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We construct a topological ball D in R®, and a set E on 3D lying on
a 2-dimensional hyperplane so that E has Hausdorff dimension one and
has positive harmonic measure with respect to D. This shows that a
theorem of @ksendal on harmonic measure in R> is not true in R®,
Suppose D is a bounded domain in R™, m > 2, R"\ D satisfies the
corkscrew condition at each point on dD; and E is a set on 3D lying also
on a BMO, surface, which is more general than a hyperplane; then we
can prove that if £ has m — 1 dimensional Hausdorff measure zero then
it must have harmonic measure zero with respect to D.

Lavrentiev (1936) found a simply-connected domain D in R? and a
set £ on dD which has zero linear measure and positive harmonic
measure with respect to D [5]. McMillan and Piranian subsequently
simplified the example [6]. See also [1] and [3].

In [7], Oksendal proved that if D is a simply-connected domain in R?,
and E is a set on D with vanishing linear measure, and if E is situated
on a line, then E has vanishing harmonic measure w(E, D) with respect
to D. In [3], Kaufman and Wu generalized this result and proved that the
theorem still holds if E is situated on a quasi-smooth curve, but no longer
holds if F is situated on a quasi-conformal circle. An interesting, perhaps
very difficult, question is whether the theorem is true if E lies on a
rectifiable curve.

Another question is the higher dimensional generalization: if D is a
topological ball in R”, m > 3, and E is a set on dD, situated also on an
m — 1 dimensional hyperplane, does the vanishing of the m — 1 dimen-
sional Hausdorff measure, A" }( E) = 0, imply that w(E, D) = 0?

We answer this negatively by giving the following example.

ExaMpLE. There exists a topological ball D in R? and a set E on 9D,
lying on a 2-dimensional hyperplane so that E has Hausdorff dimension
one but has positive harmonic measure with respect to D.

We notice that dim E = 1 is much stronger than A%*(E) = 0; and that
1 is best possible, because if dim E < 1 then E has zero capacity in R,
hence E has zero harmonic measure with respect to D in R>,
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Also this example suggests that a question left open in [1] by Carleson
has no analogue in higher dimensions: if E is a set on the boundary of a
Jordan domain D, and A#(E) = 0 for some 1/2 < B < 1, is it true that
w(E,D)=0?

The real reason behind the example is that the Carleman-Milloux type
estimation of harmonic measure is no longer valid on the boundary of a
topological ball in R®. In order to obtain positive results we require the
complement of the domain to be “big” near each boundary point, and
allow E to lie on a surface more general than a hyperplane.

THEOREM. Suppose D is a bounded domain in R™, m > 2, whose
complement R™ \ D satisfies the corkscrew condition. Let T’ be a topological
sphere in R™, whose interior Q, and exterior Q., are both NTA domains,
andon T,

(0.1) A"HE)=0= w(E,Q)=0 fori=1and?2.

Then a set on 0D N T having zero A™~' measure must have zero harmonic
measure with respect to D.

The definitions of corkscrew condition and NTA domain are intro-
duced by Jerison and Kenig in [2] and are given below.

Examples of I' that satisfy the conditions in Theorem 2 are quasi-
smooth curves (m = 2) and boundaries of BMO, domains (m > 3);
BMO, domains are domains whose boundaries are given locally as the
graph of a function ¢ with V¢ € BMO, see [2] for more discussions. In
these examples, the harmonic measures w, on T' and A"~ ! are mutually
absolutely continuous, in fact, w, € 4_(A™ ).

When m = 2, the theorem by Kaufman and Wu [3] mentioned before
is not comparable to Theorem 2. There, D is only simple-connected;
however, I' has a stronger property, namely, quasi-smooth.

From the Example, we see that the corkscrew condition on R™\ D
cannot be discarded even when D is a topological ball. Also condition
(0.1) is necessasry as one can see in the case D = @, or Q,. However, we
do not know whether the geometric condition on I':{; are NTA domains,
can be weakened, or whether I' can be replaced by a simple rectifiable
curve in R2.

1. An example. We call D a topological ball in R™ if it is the image
of a ball under a homeomorphism of R™. And the boundary of a
topological ball is called topological sphere. For 4 € R™, r > 0, we let
B(A,r)y={P€R™|A—-P|<r}.
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For a domain D in R™, E C 9D, we denote by w*(E, D) the
harmonic measure of E at X with respect to D.

LEMMA 1. In R?, there exists a simply-connected Jordan domain Q,

satisfying

M QN {x: x>0} C{x:|x] <2}

N {x:x, <0} ={xx <0,lx|<3};

(2) 9,9 has Hausdorff dimension 1;

(3) cap,(9,82) > 0;

(4) cap;(2,) > 0 as € - 0;
where Q= {x € Q: dist(x,08) < €}, 0,2 is the boundary of Q relative to
R?, and cap; is the capacity with respect to the kernel 1/|x|.

Lemma 1 is proved at the end of this section; some readers may
prefer to supply their own construction. The next lemma is the key to our
example.

LEMMA 2. Let Q be a domain in R* with all the properties in Lemma 1.
We identify it with the set {(x,0): x € Q} in R®. Then

(9,2, B(0,20)\ £) > 0.
Proof. Choose ¢, > 0 so that
(1.1) cap,(2,, ) < —1—cap (0,2)
. 3\82g ) = Jg “@P3 10284
Let @, ,=8,\Q, for 0 <n<eg, let p and » be the capacitary

measures corresponding to d,{2 and QEM, with respect to the kernel 1/|x|,
respectively. Let U and V' be the corresponding equilibrium potentials:

(12) U(x) =fw =] dp(y),
(1.3) Vx)=[ ——dv(y).

wn | |

We recall from [4] that U and V are positive superharmonic on R’
bounded by 1 and are harmonic off the supports of their respective
capacitary measures; moreover U = 1 on 9, except possibly on a set S
with cap,(S)=0 and V=1 on ‘QEO," except possibly on a set T with
cap;(T) = 0; p(3,92) = cap;(9,§2) and »(L, ) = cap;(2

eo,n)'
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Let u = (9,2, B(0,20)\ 9,9) and v = w(Q
observe from the last paragraph that

B(0,200\ 2, ,). We

&9,M’

(1.4) u(X) = U(X) - f U(Y) dw*(Y, B(0,20))
Y|=20
for X € B(0,20)\ 9,%2; and clearly U > u and ¥V > v in their common
domains.
For 6 < | X| < 20 it follows from Lemma 1, (1.1), (1.2) and (1.3) that

(1.5) V(X) <3 cap3(950,,) 3(1)0 cap;(9,9)
< 320—30u(x) < 5 U(X);

for | X| = 6, it follows from (1.2), (1. 4) and (1.5) that

(1.6) u(X)z%U(X)+ U(X) ~ 15 capy(2,2)

> LV(X) + 7 capy(3,9) — 75 caps(8,2) > 30(X).
From the maximum principle, it follows that for | X| = 6and 0 <7 < g,

17)  o*(0,9,B(0,20\(8,, U ,2)) > u — v(X) > Fu(X)

1
> 700 cap,(9,92) > 0,

by the estimation in (1.6).
From (1.7) and the maximum principle, we obtain for | X| = 6,

wX(azsz,B(o,zo)\ﬁeo)= inf »¥(Q,U 0,2,B(0,20\2,)

<1'<e

> inf (a Q, B(0, 20)\( eon/2 Y 82(9)))

0<n<eo

100 cap,(3,2) > 0.

Let a = sup{«*(3,2, B(0,20)\ &, ): x € @\ &, }. Because 2\ €,
has positive distance from 62*9, we have 0 < a < 1. Choose B, a < B <1,
and a point P in B(0,20)\ €, so that »"(3,2, B(0,20)\ £, ) > B. By the
maximum principle,

w"(3,2, B(0,20)\ ) > ”(3,2, B(0,20)\2, ) —a> B — a > 0.

This completes the proof.
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LEMMA 3. Let Q be the domain in Lemma 1. Let g(x) be a strictly
positive continuous function on 2, defined by
(1.8) g(x) = 1 dist(x,3,2).
Let

G= {(xls X, %3) (%1, %,) € @ and |x5| < g(x,, xz)}-
Then
(3,2, B(0,20)\ G) > 0.

Proof. Suppose otherwise, we have
(1.9) (3,2, B(0,20)\G) =

Let X € G\ &, A, be the disk on { x, = 0} with center ( X;, X,,0) and
of radius |X;| and By be the ball in R* with center (X, X,,0) and of
radius 2| X;|. By (1.8) and the maximum principle, we have for X € G\ Q,

(1.10)  «*(3,2, B(0,20)\ ©) < w*(3By, Bx\A(X)) = C <1,

where C is an absolute constant. Let 4 be any point in B(0,20)\ G.
Because of (1.9) and (1.10) we have

(9,9, B(0,20)\ @)

= (3,2, B(0,20)\ G)
(1.11) _ _
+ «*(9,9, B(0,20)\ &) dw*( X, B(0,20)\ G)
3G\ 3,2
=0+ C<1.

From (1.10) and (1.11) we see that
«(9,2, B(0,200\Q) < C < 1
everywhere in B(0, 20) \ Q. Therefore, (9,8, B(0,20)\ &) = 0. This con-

tradicts Lemma 2 and proves Lemma 3.
Finally, we let & and G be the domains in Lemma 1 and Lemma 3,

D = {(x1,%,,%3): x} + x3 < 8and |x;| < 4]\ G
and
E=039n{x:|x|<2}.

From the constructions of { and G, the domain D is a topological ball;
from properties (1) and (2) in Lemma 1, dim E = 1 and

cap,(9,2 N {x: |x|> 2}) = 0.
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Therefore by Lemma 3,
«(E, B(0,20)\ G) > 0.
Arguing as in the last paragraph of the proof of Lemma 2, we conclude
w(E,D)> 0.

Consequently all the properties of D and E in our example are justified.
It remains to prove Lemma 1.

Proof of Lemma 1. All line segments considered below are closed. Let
Io; be the line segment with end points (0, —1) and (0,1). Let /, ,,
m = 1,2, be two horizontal line segments with left endpoints (0, — ) and
(0, %) respectively and of length 1.

Suppose {/,_,,: 1 <m <2"""D/2} have been selected for some
n > 2, so that length of 7, _,, is 27"~ D(""2/2 Subdivide each /,_, ,,
into 2" equal subintervals, each of length 27'~"*=V/2 Let {/, : 1 <j <
2(n*Hn/21 be horizontal (if n is odd) or vertical (if n is even) line
segments of length 2-"("~Y/2 with left (if n is odd) or lower (if n is even)
endpoints coinciding with those of the subintervals of /, _; , and disjoint
from any /,_, .. We notice that the distance between two disjoint line
segments /, ,, and /,, . (n > n’) is at least 271 ~"(""D/2,

Let Ry, be the semidisk { x: x; < 0, |x| < 3} in R% We shall attach
a thin rectangle to each I, ,, n > 1. Let a,=2"%" and consider, for
n > 1, the rectangle with one side coinciding with /, ,,, two opposite sides
of length a,, and interior disjoint from any /,, .. Let R, ,, be the interior
of this rectangle together with the open line segment S, , which is the side
of length a, and lies on some /,_; ..

Let
0 2n(n+1)/2 N 2n(n+1)/2
Q = U U Rn,m’ QN = U U Rn,m'
n=0 m=1 n=0 m=1

We claim that § is simply-connected Jordan. Using induction and the fact
that

| = 2-(nDn/2 < p-1-n(n=1/2 — digy(] ) form + m’,

|ln+1,m n,m’ln,m
we see that  is Jordan simply-connected for each n. Since the distance
between two disjoint /,, ,, and [, (n > n’) is at least 271 ~"(*~D/? and

o0

Y |l |< 2772 — g o forn > 3,
k=n+1
it follows from the construction of £ that § is simply connected Jordan.
Property (1) in Lemma 1 can be verified easily.



SINGULARITY OF HARMONIC MEASURE IN SPACE 491

We claim that 9,2 has Hausdorff dimension one. Let § > 0 and
r = 2717""=1/2 which is the distance between two disjoint /, ,, and [, ..
From the construction, we see that 9,£ can be covered by a family of K
squares, each of side length r, and K no greater than
n—1 2k+Dk/2

C 2n(n+l)/2 + Z Z llk’j'/2—1—n(n—l)/2 < C2n(n+1)/2'
k=0 j=1
Therefore the (1 + 8)-dimensional Hausdorff measure satisfies
Al +8(a29) < C limsup 2n(n+1)/2(2—1—n(n—l)/2)1+8’

which approaches zero as n — co. Thus A'*%(3,92) = 0 for every § > 0,
and 0,$ has dimension at most 1. It is clear 0,2 has dimension at least 1.

Next, we claim that cap,(9,8) is positive. Recall that 9,8 is a Jordan
curve and S, ,, is a particular side of R, ,, that is situated on some /,_; ,,.
Let 4, ,, and B, , be the endpoints of S, ,; from the construction of £,
one sees that 4, , and B, , are on 3,{2. Let u be the probability measure
on 9, satisfying, for n > 1,

(1.12) w(E, ) = 270 +07,
where E, , is the subarc of 9, with endpoints 4, , and B, , which
does not contain the point (— 3, 0).
We shall prove that
-2
(1.13) p(0,2 N A(P, 1)) < Ct(log %)

for every P € R? and 0 < ¢ < t,. Once (1.13) is proved, we have for any
P € R?,
dt

1 o
faﬂm dp(X) =f0 p(A(P,1) N 3,Q) 5

1 dt to 1
< —+ — dt < C(t,) < o0.
fz 12 fo tlog?(1/1) (o)

Therefore cap,(9,{2) > 0.
To prove (1.13), we assume
2-n(n=1/2 < 4 <« 2= (n=D(n=2)/2
For any P € R?, A(P, t) meets at most Cr2""~D/2 arcs of the form E,, .
Therefore by (1.12),

“‘(A(P,t) N 329) < C2r(n=1/29-n(n+1)/2

1 -2
<Cr27" < Ct(log—t—)

if 0 <t <t¢,.
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Finally we prove that cap,;({2,) > 0 as ¢ — 0". Because cap;({,)
decreases as & decreases, we need only to show that cap,(2, ) > 0 as
N — oo. We observe, by the relative narrowness of a, to the distance
between R, ,, and R, . (n,n’ < N), that

N—1 2n(n+1)/2 0 2n(n+1)/2

QaN c U U Rn,m,aN U U U Rn,m

n=0 m=1 n=N m=1

where R .= {x€R,,, dist(x,0R, ,) <ay}. By a variation of

n,m,a

Lemma 4 below, we have the following estimation:
cap;(2,,)
< C( Nz_l 2n(n+1)/2 Iln,l | + i 2n(n+1)/2 Iln,l I )
"0 log(|Z,1/ay)  w=n log(|7,,1/a,)
N-1 2n(n+1)/22—n(n—1)/2 00 2n(n+1)/22—n(n—1)/2
S C 2N + 3n
w0 log(z—n(n—l)/2 22 ) NN log(z—n(n—l)/2 22 )

N—-1 0
< E 2n2—2N + Z 2—n,
n=0 n=N

which approaches 0 as N — oo. This completes the proof of Lemma 1.

LEMMA 4 [4; p. 165]. Let E be an elongated ellipsoid of revolution with
axes a,b (b < a). Then

2 a’? — b?

caps(E) = ™ log[(a +Va® - b?)/(a - \/;2—_1)—2)] .

2. Proof of the Theorem. Following the definition in [2], we say a
domain © in R™ is a non-tangentially accessible (NTA) domain if there
exist fixed constants M = M(2) > 10 and r, = ry(£2) > 0 such that the
following conditions are satisfied.

(2.1) corkscrew condition: for any Q € 0%, r < r,, there exists 4 =
A,(Q) € Q such that M~'r < |4 — Q| < r and dist(4,0Q) > M 'r;

(2.2) R™\ Q satisfies the corkscrew condition;
(2.3) Harnack chain condition: if X, and X, € @, dist( X;,0D) > ¢ > 0,

i=1,2, and |X; — X,| < K, then there exist balls B, = B(Y,r), 1 <j
< L, L depending only on K, but not on ¢ so that Y, = X; and
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Y, = X,; and the balls B; satisfy
(2.4) M, < dist(B;,0Q) < Mr;, 1<j<L;
and
(25)  B(Y,r/2)nB(Y,r,,/2)# @, 1<j<L-1.

({ B;} is called a Harnack chain from X, to X, of length L.)

Assuming F € 9D N T and A" }(F) = 0, we want to show «(F, D)
= 0.

We claim that it is enough to prove that there exists 0 < 8 < 1, so
that

(2.6) w%(F,D)<pB foreveryQe DNT.
In fact, for X € D N Q,, it follows from (0.1) that
*(F,D N Q) < o*(F,Q,) = 0;

hence

(2.7) wX(F,D)=w"(F,DN Q) +fr _wO(F,D)dX(Q,D N Q)

=f w2(F,D)dw*(Q,D N Q).
r'nD

After (2.6) is proved, we may conclude
w¥(F,D)<B <1 forevery X € D.

This is possible only when w(F, D) = 0. Therefore we need only to show
(2.6).

Since ©;, i=1,2, are NTA domains and R™\ D satisfies the
corkscrew condition, we let

M = max{ M(Q,), M(Q,), M(D)}
and
ro = min{r(,), ,(2,), 7o(D)}

from their respective definitions.
Forafixed Q€ DNT,let

r = min{r,,dist(Q,3D)}.

From the corkscrew condition on §;, we can find

U = B(Ai’r/4M) c
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so that
(2.8) |4, — Q|<r/2 and dist(U,T) > r/4M.

Notice that U; U U, € B(Q, r) C D. Therefore we can find a, 0 < a < 1,
depending on M only so that

(29) w9 (F,D)<1-a+ asup w*(F,D), fori=1or2.
XeU,

Because of (2.7) and (2.9), in order to prove (2.6), we need only to show
there exists 7 < 1 so that

(2.10) min{ sup 0¥ (TN D,DNQ,):i= 1,2} <.
XxXel,

We claim that there exists a ball
V= B(4,(4M)7r)
whose closure is completely in £, \ D or completely in £, \ D, and
(2.11) |A - Q|<Kr and dist(V,T)> (4M)’r,

where K = 2 + (diam D) /r,,.
In fact, let P be a point on dD so that |P — Q| = dist(Q, 0D). Since
R™\ D satisfies the corkscrew condition, we can find a ball

W =B(Y,(2M)"'r) C R"\ D
so that
|Y —P|<r and dist(W,d9D)> 2M)'r.

If B(Y,(4M)'r)NT = & then B(Y,(4M)7'r) lies completely in
2, \ D or completely in £, \ D; we let

A=Y and V=B(Y,(4M)7r),

and can verify (2.11) easily.
If B(Y,(4M)'r)NT contains some point Z, by the corkscrew
condition on £, we can find

V=B(4,(4M)7*r)cQ
so that

(8M2)'r<|A—-Z|< (8M)'r and dist(V,T) > (4M)7’r.
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Because |4 — Y|<|4 - Z|+|Z - Y|<3r(8M)7, we see VC WC
R™\ D. Therefore V C @, \ D. Again (2.11) can be verified easily. This
proves our claim.

From now on we assume V is contained in &, \ D, and shall prove
(2.12) sup @*(T'ND,DNQ))<y<1.

Xel,

When V is in 2, \ D, we argue similarly.

From (2.8) and (2.11) and the assumption that £, is an NTA domain,
we can find a Harnack chain { B;} jL=1 in ©,, whose length L depends on
ry, M and diam D only, that connects A4 to 4,; moreover, we may choose

(2.13) B, = B(4,3r(32M*)7") 2 B(4,r(4M) ) =V,

(2.14) B, = B(4,,3r(8M)7") 2 B(4,,r(4M)7) = U,

so that (2.4) is still satisfied with a bigger constant M’ dependent only on
M, r, and diam D.
Let B =U’_, B, and

w(TND, DN Q) onDN,

v 0 on R"\(D N Q,).

Since { B;} is a Harnack chain, BcC §2,; hence w is subharmonic on B;
and because VN D =@, w=0 on V. Therefore by the maximum
principle, for X € U, c DN T

w*(IT'ND,DNQ) < w¥(0B,B\ V).

By (2.13), (2.14), properties (2.4) and (2.5) of the Harnack chain condi-
tion, and the Harnack principle, we can find 5 < 1, depending on r,, M,
diam D, so that

w*(0D,B\ V) <n forevery X € U,.
Therefore (2.12) is proved, and thus (2.6) follows.
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