n V i W ^ aWn=/in£n, and
Un + l\En_1 ~

 Un\En_χ

Suppose that ul9...9um are constructed. By Corollary 2.1, there exists

i; e *o*-i(£m+i) Π * o « - i ( ^ ) such that 3i; = / in £ ^ . Then

d(um-v) = 0 onTm.

Hence, by Corollary 2.1, there exists w e V^q_2(Em) Π V0q^2{EJ s u c h

that dw = um- v. Let χ be a #°° function on C2", such that 0 < χ < 1,
χ = 1 on £,„_!, χ ̂  0 on ( ΰ X ~D)\Em. Then the form χw, extended
trivially by 0, is in ̂ - 2 ( ^ + 1 ) Π ̂ -2(^m70» and

+ χ(nm - v) e ^-1(^+1) Π *o,- i(^)

Define ww + ± on £ w + 1 by ww + 1 = ϋ + 3(χw). Then ww+1 satisfies (2.3).
Since U™=1En = β, the desired solution u is defined by setting u = un on
2?rt. Now let # = 1. We need some auxiliary approximation lemmas:

LEMMA 2.2. Let D, ε, t0 be as in Corollary 2.1. Let t,t' <ER satisfy
the condition t0 < t' < t < 0. Then there exists a neighborhood U of Eε t

such that every function f holomorphic in a neighborhood of Eε t, can be
approximated on Eε t, by functions holomorphic in U.

Proof. By Theorems 4.3.2 andj^.4 of βj^it is sufficient to find a
neighborhood U of Eεt such that (Eεtt)£ = Eε ̂  where (Eεt)^ denotes
the holomorphic convex hull of Eεt, in U. Fix t" such that t < t" < 0,
and let Dη = [z G D\σ(z) < η}. If η > 0 is sufficiently small, then
( = 5 , and hence

(2.4) (D X D)DvxDη = DXD.

Moreover,

(2-5) (GZ)at,r = G^f.

Set U = (DVX Dv) Π Gΐt... Then U is a neighborhood of 1^, and it
follows from (2.4) and (2.5) that

( I ^ X = {(D XD)Π Gj)ϊ = (DXD)ΠG^, = E^,.
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LEMMA 2.3. Let 2), ε, tθ9 t and t' be as in Lemma 2.2. Then every
function / e A(Eet) can be uniformly approximated on 2?M, fty functions
which are holomorphic in a neighborhood of Eεt,.

Proof. We prove first one result on the separation of singularities:

LEMMA 2.4. Given ε > 0, there exists ] V E N and the strictly pseudocon-
vex domains ^ c C " , / = /, . . . , JV, MCA /Λα/ D a D^ diam(32)\2)/)

< ε, am/ swcA ίAύtf /or ei ery f^A(Eεt) there exist functions LJ e
), X 2)) Π GM), JUCΛ thatf^Σ^LJ.

Proof. While Z) is compact, there exist a positive integer N9 and
points zl9...,zNe dD9 such that 32) c \J^xB{zi9 ε/4). Let / e Λ(£ M ).
Choose a function φx e ^ ( C 1 ) , such that 0 < φx < 1, ψψDnB(zlie/2) = 1?
Φiia/ΛBίZi.se/*) == 0. Set wx = fdφv Then there exist strictly pseudoconvex
domains1/^ and D[ in Cn such that D U (dD\B(zv ε)) c /)x, D U (32)
Π 5(z 1 ?ε/4)) c D[y D" = /)x U D[ is strictly pseudoconvex, and wl9

extended trivially by 0, is in

) n <^

and 3w = 0 there. Moreover, if D" is sufficiently close to 2), then the
domain (2)" X /)) Π Gβj/ satisfies the assumptions (C) and (CR) from [2].
Therefore, by [21/Γheorem 2, there exists ax e «700((2)ί/ X ΰ ) Π (?βj/) Π
^((Dί' X 5 ) Π (jβfί) such that 3 ^ = wv Set

L i / = Φi/ - «i» L ί / = (1 ~ Φi)/ + «i

Then

LJ e ^((2)2 X 2)) Π G j , Li/ G ^((/>ί X D) n Gε>/),

and / = LJ* + Li/.
Suppose that for A: < N — 1 we have constructed the strictly pseudo-

convex domains Dl9...9Dk and D'k in Cn such that 2) U (32)\5(z ,ε))
c Di9 i = 1,..., A:, and 2) U (32) Π Uf=1 JB(Z,., ε/4)) c 2)^, and the func-
tions LJ,..., LJ and L^/ such that LJ e ^((2), X 2)) Π Gε r), / =
1,..., k9 LJ e ^((/)j; X D) Π GM), and / = Σ^tLJ + L;/. Choose a
function φ Λ + 1 e ^°°Cn) such that 0 < φk+ι < 1, φ Λ + 1 = 1 on 32) Π

i , ε/4), and φk+1 = 0 on 32) \ J5(zΛ+1,3ε/4). Set wk+ι =
)3φA : + 1. Then there exist strictly pseudoconvex domains Dk+1 and

^ c Cw, such that

2)^ u(dD\B(zk+1,e)) c 2),+ 1, 2)̂  ϋ(32) n J5(z,+1,ε/4)) c 2)^.
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is strictly pseudoconvex, the domain (Dk+1 X D) Π Gεt satisfies the as-
sumptions (C) and (CR) from [2], the form wk+1 extended trivially by 0, is
in

"OlW^ί + 1 X D) Π Ge,t) Π ^01 ( ^ + 1 X -° Π

and 3wA:+1 = 0 there. By [2], Theorem 2, there exists

X 2)) n G . J n <f((l>ί'+1 X Z>) Πak+1 ε <

such that θα^+i = wk+1. Set

Lk + lf = Ψk + lL'kf~ a

Then

D ) n G M ) , L'k+ιf(EA{{D'k+1 X ΰ ) n

i - l

and

DuldDΠ

After N — 1 steps, we obtain the decomposition / = Σ^Γ1

1L //+ L'N_1f.
It remains to put Z)^ = £>#_! and LNf = L'N_1f.

We return to the proof of Lemma 2.3. We can choose N9 ε and the
domains Dt in Lemma 2.4 in such a way, that there exist tλ G R with
t' < tλ < t (where / and t' are as in the assumption of Lemma 2.3),
δ > 0, and υl9...9υNe Cn

9 such that for every i = 1,...,N9 for every s
such that 0 < s <_Mhe set {(z + sυi9w)\(z9w) G {Dt X Ί>) Π Gε,} con-
tains ( 5 X 5 ) Π Gε / i. Therefore, if / G ̂ (£ β f / ) and / = Σ^LJ is the
decomposition of / according to Lemma 2.4, then the functions giyS(z, w)
= LJ(z — svi9w) are defined in the set (D's X ΰ ) Π Gε ,χ, where D's is
some neighborhood of Z>, and gis -> / uniformly on ( ΰ X ΰ ) Π Gβf/ as
s -* 0. Given a function g s, we can apply the decomposition procedure,
described in Lemma 2.4, but now with respect to the second group of
variables, and with respect to the domain {D's X D) Π Gεt. We obtain
then for some N' = N'(gis) the decomposition gts = Σj=ιLjgis, where
for j = 1,..., N', LjgitS G A((D^ X Dj) Π Gεh), and Dj c Cn is a strictly
pseudoconvex domain such that Z> c Dj and diamίθDXDy) < ε. We
choose then t2 with tf < t2 < tx and shift the functions Ljgis similarly as



REGULARITY OF THE SOLUTION OF THE 3-EQUATION 379

above, but now with respect to the second group of variables, in order to
approximate every function Ljgis uniformly on (D X D) Π Gε h by func-
tions of the form hiJtStr(z9w) = Ljgis(z,w - ruj)9 uj e C " , r > 0, de-
fined in a set (D's X D") Π Gε ,2, where /)/' is some neighborhood of D.
Since Eεt> c (D X D) Π Ge ,2, we obtain the conclusion of Lemma 2.3.

Having proved Lemmas 2.2 ane 2.3, we can finish the proof of
Theorem 1 for q = 1. Choose two sequences {tn} and {sn} of negative
real numbers, such that tn, sn -> 0 as n -> oo, ί0 < s1? and sπ < ίn < J Λ + 1 ,
n = 1,2, Set En = 2?ε,, FM = E . We shall construct a sequence of
functions {u n) such that un <Ξ ^ ° ° ( £ J Π ^ ( ^ ) , 3wn = / o n ζ and the
uniform norm ||ww+1 — un\\f < 2~". Suppose that ul9...,um are con-
structed. By [2], Theorem 2, there exists v e ^ ^ ( ^ ^ ^ n ^ ( ^ 7 ϊ ) , such

that dv = / in £ w + 1 . Then wm — v e ^4(£w). By Lemma 2.3 there exists a
function w holomorphic in a neighborhood of Fm, such that

By Lemma 2.2 there exists a neighborhood U of £ w + 1 and a function ί
holomorphic in ί/, such that ||ί - w[|^< 2~ ( m + 1 ). Let wm+1 = t + v on
Έ~^ Then wm+1 e #°°(£m + 1) Π ί f ( £ ^ ) , 9wm+1 = / on Έ~Γl9 and

- wmlfe ^ 2 m. Since ww+1 - ww is holomorphic in Em, it follows
that the sequence {un} converges to the function u e ^^(D X D) Π

), such that 3w = / .

3. The decomposition in the algebra AQ(D X D). We prove here
Theorem 2. The method of the proof is that used by Θvrelid [5], therefore
we give only the necessary modifications. It follows from the assumptions
that at every point ( z , ί ) G ΰ X A the germs at (z,s) of the functions gz

generate the ideal of germs at (z, s) of holomorphic functions vanishing
on Δ(I>). Therefore, by [3], Theorem 7.2.9, for every / e (AQ)0(D X D)
there exist functions (Rf)v.. .,(Rf)N <Ξ Θ(D X D) such that / =
Σ^ιgi(Rf)r Let Λ i = { ( z , j ) e ρ \ Δ ( Λ ) | f t ( z ^ ) - 0 } , / = 1,...,7V.
Since the sets Nt are closed in C 2 Λ \ Δ ( Z > ) , there exist functions φi e
(g 7 0 0(C 2 w\Δ(5)) such that 0 < φ7 < 1, ΣjlxΦ,- = 1, and φ, vanishes in a
neighborhood of JV;. in C2n \ Δ(5), i = 1,..., N.

Choose φ0 e ^ ( C ^ X Δ ί a i ) ) ) , such that 0 < φ0 < 1, φ0 = 1 in
some neighborhood Woΐ Δ(Z>) in D X Z>, and φ0 = 0 in a neighborhood
of 3(2) X 2))\Δ(3D). Set φi = (1 - <po)9,, and define (S/), = φo(Λ/),
+ φ///g, , i = 1, , N. Then ΣjLift ίS/)/ = / in_β. Choose the^neigh-
borhoods W\ and W2 of Δ(D) in D X Z> such that Wλ a W and W2 c Ŵ
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(the closures in g), and let φ be a function in #°°(C2/ί\Δ(3D)) such
that 0 < φ < 1, φ = l outside Wl9 and φ = 0 in W2. Set Lr = {u e
Vfi(D XD)Π %r(Q)\dfe %r{Q)} Define L% 0 < r,s, the operators
9 and'P r on Ur similarly as in [5], and let Ms

r = {k e L;|fc|^ = 0},
and k0 = ΣfLxφφ/g, ® e, e L^ (here ev...9eN is some basis of C^).
Using then Theorem 1 in place of Lemma 1 from [5], we end the proof
similarly as in [5] (of course, after the suitable change of notations,
according to that given above; in particular, the functions g- and hi from
the final part of the proof of [5], Theorem 1 should be replaced by (S/))
and ft respectively).

Note. The operator /-> (fl9. . . ,/#) from Theorem 2 is in gene-
ral neither linear nor continuous. Nevertheless, if n = 1 (i.e. D c C),
then every / ^ (AQ)0(D X D) can be represented as /(z, s) =
(z - j)(iί/)(z, J ) with (uniquely determined) Rf ^ AQ(D X Z>), and the
mapping / -> i?/ is linear and continuous (where AQ(D X D) is equipped
with the topology of uniform convergence on compact subsets of Q).
Moreover, by Theorem 2, the function z — s can be decomposed with
respect to the functions g, in the form z — s = Σ*L1gihi with some
A,. <Ξ AQ(D X D). Therefore, setting ft = (Rf)hi9 i = 1,..., N, we obtain
the continuous and linear operator

{AQ)0(D X D) 9/-> ((Rf)h1,...,(Rf)hN) G μβ(Z> X D)]",

such that

(3-1) / = Σg,/,

We obtain therefore the full generalization of Theorem 2 in [4]. Similarly,
if D c Cn is strictly pseudoconvex with # 2 boundary, then, by a theorem
of Ahern and Schneider [1], every function

/ e A0(D XD)={f(ΞA(DX D)\f\A(D) = 0}

can be decomposed with respect to the functions zx — sv..., zn — sn into
/(z, s) = ΣJLxίz,. - ^)/(z, 51) with some functions /y ̂  ^ β ( i ) X D), and
the operator A0(D X D ) 9 / ^ ( / 1 V . . , / J G [^β(^> X D)]" is linear and
continuous. Applying Theorem 2 to the functions zt — st, / = 1,...,«,
and proceeding as above, we obtain the linear and continuous operator
A0(D X D) B / - > (Λ,...,/*) €= [^β(Z) X Z))]^, satisfying (3.1).
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Henryk Hecht and Dragan Miličić, Character identities and asymptotic

behavior of matrix coefficients of discrete series . . . . . . . . . . . . . . . . . . . . . . 357
Piotr Jakóbczak, The boundary regularity of the solution of the ∂̄-equation

in the product of strictly pseudoconvex domains . . . . . . . . . . . . . . . . . . . . . . 371
Krzysztof Jarosz, Isometries between injective tensor products of Banach

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Hans Keller, On valued, complete fields and their automorphisms . . . . . . . . . . 397
David Masser and Peter Man-Kit Shiu, On sparsely totient numbers . . . . . . 407
Tze-Beng Ng, Vector bundles over (8k + 3)-dimensional manifolds . . . . . . . . . 427
Thomas Joseph Ransford, The spectrum of an interpolated operator and

analytic multivalued functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445
Akihito Uchiyama, On the radial maximal function of distributions . . . . . . . . 467
Jang-Mei Gloria Wu, On singularity of harmonic measure in space . . . . . . . . 485

Pacific
JournalofM

athem
atics

1986
Vol.121,N

o.2

http://dx.doi.org/10.2140/pjm.1986.121.257
http://dx.doi.org/10.2140/pjm.1986.121.257
http://dx.doi.org/10.2140/pjm.1986.121.271
http://dx.doi.org/10.2140/pjm.1986.121.271
http://dx.doi.org/10.2140/pjm.1986.121.281
http://dx.doi.org/10.2140/pjm.1986.121.281
http://dx.doi.org/10.2140/pjm.1986.121.293
http://dx.doi.org/10.2140/pjm.1986.121.321
http://dx.doi.org/10.2140/pjm.1986.121.321
http://dx.doi.org/10.2140/pjm.1986.121.339
http://dx.doi.org/10.2140/pjm.1986.121.339
http://dx.doi.org/10.2140/pjm.1986.121.357
http://dx.doi.org/10.2140/pjm.1986.121.357
http://dx.doi.org/10.2140/pjm.1986.121.383
http://dx.doi.org/10.2140/pjm.1986.121.383
http://dx.doi.org/10.2140/pjm.1986.121.397
http://dx.doi.org/10.2140/pjm.1986.121.407
http://dx.doi.org/10.2140/pjm.1986.121.427
http://dx.doi.org/10.2140/pjm.1986.121.445
http://dx.doi.org/10.2140/pjm.1986.121.445
http://dx.doi.org/10.2140/pjm.1986.121.467
http://dx.doi.org/10.2140/pjm.1986.121.485

	
	
	

