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Let (2,,Z,, p,) be o-finite measure spaces, i = 1, 2, and let E be a
Hilbert space. If the Bochner spaces L7(Q,, Z,,p,, E) and
L?(Q,,2,, u,, E) are nearly isometric, for either p = 1 or p = oo, then
IMQ,, 2y, uy, E) is isometric to IYQ,,Z,, u,, E) and hence
L*(Q,,Z,, 1y, E) is isometric to L°(£,,2Z,,u,, E).

Throughout this paper the letter £ will denote a Banach space which
will often be taken to be Hilbert space. Interaction between elements of a
Banach space and those of its dual will be denoted by ( -, -). We will
write E, = E, to indicate that the Banach spaces E, and E, are isometric.

Following Banach, [2, p. 242], we will call the Banach spaces E, and
E, mearly isometric if 1 = inf{||T||||T ||}, where T runs through all
isomorphisms of E;, onto E,. It is of course equivalent to suppose that
1 = inf{||T}|}, where ||T7!|| = 1, and hence T is a norm-increasing iso-
morphism of E; onto E,. For if T is any continuous isomorphism of one
Banach space onto another, we obtain an isomorphism 7 having the
desired properties by defining 7" to be equal to || T 1| T.

If (2,2, p) is a positive measure space and E a Banach space, the
Bochner spaces L?(Q, Z, u, E) will be denoted by L?(u, E) when there is
no danger of confusing the underlying measurable spaces involved, and by
L?(p) when E is the scalar field. For the definitions and properties of
these spaces we refer to [8].

It has been noted by Benyamini [4] that, as a consequence of known
properties of spaces of continuous functions, if two spaces L?(p,) and
L*(u,) are nearly isometric, for either p =1 or p = co, then they are
isometric. What we wish to show is that the same conclusion can be drawn
for near isometries of certain Bochner spaces. We will prove the following:

THEOREM. Let (2,2, u,) be o-finite measure spaces, i = 1, 2, and E
a Hilbert space. If there exists an isomorphism T, with ||T7Y| =1 and
ITI < 3/(2V2), mapping L?(Qy, 2y, py, E) onto LP(Qy, 25, py, E) for
either p=1 or p = o0, then LNQ,2, u, E) = LY(RQ,,2,,1,, E) and
LOO(QI? 21’ (330 E) = LOO(QZ’ 223 Mo E)
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In the scalar case, Banyamini’s theorem follows from an analogous
result for spaces of continuous functions obtained independently by D.
Amir [1] and the author [5], [6]. And we note that if E is finite-dimen-
sional with orthnormal basis {e,: n=1,...,N}, and X, denotes the
maximal ideal space of L*(p;), i =1, 2, then it can be shown that
L*(p,;, E) is isometrically isomorphic to C(X;, E), the space of continu-
ous functions on X, to E, under the map XV_, f.e, = XV_, f.e,, where
f— f is the Gelfand representation of L*(p. ;)- In this case the theorem of
this article can be obtained from what is known about isomorphisms of
continuous vector-valued functions [7], the result for vectorial L® follow-
ing directly from [7] and that for L' then following by arguments
analogous to those given here in the proof of Lemma §. However when E
is infinite dimensional, the continuity on X, of the coordinate functions f,
no longer implies continuity for T, f,e,, even in the presence of separabil-
ity, and thus the problem requires different methods of approach.

Consequently, in what follows, E will represent an infinite-dimen-
sional Hilbert space. Although the proofs presented here require only that
the dimension of E be greater than two, for all finite-dimensional Hilbert
spaces E not only does our theorem follow from [7], but it follows with
the bound 3 /(2v2) replaced by the better bound v2 .

Our approach here will be to replace the measure spaces (;, 2, p;)
by measure spaces in which we have a topology, and on which measurable
vector-valued functions are very close to being continuous. For this we
will require the notion of a perfect measure. Thus, following [3], if X is an
extremally disconnected compact Hausdorff space we will call a nonnega-
tive, extended real-valued measure p defined on the Borel sets #( X) of X
perfect if

(i) every nonempty clopen set has positive measure,

(i1) every nowhere dense Borel set has measure zero, and
(iii) every nonempty clopen set contains another nonempty clopen set
with finite measure.
The proof of our theorem is now completed by means of a sequence of
lemmas.

LeMMA 1. Let (2,3, u) be a o-finite measure space, and let X be the
Stonean space of the measure algebra 2 /. ( Equivalently, X is the maximal
ideal space of L*(p.).) For A € 2 let A denote the clopen subset of X which
represents the equivalence class of A. Then the measure [i defined on the
algebra 7 of clopen subsets of X by fi( A) = w(A), A € Z, can be extended
to a perfect measure, also denoted by ji, on B(X) such that L}(Q,Z, u, E)
= INX, B(X),}r, E), and hence L*(, 2, pn, E) = L*( X, B(X), i, E).
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Proof. The set function fi defined above is, indeed, countably additive
on 2, [8, p. 11]. Thus, by the Carathéodory extension theorem, fi has a
unique extension to the o-algebra generated by /. This o-algebra clearly
contains the Baire sets of X.

First suppose that p is finite. Then, [9, p. 351], i can be further
extended to a regular measure on %(X), which is clearly perfect. (The
proof that every nowhere dense Borel set has measure zero is contained in
[10, p. 18, Lemma 9.4].)

If p is o-finite but not finite, let { be the disjoint union & = U¥_, 4,
where 4, € 2 and 0 < u(A4,) < oo for all n. Then define the finite
measure p, on = by py(A4) =X ,n(4NA4,)/2" - u(4,)). Since the
po-null and p-null sets of X coincide, the measure algebras =/p and
2 /p, have the same Stonean space X. The measure fi, defined as above
on &/ extends to a perfect regular Borel measure on X. And since for sets
A € 2 we have

p(A) =Y p(A4n4d,)=32" u(4,)p(4n4,),

it follows that for 4 € &,
pA) =Y p(An4d,)=22"a(4,)i(4dNA4,).

Thus if we define, for B € B(X), i(B) =X,2" - i(4,)io(B N A,), the
set function so defined is an extension of fi to a perfect measure on Z( X).
Finally, the map ¥7_,e;x, — Yj_,e;x i, carries the dense subspace
of LYQ,Z,p, E) consisting of simple functions isometrically into the
corresponding subspace of LY X, #(X), i, E). Since every B € #(X)
differs from a clopen set by a set of fi-measure zero [3, p. 1], the map is
actually onto the subspace of simple functions in L'( X, #(X), i, E) and
thus extends to an isometry of L'(Q, Z, n, E) onto LY X, B( X), fi, E).

LEMMA 2. Let X and ji be as in Lemma 1. Then given a measurable
E-valued function F on X there exists an open dense subset Uy of X such that
F|y, is continuous, and (X — Ur) = 0.

Proof. First assume that [ is finite. Here we follow the argument
given by Peter Greim in [11, p. 124]. Take a sequence { F,} of simple
functions converging a.e. to F. Again using the fact that each set in Z( X)
differs from a clopen set by a set of measure zero, we may suppose that
each F, is continuous. Then Egoroff’s theorem shows that F is the almost
uniform limit of continuous functions. Hence for each & > 0 there is a
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measurable set U, such that the restriction of F to U, is continuous and
(X — U) < & Using the facts that fi is regular and that an open set and
its closure have the same measure, we may assume that U, is clopen. If
then Uy is the union of all the U,’s it has the required properties, for its
complement is closed and has measure zero, and thus can contain no
non-void open set.

If i is o-finite but not finite let fi, be the finite measure that appears
in the proof of Lemma 1. The argument of the preceding paragraph with f
replaced by fi, then shows that F is continuous on a dense open set Uy
with fi (X — Ug) = 0. Since i and fi, have the same null sets, the proof
is complete.

As a consequence of Lemma 1 it suffices to prove our theorem for
two o-finite perfect Borel measures defined on extremally disconnected
compact Hausdorff spaces. Accordingly, we shall henceforth assume that
X and Y are extremally disconnected compact Hausdorff spaces and that
u (resp. v) is a o-finite perfect measure on #(X) (resp. #(Y)). Until
further notice, T will denote a norm-increasing isomorphism of
L*(X, B(X),p, E) onto L(Y,B(Y),», E) with ||T|| <3/(2V2) and
1T = 1.

LemMA 3. If F€ L®(pn, E) and ||F(x)|| =1 for almost all x € X,
then, for almost ally € Y, (63 /64)"* < |\T(F)(y)|l

Proof. Suppose, to the contrary, that there exists a set 4 € #(Y)
with »(A4) > 0 such that ||T(F)(y)|| < (63/64)/? for y € A. Again using
[3, p. 1], 4 = BAC with B clopen and C of first category. We may
assume that 7(F) = 0 on the »-null set B N C and hence that ||T(F)(y)||
< (63,/64)'/?on the clopen set B with »(B) = »(A) > 0. Let Uz, be an
open dense subset of Y on which 7(F) is continuous, and whose
complement has v-measure zero. Then »(B N Upf) =v(B) >0, BN
Urr)is open and T(F) is continuous on this set.

Let k =||T(F)||,. Choose y, € BN Upy, and take e € E with
lle]] = 1 perpendicular to T(F)( y,)- Then for all scalars a with |a| = 1,

”T(F)(y) + a(k? - 63/64)1/2 _ ellz

<|IT(F)(») | + 2(k> — 63/64)"%| (e, T(F)(»))|

+k*—(63/64).
For y = y, the expression on the right is less than k2, and since it is

continuous on B N Uy, there exists a clopen set D containing y, such
that for all y € D we have ||T(F)(y) + a(k? — 63/64)1/% - ¢|> < k2.
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Thus if we define G € L®(v, E) by G = (k* — 63/64)/% - ¢ - x ,, then G
is a nonzero element of L*(», E) such that for all scalars « with |a| = 1
IT(F) + aGll,, = .

We can suppose that || F(x)|| = 1 for all x € X. We must have
I746) |l = /T I)(K* - 63/64)7* > ((2/2)/3)(k* - 63/64).
And since the complement of Up N Up-1(;) has p-measure zero, we can

choose x, € Uy N Up- g, With

IT-4G)(x0) || > ((2v2)/3)(k* — 63/64)"">.

Next note that if « is a scalar with || = 1 such that Re a{(T (G)(x,),
F(x4)) = 0, then

| F(xo) + aT71(G)(x0) || > 1 +(8/9)(k? ~ 63/64).

Since ||F(x) + aT(G)(x)|| is continuous on Up N Upag,, there is a
clopen set W containing x, such that

1F(x) + aTH(G)(x)|" > 1 +(8/9)(k® - 63/64) on W.
Thus
IF + aT"YG) | > 1 +(8/9)(k? — 63/64),

and we will have obtained a contradiction to the fact that T7! is
norm-decreasing if the quantity on the right is greater than kZ2-equiva-
lently if 63/64 < (9 — k?)/8. But since k? < ||T||> < 9/8, we indeed
have 63,/64 < (9 — k?)/8 and this contradiction completes the proof of
the lemma.

LEMMA 4. Let F € L®(p, E) with (63/64)'/% < ||[F(x)|| < |IT|| a.e.
For A € B(X) define $(A) € B(Y) by $(4) = {y € Y: [T(x F) W)
> 31/32}.

(i) If A and B are disjoint measurable subsets of X then ¢(A) N ¢(B)
is a v-null set and, modulo a v-null set, $( A’) = [¢(A)] (where for any set
A, A’ denotes its complement).

(ii) If we furthermore assume that || F||,, < 1 then ||T(x ,F)(y)|| < .44
a.e. on $(A").

Proof. (i). If ¢(A) N ¢(B) had positive measure then, proceeding as
in the proof of the previous lemma we could find a nonempty clopen set
C C Y on which || T(x F)(y)|| > 15/16 and ||T(x zF)(»)|| > 15/16, and
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on which both T(x ,F) and T(x zF) are continuous. By choosing first a
point y, € C and then a scalar « such that

Rea{T(x5F)(¥y), T(x(F)(y,)) =0,

it would then follow that ||T(x F) + aT(xzF)|l, > (15v2)/16 > 1.3.
But since for all scalars a with |a| = 1 we have ||x ,F + axzF|l, < IIT}},
IT(x ,F) + aT(x3F)|l,, must be less than ||T||*> < 1.2, and thus ¢(A4)
and ¢( B) must be a.e. disjoint.

We wish next to show that the union of ¢(A4) and ¢(A4") is almost all
of Y. Suppose, to the contrary, that on some Borel set D € Y with
v(D) > 0 we had ||T(x,F)»y)|l <31/32 and ||T(x F)»)|l < 31/32.
We may suppose that D is clopen and that both T(x ,F) and T(x ,F)
are continuous on D. Let k; = ||T(X 4F )l k2 = IT(X 4 F )|, and k =
max{ k;, k,}. Then arguing as in the second paragraph of the proof of
Lemma 3, we could find a G € L®(», E) with ||G||,, = (k? — (31/32)%)'/?
and such that ||T(x (F) + aG|l, < k and ||T(x F) + aG||,, < k for all
scalars a with |a] = 1.

Then ||TY(G)||,, > ((2v2)/3)(k? — (31/32)2)'/2 so that by an argu-
ment analogous to that given in the third paragraph of the proof of
Lemma 3, we can find a scalar « with |a| = 1 such that

|F + aT~X(G)|[L, > 63/64 +(8/9)(k* —(31/32)).

This latter quantity will be greater than k2 iff (9 - 63 — 64 - k?)/8 - 64 >
(31/32)? an inequality which in fact holds since here ||F||,, < ||IT|| gives
k < ||T||* and hence k? < ||T||* < 81/64. Thus ||F + «T "% G)||,, > k.

But since || T(x,F) + aG||, <k and ||T(xF) + aG||,, < k and
T7' is norm-decreasing, we must have ||x,F + aT %G)||, < k and
Ix +F + aTYG)||,, < k. Since, for any x € X, F(x) + aT }(G)(x) is
equal either to x ,(x) F(x) + aTY(G)(x) or to x ,(x) F(x) + aT "Y(G)(x)
we have a contradiction and thus, modulo a null set, ¢(A4") = [¢(A4)].

(i1): We know that ||T(x ,F)(x)|| = 31/32 on ¢(4’) and thus on this
set we must have ||T(x , F)x)||* <9/8 —(31/32)2 < .19 so that
1T(x F)x)|| < .44 ae. on ¢(A’). Otherwise an argument analogous to
that of the first paragraph of this proof would provide a contradiction.
This concludes the proof of the lemma.

Now fix an F € L*(p, E) with ||F(x)|| = 1 a.e. [p¢]. Then by Lemma
4(1) we obtain a map ¢, defined modulo null sets, from Z(X) to Z(Y)
determined, for 4 € B(X), by (4) = {y € Y: |T(x,F)(»)ll > 31/32)
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and satisfying ¢(A4’) = [¢(A)]. Next note that R = ||T}|T ! is a norm-in-
creasing isomorphism of L%(», E) onto L®(u, E) satisfying ||R|| <
3/(2v2) and ||R7Y| = 1, and that by Lemma 3,
(63/64)"* <|IT(F)YWI<IT| =Rl ae.[s].

Thus, interchanging the roles of 7 and R, of F and T(F), and those of
#(X) and #(Y), by Lemma 4(i) we obtain a map ¢ from #(Y) to
B(X) satisfying ¢ (B’) = [{(B)], modulo null sets, for B € #(Y) and
determined by Y(B) = {x € X: ||R(x5 - T(F))x)| = 31/32}.

LeMMA 5. [T X(x 5 - T(F))(x)|| < 44 a.e. on Y(B).

Proof. For B € #(Y) we have ||R(x g - T(F))x)|| = 31/32 on ¢/(B)
and thus

177 (x5 - T(F)(x) | = R(x5 - T(F))/ITII= 9 ony(B).
If we let
P =esssup T (xp - T(F))(x)]
x€Y(B)
then since F = T Yx, - T(F)) + T (xp * T(F)) we must have (.9)% +
P? <1 =||F||, and hence P < .44 as claimed.

LeMMA 6. If B € B(Y) then, modulo a v-null set, $(y(B)) = B
Hence ¢ is a mapping, defined modulo null sets, of %#(X) onto #(Y).

Proof. Recall that ¢(¢/(B)) is the set on which ||T(x ) - F)(»)|I =
31,/32. We have

Xy F= XuB T (XB F)) + Xy T- (XB T(F))-
Thus for x € Y(B), Xyp)(x) - F(x) differs from T~ Yx g T(F))x) by
Xy5(X) * T™Nx 3 - T(F))(x) which, by Lemma 5, has norm < .44 for
almost all x. And for x € Y(B’), xy)(x) - F(x) = 0 and so can differ

from T '(xp- T(F))(x) by this latter function itself which, again by
Lemma 5, has norm a.e. < .44 on y/(B’). Hence

Ixua) - F = T (xp- T(F))|, < 44
and thus
(*) IT(xys) - F) = x5 T(F) |, < 44T | < 47.

If we suppose that ¢(y/(B)) — B has positive »-measure, we have, for

x € ¢(¢(B)) = B, IT(xys - FIX) = 31/32 and x 5(x)T(F)(x) =0
which contradicts (*) above. And if we suppose that B — ¢(y/(B)) has
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positive »-measure then, by Lemma 3, x(x) - T(F)(x) has norm >
(63/64)!/2 > .99 a.e. on this set, while by Lemma 4(ii) T(x, 5, - F)(x)
has norm < 44 a.e.on B — ¢(¢(B)) C ¢(¢(B’)). This again contradicts
(*) and so completes the proof of the lemma.

Recall that a mapping ¢, defined modulo null sets, of #(X) onto
AB(Y) is called a regular set isomorphism if it satisfies the properties

o(A4) = [¢(4)]

¢(,§1A") = U ¢(4,)

n=1
and

v[¢(A)] =0 if, and onlyif, u(A4) =0,
for all sets A, A, in #(X), [12].

LEMMA 7. ¢ is a regular set isomorphism of B(X) onto #(Y).

Proof. We have seen that ¢ is a mapping, defined modulo null sets, of
PB( X) onto #(Y) satisfying

o(4) = [o(4)], 4 e38(X).

Note that for 4 € Z(X), p(A) # 0iff x, - F# 0 in L*(u, E) which is
true iff T(x 4 - F) # 0 in L*®(», E) which holds (since T is norm-increas-
ing) iff v[p(A)] = rv({y € Y: |IT(x, - F)( )|l = 31/32}) > 0. Thus

v[p(4)] =0 ifpu(4)=0.

Now suppose that 4 and B are disjoint set in #(X). Then by
Lemma 4(i) ¢(A) and ¢(B) are a.e. disjoint. Thus if B is a measurable
subset of the measurable set A4, then B and A’ are disjoint so that ¢(B)
and ¢(A4’) are disjoint. Hence B C A implies that ¢(B) € ¢(A). The
sentence before last also implies that 4 and B are disjoint iff ¢(A4) and
¢( B) are disjoint.

Next assume that { 4;, 4,,...} is a sequence of measurable subsets of
X and let 4 =U®_, A4,. Then since 4, C A4 for all n we have ¢(A4,) C
¢(A) for all n so that UP_,¢(A4,) C ¢(A). Set B = ¢(A) —UT_, ¢(4,).
We would like to show that »(B) = 0.

By Lemma 6 there exists C € #(X) with ¢(C) = B. By what we
established in the paragraph before last, we must have C C 4 in this
instance. Thus if we suppose that B, hence C, has positive measure then,



NEAR ISOMETRIES OF BOCHNER L! AND L*® SPACES 9

for some n, C meets 4, in a set of positive measure. But ¢(A4,) and ¢(C)
are disjoint, and this contradiction shows that we must have »(B) = 0.
Thus

¢(g An) = g $(4,),

completing the proof of the lemma.
The proof of our Theorem is now completed by the following:

LeMMA 8. If there exists an isomorphism T of L?(u, E) onto L?(v, E)
with ||T™Y| =1 and ||T|| < 3/(2V2) forp =1 or p = oo then L'(p, E) =
LY(», E) and L*(p, E) = L*(v, E).

Proof. First suppose that 7 is such a mapping of L*(p, E) onto
L*(v, E). We have seen that there then exists a regular set isomorphism ¢
of #(X) onto #(Y). Then for B € #(Y) define \(B) = u[¢}(B)]. If
A € B(X) we have u(A4) = A[¢p(4)] = [,4yd\ so that the map
Yio1ex 4, Y 1€X e A) carries the dense subspace of simple functions
in L) X, #(X),n, E) isometrically onto the corresponding subspace of
INY,#(Y),\,E) and can thus be extended to an isometry of
LM X, B(X),un, E) onto LYY, Z(Y), A, E). Then multiplication by the
scalar function dA/dv carries this latter space isometrically onto
LNY, #(Y), v, E). Hence LYp, E) = LY(v, E) and consequently
L*(u, E) = L*(v, E).

If we start with a map T of L'(p, E) onto L!(», E) satisfying the
conditions of the lemma, then 7* is an isomorphism of L*(», E) onto
L*(p, E) with ||T* Y| =1 and ||T*|| < 3/(2v2), and the proof then
follows as above.
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