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ON SPARSELY TOTIENT NUMBERS

D. W. MASSER AND P. SHIU

Let ¢ (n) denote Euler’s totient function, defined for n > 1 by
p(n) =n]](1-p7).
pin

Let F be the set of integers n > 1 with the property that ¢(m) > ¢(n)
whenever m > n. The purpose of this paper is to establish a number of
results about the set F. For example, we shall prove that each prime
divides all sufficiently large elements of F, each positive integer divides
some element of F, and that the ratio of successive elements of F
approaches 1.

1. Introduction. Similar studies have been carried out in the past,
initially by Ramanujan [7] for the divisor function d(n), and then by
Alaoglu and Erdos [1] for d(n) and the divisor sum function ¢(n), and by
Erdds and Nicolas [2] for the prime divisor function w(n) =X, ,1 (see
also the last paper for additional references). In particular, Ramanujan
considered the set of integers n such that d(m) < d(n) whenever 1 < m
< n. He called such integers highly composite, and by analogy it seems
appropriate to refer to the elements of our set F as sparsely totient
numbers.

Since @(n) = oo as n — o0, it is obvious that F is infinite. Our first
result shows how to construct many elements of F explicitly. Let p; = 2,
P, = 3,... denote the primes in ascending order of magnitude.

THEOREM 1. Suppose k > 2,d > 1,1 = 0 and

(@d<pi—1

(6) d(pysy — 1) < (d + 1)(p, — D).
Thendp, - py_1Py+115in F.

COROLLARY. Let n, n’ be consecutive elements of F. Then n’/n - 1 as
n — oo.

For n > 1 denote by P(n) the greatest prime factor of n and by Q(n)
the smallest prime not dividing n. Already Theorem 1 above provides
some information about large values of P(n) and Q(n) for n in F, as well
as showing that there are elements of F divisible by any given integer d.
Also, the statement that each prime divides all sufficiently large elements
of F is equivalent to Q(n) = oo as n = oo in F. We shall prove this in
much more precise form in our next result.
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Now we observe that since p(2m) = @(m) for m odd, it follows that
every element of F is even. Also, since @(2*¥~! - 3) = ¢(2F) for k > 2, we
see that the only power of 2 in Fis 2 itself. Hence every n > 2 in F has a
well-defined second greatest prime factor, which we denote by P’(n). As
this function turns out to be of special significance in the study of F, we
also give some of its properties in the result below.

THEOREM 2. For n in F we have

P(n’z =1, limsup f(n) > 2,

n— oo

@ b

(b) liminf% >V2 -1, hmsupM =1,

n— oo 1 n— o0 lg

.. '(n) _ P'(n)
(c) llrfl_l)lolgf Togn — 1, hiris::p Tog 1 <V2 +1,
and

(d) lim sup P
noo log°n
Many of the problems concerning sparsely totient numbers are related
to the distribution of primes. For example, we shall see that it follows
easily from Bertrand’s Postulate that (P(n))* never divides n in F. Using a
deeper result on primes in short intervals we sharpen this as follows.

THEOREM 3. For all sufficiently large n in F, the power ( P(n))* does not
divide n.

We see by taking d = p,, / = 0 in Theorem 1 that p, --- p,_,pi is
sparsely totient for all k¥ > 2, and consequently the exponent in Theorem
3 is best possible.

Finally let F(x) denote the counting function of F; that is, the
number of sparsely totient numbers n with 1 < n < x. It is not difficult to
verify that the explicit constructions in Theorem 1 give the lower bound

F(x) > log® x/loglog x

for x > 2. In our last result we give the following somewhat larger upper
bound.

THEOREM 4. We have
log F(x) < log'/?
forall x = 2.
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We also include in this paper an Appendix which contains a brief
account of further work on the set F. Glyn Harman very kindly showed us
a method of improving (d) in Theorem 2 to P(n) < log?>~%n for some
6 > 0. In addition we describe a plausible gap hypothesis which enables
us to obtain best possible versions of all the statements of Theorem 2,
thereby considerably illuminating the structure of sparsely totient num-
bers. Finally we include a table of the 150 elements of F not exceeding
109, together with their factorizations.

We end this introduction with a word about the related set F* of
highly totient numbers n > 1 with the property that ¢(m) < ¢(n)
whenever 1 < m < n. Clearly F* contains all primes, and it is very
probable that there are no other elements in F*; furthermore this can in
fact be established with the help of a suitable gap hypothesis (see also (3)
of [1], p. 465). So the set F* seems comparatively uninteresting.

2. Proof of Theorem 1. We start with the following lemma.

LEMMA 1. For r > 1 let xq,...,%,, Yis---5Y,» X, Y be real numbers
satisfying

max(x;,...,x,) <Y, l<x;<y(1<ix<r).
Then if also
(2.1) o nY > x e x X
we have

22) -V (-DE-D>(x -1 (x, - DX -1).

Proof. We note first that (2.2) is trivial if X < 1, since the left-hand
side is positive. Similarly if 1 < X < y, then

(=Y -)>(X-DYY-1=z(x,-1)(Xx-1)

and again (2.2) follows immediately. Next, if X > y, we have
(X=»)y-x)=20,

and on adding y,x,X + y, to both sides, rearranging, and dividing by y, we
get
(2.3) (=X -1 2 (x, - DX - 1),
where X’ = Xx,/y,. Note that all this proves the lemma for r =1, as
X' <Y.
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We can now argue by induction on r. Suppose the lemma has been
proved with r replaced by r — 1 for some r > 2. From the above, it
suffices to establish (2.2) when X > y,, so that (2.3) holds. We can write
(2.1) as

Vit Ve > X X, X
with X’ = XXx,/y, as before, and now the inductive hypothesis shows that
=1 - DY -1 > (- 1) (x,, - DX - 1).
Multiplying by y, — 1 and using (2.3) completes the inductive step. This

proves the lemma.
Now we start on the proof of Theorem 1. Let

(2.4) n=dpy " Pr_1Pr+

satisfy the conditions (a) and (b) of the theorem. Then

(2.5) o(n)<d(py—1) (oo — V(ppss = 1)

and so by (b)

(2.6) o(n) <(d+1)(p,—1)---(p,—1).

To prove that n is in F we pick any m > n and we eventually show that
(2.7) p(m) > o(n).

There is a unique integer ¢ > 1 such that
P1 " P SMS<Ppycc Py

Then the number of distinct prime divisors w(m) of m satisfies w(m) < t.
We deduce that

o(m)/m=(1-pi*)---(1-p)
and so
o(m)=(p,—1)---(p,—1).
If nowt > k + 1, then
‘P(m)Z (Pl - 1)"’(Pk+1 - 1)Z (d+ 1)(1’1_ 1)"'(Pk_ 1)
by (a), and therefore (2.7) holds because of (2.6).

Hence we may assume ¢ < k. Thus w(m) < k. If now w(m) < k — 1
then

p(m)/m=(1-pi*) (1 - pily).
But (2.4), (2.5) give
¢(n)/n < (1 - Pfl) T (1 - P/il)(l - Piil)’
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so that

¢(m) > (m/n)e(n) > o(n)
and again (2.7) holds.
Thus we may henceforth assume that w(m) = k, so that

m=eq ‘" g

for primes gq,,...,q, with ¢, < --- < g, and an integer e > 1 composed
only of primes from ¢,,...,q,. So

(2.8) q1 2 P>+ 59k = Pi
and
(2.9) p(m)=-e(g—1) - (g —1).

Suppose now that e > d + 1. Then (2.6) gives
p(n) <e(py—1) - (p.— 1),

whence (2.7) follows from (2.8) and (2.9). Finally if e < d then we write
m > n in the form

G Q1Y > P P X

with Y = q,, X = dp,,,/e. Using (2.8), we apply Lemma 1 withr = k — 1
to deduce that

(=1 (g~ DY =-D>(p =D (ppy — DX - 1),
Multiplying by e and recalling (2.9) we get
p(m)> (py— 1) -+ (peoy — WPy, — €),

and since e < d this gives (2.7) by virtue of (2.5). This completes the proof
of Theorem 1.

We pause here to note that Theorem 1 would become false if either of
the strict inequalities (a) or (b) were relaxed. In fact if

d=pe,—1
the number n = dp, - - p,_,Px., 18 never in F if condition (b) is satis-
fied. For (b) implies in this case
Py~ 1< (1 +PZ£1)(P1¢ - 1) <p,

so [ = 0; also for k > 2 the number p, ., — 1 is divisible only by primes
from p,,...,p,. Thus

o(n) = (P1 ~ 1) (P = D(prsr — 1).
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But now
m=p; - PiPrs1 >N

and o(m) = @(n). Hence condition (a) is sharp.
Next, Schinzel’s Hypothesis H (see for example [3] p. 2) applied to the
polynomials

F(t)=1+dt, F(t)=1+(d+ 1)t

shows that for each d > 1 there are infinitely many k > 2 such that
((d + 1) p, — 1)/d is integral and prime (moreover for any fixed 4 such as
d = 1 we can find plenty of examples in practice). Denoting this prime by
Prsweseethat! > 0andd(p,,,—1)=(d + 1)(p, — 1). Clearly also p,
does not divide d. But then the number n = dp, --- p,_,p, ., cannot be
in F if condition (a) is satisfied. For (a) implies that d is divisible only by
primes from p,,...,p,_;, SO

o(n)=d(p,— 1) - (peor — D(psss = 1.
But now

m=(d+1)p, - p,>n

and

¢(m) < (d+1)(p;—1)---(p.— 1) = o(n).

Hence condition (b) is also sharp.

3. Proof of Corollary. The idea of this can be explained very easily.
We observe that the elements of F given by Theorem 1 form blocks that
neatly fit together. For, putting d = 1, we see that the numbers

P10 Di—1Pi+1 (1> 0)

lie in F as long as p, ., — 1 < 2(p, — 1); so this takes us from p, --- p,
to roughly 2 p; --- p,. Then, putting d = 2, we see that the numbers

2py -+t Pr—1Pi+ (1=0)

lie in F as long as p,., — 1 < 3(p, — 1); so these take us roughly up to
3p, - py- Then we put d = 3,4,... and soon, up tod = p, ., — 2. By
then the elements of F have reached roughly p, --- p, p,.,, and so we
can begin again with d = 1.

The details are as follows. Let 0 < ¢ < 1. We have to show that for
every sufficiently large » in F there exists n’ in F with

(3.1) n<n <(1+¢)n.
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Let k be the integer satisfying
(3.2) Pr PSSPyt P

Since n is large, k is also large, and in particular we may assume k > 2
and

(3.3) Pr—2=2/¢
as well as
(3.4) Prsi < (1 +3€)piyiy
forall/ > 1.

Next define the integer m by
(3.5) mp; - pesn<(m+1)p, - py,
so that

l<m<p,.

Our construction of n’ depends on the size of m, and we consider four
cases in turn:
DPrs1—2Sm<ppyy

()t <m<pe,—2

@l<m<el(1+en=(m+ p, - p,

Wl<sm<el,A+en<(m+Dp, - py

In case (i) we choose n’ = p; - -+ p,.,. By Theorem 1 this lies in F,
and n’ > n from (3.5). Also

n/n<pi/mEpi/(Pri—2)<1+e

by (3.3). Thus (3.1) holds.

In cases (ii) and (iii) we choose n’ = (m + 1) p; - - - p,. In both cases
we have m < p, ., — 2 by (3.3), and so by Theorem 1 with d =m + 1,
I = 0 we see that n’ lies in F. Again from (3.5) we have n’ > n. And in
case (ii)

n/m<s(m+1)/m<1+e

while in case (iii) this inequality is immediate. Thus (3.1) holds once more.

Finally, in case (iv) let p’ be the least prime satisfying
(3.6) p' > n/(mpy - pyy).

By (3.5) we see that p’ > p,, and so p’ = p,, for some / > 1. Also we
have

(37)  Priia < n/(mpy -+ py_q) < (m+ l)Pk/(m(l + g)).
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Then from (3.4)

P+ = ((m + 1)/m)(Pk(1 + %8)/(1 + 8))

which does not exceed (m + 1)( p, — 1)/m, by (3.3). It follows now from
Theorem 1 with d = m that the number n’ = mp, --- p,_,p, ., liesin F.
By (3.6) we have n’ > n, and from (3.7)

n=mpy - Py 1 Prvi-1
which gives using (3.4)

n'/n <1+ 3e.

Thus (3.1) holds, and this completes the proof of the Corollary.
Let us note that standard results on gaps between primes enable the
Corollary to be strengthened to

n'/n=1+ O(log~®n)

for some § > 0. But the conditional results of the Appendix show that
n, n’ probably have a very large common factor, and in particular the
relation

n/n=1+ 0(n*)

is probably false for every ¢ > 0. In practice the convergence does seem
rather slow; for example when n = 810810 we get n’ > 870870 so n’/n >
1.074. ...

Finally we remark that the result of this Corollary is mentioned by
Alaoglu and Erdos in [1] (p. 465). However, the simple proof they give of
the corresponding property of highly abundant numbers (p. 463) does not
immediately seem to generalize to sparsely totient numbers, because it
could happen (and indeed probably will) that ¢(n(p — 1)/p) = @(n).
Even so, it does lead to a quick proof of the corresponding property for
the larger set F of numbers n such that ¢(m) > ¢(n) whenever m > n.

4. Proof of Theorem 2. For positive integers 4 and k we write
f(k, k) = h(lk/h] +1)

for the unique integer x satisfying k < x < k + A which is a multiple of A.
Given n in F, our basic strategy is to replace a suitable divisor k of n by
f(k, h) for some h, and thereby obtain the number

= nf(k, h)/k > n.
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Thus ¢(m) > @(n). But if 4 is small and prime to n, for example, then m
will have acquired all the prime factors of 4 in exchange for those of k. So
on the other hand ¢(m)/m might be expected to be quite small compared
with @(n)/n. We note that

1<m/n=f(k,h)/k=1+(h/k)1 ~-{k/h}) <1+ h/k,

where { x} = x — [x] denotes the fractional part of x. Here the presence
of the term { k/h} sometimes leads to interesting problems of diophantine
approximation.

We shall need the following lemmas.

LEMMA 2. Suppose n is in F and
P1 " P SN <Py Praa

for some k > 1. Then w(n) is either k — 1 or k.

Proof. 1t is clear from the upper bound for » that w(n) < k. This
proves the lemma if £k < 2, so we may assume k > 3, and, if possible,
w(n) < k — 2. Then

(4.1) o(n)/n > (1= p*) -+ (1 - pils).
Now put m = f(n, p; -+ pr_,) so that
(4.2) l<m/n<l+4p, - p_/n<1+pit
Moreover, since p; - - - p,_, divides m we have
p(m)/m < (1-pi*") - (1= piy) < (1= pils) p(n)/n
using (4.1). This together with (4.2) yields
o(m) < (1= pily)(1 + pi)o(n) < 9(n),

and so contradicts the fact that » is in F, proving the lemma.

We remark that the conclusion of this lemma cannot be strengthened.
For by Theorem 1 the number n = p; --- p, lies in F for all k, and it can
be shown that n = p, - - p, _, p lies in F for infinitely many k.

LemMA 3. For n in F we have
P(n) < (Q(n)).

Proof. Suppose not. Then P = P(n) and Q = Q(n) satisfy Q2 < P.
Put m = nf(P, Q)/P, so that

(4.3) l<m/m<l+Q/P<1+ Q7
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Since m has acquired the factor Q but possibly lost the factor P, we have
p(m)/m < (1= 07) (1~ P™) p(n)/n

<(1-0™M1-27)e(n)/n.
Hence (4.3) gives

p(m)<(1+ 011 - 01 - 02 "p(n) =9(n),

again a contradiction. This proves the lemma.

LEMMA 4. For n > 2 in F we have

P'(n) < (V2 + 1)Q(n).

Proof. Suppose not, and put A = y2 — 1. Then with P’ = P’(n) we
have

Q <AP' <AP.
Put m = nf(P'P,Q)/P’P, so that
(4.4) 1<m/n<1+Q/P'P<1+NQL.

Also
45)  @(m)/m<(1-011-P ) (1-PY) p(n)/n

<1 -0 -2 p(n)/n.
But because 1 — A? = 2\ we see that
Q1-0MA+N0 ) <1-(1-N)Q'=1-2)A07" < (1-A07),

and so (4.4), (4.5) lead to ¢(m) < @(n), again a contradiction. This proves
the lemma.

Now let us establish Theorem 2 by examining each of the limits in
turn. First, to prove (a) and (c) we start by observing that

(4.6) P(n) > P'(n) = (1 + o(1)) log n
asn — oo in F. For let k be the integer defined by

(4.7) Pr Pk =R <Py " Prsa-

By the Prime Number Theorem p, = (1 + o(1))log n, and by Lemma 2
we see that 4 = w(n) satisfiesh > k — 1. Hence

P(n)>P'(n) 2 p,_y =2 pr_y=(1+0(1))logn.
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Next we know from Theorem 1 that n=p, --- p, is in F for all
k > 2. Hence for these n we have

(4.8) P'(n) < P(n)=p,=(1+0(1))logn.

Comparing (4.6) and (4.8), we obtain the first limits in (a) and (c).
Now the second limit in (a) also follows from Theorem 1, which
shows thatn = p, -+ p,_, P15 In F whenever k > 2 and

(4.9) Pi < Ppi < 2p—1)+1.

This n satisfies (4.7) and so p, = (1 + o(1)) log n. But also the largest /
satisfying (4.9) is such that p, ;= (2 + 0o(1)) log n. Hence for these n we
have

P(n) = (2 + o(1))logn.

This proves the second limit in (a).

Next, the first limit in (b) follows immediately from Lemma 4 and the
first limit in (c). Also for n satisfying (4.7) we have Q(n) < p,,, and
therefore

Q(n) < (1+0(1))logn

for any n whatsoever; and for the numbers n = p, --- p, in F we see on
the other hand that Q(n) = p,.,. These together establish the second
limit in (b).

Now the second limit in (c) is a consequence of Lemma 4 and the
second limit in (b). Finally the limit in (d) follows from Lemma 3 together
with the second limit in (b). This completes the proof of Theorem 2.

2. Proof of Theorem 3. We first record the following simple result
about the repeated factors

R(n)=n[]p™

pln

of a sparsely totient number n.

LEMMA 5. Let n in F let r be any factor of R(n), and let q be any prime
not dividing n. Then

r<@-{r/q})q*

Proof. Suppose not. We put m = nf(r, q)/r, so that
1<m/n=1+(q/r)1 -{r/q}) <1+ qL
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Also since m has all the prime factors of n together with g, we have

p(m)/m < (1-q7)o(n)/n,

and therefore

p(m) < (1-g7)(1+q7)e(n) < o(n)
a contradiction. This proves the lemma.

COROLLARY. For n in F we have

R(n) < (Q(n))".

Using this corollary, we see quite quickly that P* = (P(n))* never
divides n in F. For otherwise R = R(n) > P? and we would deduce
(5.1) P3 < Q?

for Q = Q(n). Now Q can be at most the smallest prime exceeding P, and
so Bertrand’s Postulate implies Q < 2P — 1. Hence by (5.1) we see that
P3 < (2P — 1), which forces P = 2, Q = 3. But we have already noted
that the only power of 2 in Fis n = 2, and this is certainly not divisible by
24,

To make further progress we have to take into account the curly
brackets in Lemma 5. The solution of the corresponding diophantine
approximation problem is given in the next lemma.

LEMMA 6. For all sufficiently large integers m there exists a prime
q > m with

{(m*/q} >1 - m*/q%
Proof. Let e = 1/40. It suffices to prove that there exists g with
(5.2) {m%*/q} > e, m<gq<m+ m?3
this is because when m is large
1-m*/q*>=(q+m)(g—m)/q> <2m*’/q <e.
For any interval I = (x, x + y] we write 7(I) = #(x + y) — w(x) for
the number of primes in /. It is well-known ([S]) that for any ¢ with

7/12 < & < 1, the number #(I) is asymptotic to y /log x provided x* < y
< x; hence there exists x, = x,(¢&) such that

(5.3) 7(I) > 3y/log x
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whenever x > x,and x® < y < x. Our proof actually requires ¢ < 2/3. It
is also known (see for example [4] p. 523) that #(]) is asymptotically at
most 2y/log y (and indeed according to [6] the inequality #(/) <
2y/log y holds for all x > 1, y > 1); at any rate

(5.4) 7(I) < 3y/log y
for all x > 1 and all sufficiently large y.
We take & = 5/8 and R = [m!/*]. The interval

J =(m, m+(R + 1)1/2m1/2]
has length exceeding m>/8, so that (5.3) gives
(5.5) 7(J) = im>®log m.
We next claim that at least one of the intervals
I =(m +(r 426" m, m +(r + 1)1/2m1/2] (0<r<R)

contains a prime q. For if this were not so, then all the primes in J would
lie in the complementary intervals

J,=(m+r1/2m1/2,m+(r+28)1/2m1/2], (0<r<R)
and we would then have
R
(5.6) a(J)< Y =(J).
r=0

But the length L, of J, satisfies

m7? <lem*r V2 < L <em*’r?  (1<r<R)

and
m73 < L,= (25)1/2m1/2 < m?,
Hence by (5.4)
7(J) < 9em'/?r12/logm (1 <r<R)
and
7(Jy) < Im'/2/logm < m/2.
Therefore

R R
Y 7(J) < m/? + 9em'P(logm) ™" Y r V2,
r=0 r=1



420 D. W. MASSER AND P. SHIU

Since YR ,r~1/2 < 2RY? we conclude that
R
Y #(J) < 20em>® /logm = tm>/% /log m.
r=0
From (5.5) and (5.6) we see that this is impossible. Hence indeed there
exists » with 0 < r < R such that I, contains a prime ¢, and we can write
q = m + dwithd > 0 and

(5.7) (r+2e)m<d?*<(r+1)m.
Thus the integer N = d? — rq satisfies
(5.8) N <gq.
On the other hand
N> (r+2e)m—rq=2eq—(r+ 2¢)d,

and since

(r+2e)d < (R+1)"m7? < 3m"8 < 3478
we see that
(5.9 N > gq.

So by (5.8) and (5.9) we have

{m?/q} = {d’/q} = {N/q} >«

as required by (5.2). Also d > 0 and (5.7) gives d < 2m>/%, so the other
inequalities of (5.2) for ¢ = m + d are obvious. This proves the lemma.

Now Theorem 3 is immediate. Suppose P? = (P(n))*® divides n for
some sufficiently large n in F. By Lemma 6 with m = P, there exists a
prime g > P with

{P*/q} >1— P?/q%.

Since g > P, the prime ¢ does not divide n; on the other hand r = P2 does
divide R(n), so Lemma 5 gives the contradictory

P < (1 -{P¥q))¢>
This establishes Theorem 3.

6. Proof of Theorem 4. For any positive integers n, k we may
define Q, (n) as the kth smallest prime not dividing n. If further k < w(n)
we may define P,(n) as the kth greatest prime factor of n. We shall need
to consider the equation

(6.1) xk+kx=k-1;
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it is easily seen that this has a unique positive root A, satisfying
(6.2) 1-2/k<), <1.
We have already noted that w(n) > 2 foralln > 2in F.

LEMMA 7. Forn > 2in Fand 2 < k < w(n) we have
Q_1(n) > A (Pi(n) - 1).
Proof . We write P, = P,(n), Q, = Q,(n) for1 <i < k. Put
r=~PpP - P, s=0Q; " Q-
and m = nf(r, s)/r, so that
l<m/n<1+s/r<1+ QF1/Pk
We also have

@(m)/m < (1 - fl) e (1 - Qil—l)(l - Pl"l)—l

(1= P7) p(n)/n

which does not exceed

(1-0:2) (1 = P) g (n)/m.
Using ¢(m) > ¢(n) we deduce that
(63)  (+oiti/P)-0t) - B>
We now note the inequalities

1+t<e’, 1—t<e’' (t20)
and

(1-t)"<eM D  (0<r<1).
These transform (6.3) into

Q¢ /PF+kQ,_/(P,—1)>k — 1.

Thus x = Q,_,/(P, — 1) satisfies

xk+kx>k—1,
which implies from (6.1) that x > A,. This proves the lemma.
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COROLLARY. For n in F and fixed k > 2 we have

. P(n) . P.(n) N
() lminf o Sm =1, limsup 3o <A
(b) linn_l,i;lf Qlfo;gl(nnl = Ay, lim sup ~——Q'1‘(;£(nn) =1

Proof. The equalities in (a) and (b) are established exactly as in the
proof of Theorem 2. We omit the details. The inequalities then both
follow immediately from Lemma 7.

We now prove Theorem 4. It clearly suffices to show that for all x
sufficiently large, the number F,(x) = F(x) — F(x/2) of elements n of F
with x/2 < n < x satisfies

log F,(x) < (logx)">.
We can suppose that
k = [(log x)/*/log log x| > 2.
Since by Theorem 2 we have Q(n) > §logn, we deduce w(n)
> Llogn/loglogn, and so 2 < k < w(n) for all nin F withn > x/2. We

now note that each n in F with x/2 < n < x is specified uniquely by
giving successively the following pieces of information:

(a) R = R(n)
() P,,...,P,
© 0p-. 0%,

(d) the prime factors of » in the interval
I= (Ak(Pk - 1), Pk)'
For n/R is squarefree, and it has no prime factors to the right of this
interval except P;,...,P,. Further by Lemma 7 it has every prime to the
left of this interval as a factor except those of Q,,...,Q,_, which do not
exceed A (P, — 1).

Now by Theorem 2 and the Corollary to Lemma 5 there are at most
2log? x possibilities for R in (a). Since P, < P, _, < --- < P,, Theorem 2
also shows that there are at most (2log? x)* possibilities for P,...,P, in
(b). Next, writing P, = p, for some r > 1, we see that r < log? x, and
since

Q< <Qu <SP <(r+k- 1)29
we find that there at at most (21log? x) %~V possibilities for Q;,...,0Q,_;
in (c). Finally, once P, has been specified in (b), the length y of the
interval I is
y=Q=X)P, +A, <2P/k+1
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by (6.2). Since k > 2, we have P, < 3log x from Theorem 2, and using the
definition of k we find that

y < 7(log x)"*loglog x.

Hence from the inequality (5.4) of the preceding section, the number N of
primes in 7 satisfies

N < 43(log x)"*.

Since the number of possibilities for (d) is at most 2¥, we conclude from
all the estimates above that

Fi(x) < 21log?x(2log? x)*(210g2 x)** "2 < (log3x )2V
which does not exceed exp(40(log x)*/?). This leads at once to the desired

estimate for F(x), and so completes the proof of Theorem 4.

Appendix. We discuss here some improvements on our results that
can be obtained using deeper methods. The most interesting of these
concerns possibly large values of the greatest prime factor P(n) of n. In
Theorem 2 we saw that P(n) < (1 + &)log? n for all sufficiently large » in
F; and indeed, it appears from the table that occasionally P(n) can be of
this order of magnitude. An extreme example occurs for

n=>5735730=2-3-5-7-11-13-191
with P(n) = 191, so
P(n)/logn =12.273..., P(n)/log?n = .78866....
Nevertheless Glyn Harman has substantially improved our upper bound
for P(n). He first uses the latest techniques from the theory of exponen-

tial sums to prove the following result on diophantine approximation with
primes.

THEOREM (HARMAN). There is an absolute constant & > 0 with the
following property. For any N > 1 and &, x with

N3<eg<l—N-3  N¥3<x<N2*8
we have
Y 1=(Q1-¢e(n(2N)—=(N))(1 + O(N?))
VLR
He then observes (compare the proof of Lemma 3) that this leads to
(A1) P(n) < log*®n
for all n in F. In particular, he can prove (A.1) for any § < 1/10.
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On the other hand, one can consider products of two primes. The
following hypothesis seems plausible.

HyPOTHESIS. For any fixed a, 8 with 0 < a < B, there is a function
Y(x) = o(x'?) such that for every x > 1 we can find primes p, q with
ap < q < PBpand

x<pg<x+y(x).
Assuming this hypothesis it can be proved that for »n in F we have

() <2,

lim sup
n— oo

log
which is best possible in view of Theorem 2. Likewise the Hypothesis
implies that for n in F

Q(r) >1, lim sup —— 2'(n) <1,
n log n

n— o0

Tliminf

n—o 1O

both of which are again best possible by Theorem 2.
We can even refine some of these results to take account of the
repeated factors R(n) of n. From the Hypothesis it follows that for n in F

(A.2) lim sup f(gn) =1

n—oo

and, for fixed d > 1,

(A.3) hmspl(g)—1+a'1
ARG

All this delineates the structure of sparsely totient numbers rather
clearly. For any ¢ > 0 and sufficiently large n in F, the number n, apart
from a repeated factor d < (1 + ¢)log n, is squarefree and divisible by all
primes up to (1 — €)log n. Moreover, it is divisible by no prime larger
than (1 + €)logn except possibly its largest prime factor p. Finally,
for fixed d at any rate, the prime p lies between (1 — ¢)logn and
(1 + d7' + €)log n. Everything here fits neatly in with the explicit con-
structions used in Theorem 1, the relations (A.2) and (A.3) corresponding
to the inequalities (a) and (b) respectively.

But we should emphasize that all these conclusions depend on the
above Hypothesis, which, if true, unfortunately seems well beyond the
reach of present techniques in analytic number theory.
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Sparsely totient numbers not exceeding 106, with factorizations
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2 2
6 2.3
12 2%3
18 2.3°%
30 2.3.5
42 2.3.7
60  2%3.5
66 2.3.11
90  2.3%5
120 233.5
126 2.337
150  2.3.5%
210 2.3.5.7
240  2%3.5
270 2.335
330 2.3.5.11
420 2%33.5.7
462 2.3.7.11
510  2.3.5.17
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660 233.5.11
690 2.3.5.23
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