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Let G be a finite group (not necessarily abelian). The object of this
paper is to describe a G-bordism theory which vanishes. We construct a
family F of G slice types, such that the N,-module N$[F] is zero.
Kosniowski has proved a similar result earlier for a finite abelian group.
The present work is a generalisation of his result by using basically the
same technique. A recent result of Khare is obtained as a corollary to the
vanishing of N§[F].

1. Preliminaries and statement of the main theorem. Let G be a finite
group with centre C(G) and G, be the subgroup generated by the
elements of order 2 in C(G). We also assume that G, is nontrivial. By a
G-manifold M we mean throughout a closed differentiable manifold on
which G acts smoothly. G, denotes the isotropy subgroup at x € M. For
every x € M, there exists a G -module ¥, which is equivariantly diffeo-
morphic to a G -invariant neighbourhood of x. ¥, has a submodule V7 in
which G, acts trivially and a complementary submodule ¥ in which no
nonzero element is fixed by all of G,. By the G-slice type of x we mean
the pair [G; V,]. By a G-slice type we mean a pair [H; U] where U is a
H-module in which no nonzero element is fixed by all of H (equivalently
U contains no trivial H-submodule). A family F of G-slice types is a
collection of G-slice types such that if {H; U]€ F then for every
x € G X U the G-slice type [G,; V,] € F. A G-manifold is said to be of
type F if for all x € M, [G,,V,] € F. Bordism relation is defined in the
usual way. Two n-dimensional closed G-manifolds M,, M, of type F are
said to be F-bordant if there exists an (n + 1)-dimensional compact
differentiable G-manifold W of type ( F, F) such that the disjoint union of
M, and M, is G equivariantly diffeomorphic to dW. It is clearly an
equivalence relation on the set of G-manifolds of type F and gives rise to
a bordism theory N$[F]. We note that N¢[F] is a graded N ,-module,
N . being the unoriented bordism ring.

Kosniowski has described a family F(G) in [4] for an abelian group G
such that N$[F(G)] = 0, G being a subgroup of G containing G,. As a
consequence he proved that if M is a G-manifold (G abelian) in which G,
acts without fixed points then M is a G-boundary—a result obtained
earlier by Khare using a different technique [1]. The main theorem of this
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paper is a generalisation of Kosniowski’s theorem in [4] for an arbitrary
finite group. Once again another result of Khare [2] is obtained as a
corollary of this theorem.

The subgroup G, consisting of the identity and elements of order two
in the centre of G is isomorphic to Z% for some k > 0. Kosniowski has
studied Z4-bordism in [3] and the techniques used here are generalized

from his techniques. We choose once for all a basis g;, g,,...,8; of G,
and order the elements by
81 <8< """ <& <88 < " <Z&< " <88 " 8-

Now let [G,; V] be the G-slice type of a point x in a G-manifold M and
G(x) be the orbit of x. Then G(x) is a closed and compact submanifold
of M. Consider the normal bundle »(i) of the canonical embedding of
G(x) in M. This is a G-vector bundle and its disc bundle is a closed
G-invariant tubular neighborhood of G(x). Further G acts as a group of
bundle' maps on the normal bundle and the fibre over x is G, -invariant
and contains no G, -trivial subspace. It is precisely V, the G ,-module
present in the G-slice type [G,; V,] of x. Let g, be the map on the total
space E(»(i)) induced by the action of g on the base space G(x). The
G-slice type of gx € G(x) is [gG,8"; g«V.]. The underlying vector space
of V, and g,V, are same and the action of ghg', h € G, on v € g,V, is
same as the action of # on v € V. Again if F be a family of G-slice types
and [H; V] € F then from the definition of family the G-slice type [G,;
V.] of every point x € G X 4V belongs to F. Now the G-slice type of
[e,0]€ G X4V is [H; V] and the G slice type of [g,01€ G X,V is
[gHg"; g«V] The G-slice type [H; V] will be denoted by p and the
collection

{ [eHz"; g4V ]|g € G)

termed as a conjugate class of G-slice types will be denoted by p or
[H; Ve

Suppose that K is a subgroup of H. Wewrite K €, Hif H = (x) X K
where x € G,. Quite a number of elements of G, may yield H when a
direct product of above type is formed. We take the minimal element x
according to the total order fixed at the beginning of this article. We now
have a homomorphism

P =pyx: H- K.
which is the projection onto the second factor. This is termed as the

distinguished projection. It enables us to obtain an H-module p*U from a
K-module U. The modules p*U and U have the same underlying vector
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space and H acts on p*U via the map p. Corresponding to a G slice type
[K; U] such that K C , H we have an extension function e = ey ; given
by

ex.ylK; Ul = [H; V(K) ® p*U]

where V( K) is one dimensional real representation of H in which h € H
acts by multiplication with 1 if » € K and multiplication with -1 if
h & K. Since gHg' = (x) X gKg* when H = (x) X K, we have

e[gKz'; g U] = |gHZ"; V(gKzg') ® p*(g.U)]

= [gHg"; g+(V(K) @ p*U)].

Thus ey ;; induces a map ef = ef ,; on the collection of conjugate classes
of G slice types [K; U]® and

ef 4| K; Ul® = [H; V(K) @ p*U]*.

Corresponding to a subgroup G of G containing G, we have three
families of G slice types.

F(G) = {|gHzg"; g+V]|[H,V]isa G slice type
with H containedin G, g € G)
F(G)={[K;U) € F(G)|KN G, + G,)
and
F(G) = F(G) U{ex ylK; UNI[K; Ul| € F/(G)
and K ¢, Hwith HN G, = G, }.

That each collection is a family is clear. Now we are in a position to state
the main theorem of this paper.

THEOREM 1. If G be a finite group and G be a subgroup of G which
contains G, then N¢[F(G)] = 0.

COROLLARY ( Khare [2]). Suppose that G is a finite group. If M is a
G-manifold on which G, acts without fixed points then M is a G-boundary.

The corollary follows because if G, acts without fixed points then an
isotropy subgroup H of a point in M satisfies the condition H N G, # G,
so that M is of the type F'(G) and consequently of the type F(G).

The proof of the theorem will be given in §7. In §2, §3, §4 and §5, we
develop the necessary tools and results.
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2. Vector bundles of type p. Let F” C F be two families of G slice
types with F'= F’ U p where p is a class of conjugate G slice types. By a
G-vector bundle of type p we mean a G-vector bundle §: E(§) EA B($)
where the set of points of E(§) having G slice type in p is precisely the
zero section. We have the bundle bordism groups N,°[p] obtained by
defining a bordism relation on the set of all G vector bundles of type p
having total dimension 7.

Let M” be a G-manifold of type F and F, be the set of all points in
M" with slice type in p. Then the normal bundle over F; is a G vector
bundle of type p. This assignment of the normal bundle over F, in M"
leads to a N ,-homomorphism

1, NE[F] - NOT].
We have the following proposition and lemmas involving the bundle
bordism groups.

PROPOSITION 2. There exists a long exact sequence
, v 9
. = NI[F] » NS[F] 5 NS[3] > NS, [F] - ---
where F' C F are families of G slice types such that F — F' = p.

For proof we refer to 1.4.2 of [3].

LEMMA 3. Suppose that K C , H and p = [H; V1%, p" = [K; U]® be
two classes of conjugate G slice types such that e3(p’) = p. Then there exists
an N ,-isomorphism

NnG[‘_)] - NnG—I[‘_)’]
given by [§] — [v,,S(£)], where S(§) is the sphere bundle of .

The proof of this lemma is similar to that given for Lemma 4.5.8 of
(3]

LEMMA 4. Let F, C F, C F, C --- be a sequence of families of G-slice
types with

(i) Fy = po = {[e; R°])

(i) F,=F,_,Up, foralli > 1

(i) U,,  F;=F
and

(iv) e5(Py;) = Pa;.q foralli > 0. Then N§[F] = 0.

Proof. Using Proposition 2 and Lemma 3 we get

NE[F,] = NE[pail

and N{[F,,,,]=0.
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Taking direct limit
N¢[F] = lim N¢[F] = 0.

The rest of the paper is aimed to show that the family F(G) satisfies
the conditions laid down in Lemma 4. The G slice types of F(G) are to be
ordered suitably now in order to get the families F, C F; C ---.

3. Ordering the conjugate classes of G slice types. We define three
distinct relations < on the collection 4 of all subgroups conjugates to
subgroups of G, on the collection of all H-modules, H € A4 and finally on
the collection of all conjugate classes of G slice types of the family F(G)
and extend each of these relations into a total order on the respective
collection. We note that the elements of G, are totally ordered by

81 <8 < " & <& < v <§i1&< <418 " &

and a subgroup H, of G, has a distinguished base h; < h, < --- <h,,
such that h; (# identity) is the least element in H and for i > 1, A, is
the least element in H which is not present in (hy, h,,...,h,_,), the

subgroup generated by hy, h,,..., h, ;. The subgroups of G, are now
totally ordered first by the order of the subgroup and then lexicographi-
cally on the distinguished base:

(e) <(g) <(8) < - <(g8 - &) <(8g,8)< .

Rule A. Let H and K belong to A. We define < by:
(i) if |[H| <|K|Then H < K,
(i) if |H| = |K|and |K,| < |H,|. Then H < K where K, = KN G,
and H, = HN G,,
(ii1) if |H| = |K]|, |K,| = |H,|but H, < K, then H < K and
(iv) if |H|=|K|, H, = K, then we order them arbitrarily so as to
make the relation < a total ordering on A.

Next a relation < is introduced on the collection of all nontrivial
irreducible H-modules H € A. We write U < V if U = V or else there
exists K €, H such that U = p*i*} where i: K — H is the natural
inclusion and p: H — K is the distinguished projection. We now have the

following lemma whose proof is similar to Lemma 8§ of [4].

LeMMA 5. The relation < is a partial order on the collection of all
nontrivial irreducible H-modules.

We now choose a total ordering on the set of all nontrivial irreducible
H-modules having the same dimension compatible with the partial order-
ing introduced. The total ordering is now extended to all irreducible
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H-modules by writing U < V if and only if dimU < dimV. Since any
H-module can be expressed uniquely as the sum of irreducible H-mod-
ules, we can extend this total ordering on all H-modules by lexicography.
The following rule expresses the whole rule coincisely.

Rule B. Let U and V be two H-modules.
1) If dimU < dimV thenU < V
(i) If dimU = dim ¥V and V follows U lexicographically then U < V.

Finally Rule C given as below defines the order < on the collection
of all classes of conjugate G slice types of the family F(G).

Rule C. Let p = [H; U]J%, p’ = [K; V)% be two classes of conjugate G
slice types of F (é)
(1) If dimU < dimV then p < p’.
(i) If dimU = dimV and H < K then p < p'.
(i) If dimU = dimV, H= K and U < V then p < p".

We now proceed to prove some algebraic results relating to the
extension map e.

4. Algebraic lemmas and extension map. The following lemmas are
generalisations of propositions of Z¥ bordism given in 4.5 of [3]

LEMMA 6. Let (e) C K C, H C Gand

81 <8 < " <&

hy<h,< --- <h,,
and

ky <k, < o <k,

be the distinguished bases of G,, H, and K, respectively and r be the
greatest integer for which k; = h; for all i < r. Then K is not contained in a
predecessor of H if and only if h, = g, for all i < r. (By a predecessor of H
we mean a subgroup H' = H such that H; < H,.)

Proof. We have (e) C K, C, H, C G,. If K C, H', a predecessor of
H then by definition K, C , Hj, a predecessor of H,. Furtherif K, c , H},
a predecessor of H,, then H) = (x) X K, (x being chosen minimally)
and K C, (x) X K, a predecessor of H.

Thus K is not contained in a predecessor of H if and only if K, is
not contained in a predecessor of H,. The latter statement implies and is
implied by h; = g, for all i < r and this follows from 4.5.12 of [3].
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LemMA 7. Let KC, H, K’ C, H with K and K’ not contained in a

predecessor of H. If
H=(x)XK=(x")XK’

where x and x' are chosen minimally, x € K', x’ € K and K precedes K’
then K N K’ is not contained in a predecessor of K.

Proof. We have

H,=(x) XK, =(x') XKj.

and K, precedes K). By the Proposition 4.5.13 of [3], K, N K} is not
contained in a predecessor of K, and this in turn implies that K N K’ is
not contained in a predecessor of K.

In order to proceed further we need the following constructions and
lemmas.

S(H) = collection of all conjugate classes of G slice types with
isotropy subgroup H. For any K C , H we have the extension function

ef=ef 4, S(K)— S(H)
and consequently a function
Es:. U S(K)- S(H).
Kc,H

K&, P(H)
where by P( H) one means a predecessor of H. Let
S(K)=S(K)—image{ Es: U S(L)- S(K)}.
Lc,K

L¢, P(K)

The function
Es: U S(K)- S(H)
KC,H
K&, P(H)
is the restriction of E&.
LemMA 8. Image E¢ = image E*.
Proof. Clearly image E® C image E&.

Let p € imE? 1e. p = e¥(p’) for some p’ € S(K) where K C, H
and K ¢ , P(H).
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If p’ & S(K) then p’ = e8(p”) for some p” € S(L) where L C , K
and L ¢ , P(K). By Lemma 6 we have the following distinguished bases
of H), K, and L,

Lz: g1<g2< Tt <gs—l<ls< Tt
Ky 8<8 < " <8 1<g&< " <g 1<k <--
Hy: g <g<-"<g_1<g<h_ ;< -

We note that /, # g, and k, # g,. So
H=(g)xK and K= (g,)XL.
Writing p” = [L; U]® we get
p'=e3(p") = [K; V(L) ® g*U]%,
and
p=ei(p') = [H; V(K) @ p*(V(L) ® ¢*U)]*
= [H; V(K) @ V((g,) X L) ® p*q*U]*

q: K — L and p: H — K are the distinguished projections.
Taking K’ = (g,) X L we note that K’ €, H and K precedes K’.
Moreover K’ ¢ , P(H). Extending p” through K’ we get

5" = ef o(5") = [K'; V(L) @ ¢*U]* € S(K)

and
et n(p”) = [H; V(K') @ V((g,) X L) ® p'*¢*U]*

where p’: H — K’ and ¢q: K’ — L are the distinguished projections.
Since gp = q’p’, we have

e u(p”) = [H; V(K') ® V(K) ® p*q*U]* = p.
If p”” € S(K’) then p € image E%. If not then by arguing as before we get
a conjugate class of G slice type p™ € S(K"”) such that p = e%(5")
where K" €, Hand K < K' < K" ¢ , P(H).

Continuing this way we exhaust all the finite number of possibilities

and find some p®"*V € §(K™) such that K™ c, H, K" ¢, P(H)
and p = e8(p®"*V)ie. p € imageE®.
LEMMA 9. The function
Es: U S(K)- S(H)
Kc,H
K&, P(H)

is injective.
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Proof. Suppose that
p=I[K; U5 p = [K; UT*

where K and K’ C, H, K and K’ ¢ , P(H), K precedes K’ and

e*(p) = e5(p) = [H; V]*®.
From Lemma 6 we get

H=(g)XK=(g)xK
where g, and g, are the minimal possible choices and s < r. We have

[H; V(K)®p*U]* = [H; V]* = [H; V(K') ® p”*U'] ¢
where p: H — K, p’: H — K’ are the distinguished projections. Writing
U=2X%,n; U and U = XnjU where U, and U, are nontrivial irreducible
K and K’ modules respectively we get
V(K)® ) np*U=V(K)® ) np*U.
t J

Since K # K’, V(K) = p"™*U; for some t and n, = 1. The underlying
vector space of these modules is R.

We write g, = gk, a; € {0,1} and k € K and consider its action
on x € V(K)=p*U/. We get g.x =x 1e. (-1)%x =x 1.e. ¢ = 0. So
g, € K. Similarly g, € K’. By Lemma 7, L=KNK’' ¢, P(K) and
K = (g,) X L (L is the intersection of two normal subgroups of H). We
have also the restriction function

ré = rg’K: S(H) - S(K)

such that ré[ H; V)8 = [K; I*V']? where I*V is the nontrivial part of i*V,
i K — H being the natural inclusion. Note that

rg,Kel'%,H[K; U]g = rlg-I,K[H; V(K) ®P*U]g
= [K; I*(V(K) ® p*U)]*
= [K; I*p*U|® = [K; i*p*U]* = [K; U]*

ie. rf gef ;= identity.
Therefore

p=[K,U]*= rz‘%,Kel'%,H[K§ Ult= rﬁ,Kelg(',H[KIQ 4N
=rfx[H; V(K') ® p*U']*
=[K; V(K' N K) & I*p*U’|®
= [K; V(L) ® NTq*j"*U']®
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where i: K= H, i": K" H, j: L= K, j': L= K’ are the natural
inclusions and p: H—- K, p': H—>K', gt K—> L, q': K’ - L are the
distinguished projections. We have p’i = j’q and NT stands for the
nontrivial part. Also

rg (p) = [L; NTj*q*j*U’]® = [L; NTj"*U’]®
(since gj = id). So
ef xré (p) = [K; V(L) ® NTq*j"*U’']® = p.
Thus p = e(p”) forp” = ry (p) € S(L)and LC, K, L ¢ , P(K) i.e.

peim{Es: U S(L)- S(K)
Lc,K
L&, P(K)
i.e. p & S(K)—a contradiction.
With this we come to an end of this section.

5. Decomposition of the collection of conjugate classes of G slice types
of a family. If we now define the dimension of a conjugate class of G-slice
types as dimension of the module present therein then it is clear that there
are only a finite number of conjugate classes of G slice types of a given
dimension. The classes of the family F(G) are totally ordered by the Rule
C and we index them by nonnegative integers as

Po <Py <Py <
where p, = {[(e),R°]}. We define F,=U,_,p,;. F is clearly a family of G
slice types. Corresponding to the family F, we form the collection F; =
{Po; Py, ---,P;} and define inductively three subcollections 4, B; and C;

of F; such that F, =4,V B; U C,. For j = 0, P_"j= { Py} and we set
4;,={p}, B;=9, C=0
Let 4,_;, B;_,, C;_, be defined for some j > 1. We have
F_,=4, ,UB,_,UC_,

Jj—1

and

=F_,U{p}.

e

There are two possibilities:
(1) either p; = e*(p) for some p € 4;_; or
(i) p; # e®(p) foranyp € 4,_;.

In case of (i) We define

A;=4;,,-{p}, B;=B,,Y{p}, G=¢C_,U{p)
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and in case of (ii)
4;=4,,9{p}, B;=B,, CG=C,.
We now establish an analogue of Lemma 9 of [4].
LeMMA 10. There isat most oneconjugate class of G slice typesp € A,_,
such that e®(p) = p;.

Proof. The proof of this lemma is given by induction. Clearly the
lemma holds for j = 1. Let it be true for all i < j.
Let p; = e%(p,,) and take p, € S(H) and p,, € S(K) with K C, H.
We claim that K ¢ , P(H). If K €, P(H) then we choose J to be the
least of all predecessors of H. We get K C , J and
ﬁt = elg(,J(b‘m) < ﬁj = elg(,H(l—)m)'
By the induction hypothesis there exists at most one such p,, such that
p, = e% ;(p,,). Consequently neither p,, nor p, belongs to 4,_;. So
K¢,P(H) and p,€ U S(K).
Kc,H
K, P(H)
By Lemma 8, this implies
p, € image Ef = image E%.

If now

P, € image{Eg: U sL)- S(K)}
Lc,K
L, P(K)

then p, = e8(p’) for p’ € S(L), LC, K and L &, P(K). From the
construction of the families 4; it follows that p, & 4;_,. So

5me§(K)=S(K)-—image{Eg: U S(L)—>S(K)}.
L5 i

By Lemma 9, E? is injective and this establishes our lemma.
The next theorem further characterises the families 4 -

LemMA 11. If N is sufficiently large compared to n then A, consists of
conjugate classes of G slice types of dimension greater than n.

Proof. Let F, be the family which contains all conjugate G slice types
of dimension < n and

A; = {l_)il’!_)izy---al—)ik}
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with p, = {K,; U}% 1 <1< k. Then K, N G, # G, because K, N G, =
G, = p; = e%(p’) for some p’. We take

p, = e*(p;)

If N > max{j,..., ji} then clearly 4, does not contain any conjugate
class of G slice types of dimension < n.

The next theorem reveals the necessity of ordering the conjugate
classes of G slice types.

THEOREM 12. If [H; U] is a G slice type and p € A; is a conjugate
class of G slice types of an orbit of a point of G X ;U, then either p =
[H; Ul or [H; U)* & F,.

Proof. Let p # [H; U]%. Then p is not the conjugate class of G slice
types of the orbit of [e,0] € G X 4 U. So p is a conjugate class of G slice
types of the orbit of a point [e,u] € G X U, 0 # u € U. The isotropy
subgroup of [e,u] is a proper subgroup K of H. We can write p =
[K; I*U]® where I*U is the nontrivial part of i*U, i: K = H being the
natural inclusion. Clearly dim /*U < dimi*U = dimU. We now discuss
the two possible cases separately.

Casel. KC,Hie H=(x)XK.
We have
eK,H(ﬁ) = [H; V(K) ®P*I*U]g

where p: H — K is the distinguished projection.

Since K fixes u € U, K has trivial action on the one dimensional
subspace L(u) spanned by u. Also H has nontrivial action on L(u). So
(x) acts on L(u) nontrivially and we get V(K ) = L(u) C U. If

dim(V(K) ® p*I*U) < dimU
then
p<pp=eknp)<[H; U)*=0p,.
If
dim(V(K) @ p*I*U) = dimU

then dim /*U is just one less than dimU and by writing U = V(K) & U’
we get I*U = i*U’. So p*I*U = p*i*U’ < U’ by the ordering of irreduci-
ble H-modules and its extension by lexicography i.e. V(K) & p*I*U <
V(K) ® U’ = U. Again we have

p<pp=eky(p)<[H;U]*=0p,



FINITE GROUP ACTION AND VANISHING OF N[ F] 69

Case I1. Let K¢ , H ie. K< H but H # (x) X K for any x € G,.
If K, = G, then the class p is the e5-image of some conjugate class of G
slice types occurring earlier according to the order so constructed. But this
means p & 4,—a contradiction. So K 2 Gy and there exists an element
x € G, such that (x) X K can be formed. Since K is a proper subgroup
of H, (x) X K| < |H|. If |(x) X K| < |H| then by (i) of Rule A

P <Pr<p,.

If (x) X K|=|H|then |H: K|=index of K in H = 2. Since K ¢ , H,
x & H. Also there does not exist y € G, such that y € H but y ¢ K.

Hence K, = H, and |(x) X K,| > |H,|. By (ii) of Rule A, (x) X K <
H and

Now

=>pe€Ad,_, and p& 4, (Lemma 10)
= p & A,—a contradiction.
A consequence of this theorem is:

COROLLARY 13. The union of all conjugate classes of G slice types of B;
and C, is a family.

Proof. Let [H; UJ¥*€ B,U C;C F, and p is a conjugate class of
G-slice types of an orbit of a point of G X, U. Clearly p C F,. If
p & B; U C, then p € 4; and this contradicts Theorem 12.

6. Proof of the main theorem. We denote the elements of C; by a,,
0,,...,0,, where k =|C)] and 6,, < 6,,, if and only if ¢ < m. We have
B; = {€%(0,;)0 < i < k} and write e%(0y,) = 05, ;.

By Corollary 13, F, = U 6, is a family when k is odd. When k is
even F, is again a family because the G slice types of &, are ‘maximal’ in
F. By Lemma 11 we see that F(G) satisfies all the conditions of Lemma
4 and so

NE[F(G)] =o0.

An alternative proof of Theorem 1 can be given by generalising
Theorem 4.5.11 of [3].
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THEOREM 14. There is an isomorphism
@®v: N¢[F]-> @ N{[p].
P.EA,
Proof. We prove the result by induction. Clearly the result is true for
Jj = 0. Now suppose it is true for j — 1 1.e.
®v: N[F_,|> @ N{lnl

p.EA,

From the long exact sequence of Proposition 2 we have the composite
v3: NO[5] = NZ[5.].

If »,0, # 0 then p, is a conjugate class of G slice types of G X V' where

[H,V]® = p, and by Theorem 12 p, & A4,.

Now for the class p, there exists almost one conjugate class of G slice
types p; such that e*(p,) = p;. If there does not exist any such p, € 4,_;
then for any p, € 4,_; both p, and p, belong to 4; and »,0, = 0 for every
p, € A4,_,. Thus (@ﬁ,e 11/,.)8] = 0 and consequently 9, = 0. We have a

A
-
short exact sequence

0= NJ[E] > NP[E] = N3] - 0.
If again for p, we have p, € 4,_, s.t. p; = e¥(p,) then neither p, nor p,
belong to 4, and by Lemma 3
viaj: NnG[r)_/] - NnG—l[ﬁll

is an isomorphism and we have again a short exact sequence

0~ NnG[ﬁi] - NnG[F}—ll - NnG[F}] - 0.
Both the short exact sequences split as the modules involved are vector
spaces over Z,. So

NS[E]= @ NFP[a]-

p,eA
COROLLARY 15. N¢[F(G)] = 0.

Proof. Corresponding to the positive integer n we take all conjugate
classes of G slice types of dimension <n + 1. If F), be the union of all
these classes then

NJIF(G)] = NP[FJ] = @ NF[pl.

pEAy

J

If now N is made sufficiently large compared to n then by Lemma 11 4,
consists of all conjugate classes of G slice types of dimension > n and
hence the isomorphism @ v, is zero.
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COROLLARY 16.
N¢[F(G)] = NS, [F(G), F(G)].

This follows from the main theorem and the long exact sequence for the
pair F/(G) ¢ F(G) of families of G-slice types.

REFERENCES

[1]1 S.S.Khare, (F, F!)-free bordism and stationary points set, to appear in International J.
of Mathematics and Mathematical Sciences

[2] , Finite group action and equivariant bordism, to appear in Pacific J. Math.

[3] C. Kosniowski, Actions of Finite Abelian Groups, London-San Francisco-Melbourne;
Pitman (1978)

, Some equivariant bordism theories vanish, Math. Annalen, 242 (1979).

(4]

Received July 9, 1984.

LADY KEANE’S COLLEGE
SHILLONG, INDIA

AND

NORTH EASTERN HiLL UNIVERSITY
BNt CaAMPUS, BHAGYAKUL ROAD

LAITUMKHRAH, SHILLONG, 793003

MEGHALAYA, INDIA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
V. S. VARADARAJAN (Managing Editor) R. FINN C. C. MOORE
University of California Stanford University University of California
Los Angeles, CA 90024 Stanford, CA 94305 Berkeley, CA 94720
HEBERT CLEMENS HERMANN FLASCHKA H. SAMELSON
University of Utah University of Arizona Stanford University
Salt Lake City, UT 84112 Tucson, AZ 85721 Stanford, CA 94305
CHARLES R. DEPRIMA RAMESH A. GANGOLLI HAROLD STARK
California Institute of Technology University of Washington University of California, San Diego
Pasadena, CA 91125 Seattle, WA 98195 La Jolla, CA 92093

ROBION KIRBY
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YOSHIDA
(1906-1982)
SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY

OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics
Vol. 122, No. 1 January, 1986

Michael James Cambern, Near isometries of Bochner L' and L™ spaces ..... 1
Kun Soo Chang, Gerald William Johnson and David Lee Skoug, The
Feynman integral of quadratic potentials depending on two time

Variables .. ... e 11
Robert Coleman, One-dimensional algebraic formal groups ................ 35
Alberto Collino, The Abel-Jacobi isomorphism for the cubic fivefold ........ 43
N. J. Dev and S. S. Khare, Finite group action and vanishing of NC[F] ..... 57
Harold George Diamond and Jeffrey D. Vaaler, Estimates for partial sums

of continued fraction partial quotients .............. ... ... ol 73
Kenneth R. Goodearl, Patch-continuity of normalized ranks of modules

over one-sided Noetherian rings .......... ..., 83
Dean Robert Hickerson and Sherman K. Stein, Abelian groups and

Packing by SEIMICTOSSES . ..« v uvv ettt et a e 95
Karsten Johnsen and Harmut Laue, Fitting structures ................... 111
Darren Long, Discs in compression bodies .............................. 129
Joseph B. Miles, On the growth of meromorphic functions with radially

distributed zeros and poles ...ttt 147

Walter Volodymyr Petryshyn, Solvability of various boundary value
problems for the equation x” = f(t, x,x", x")—y ...l
Elzbieta Pol, The Baire-category method in some compa
Problems ...t e
Masami Sakai, A new class of isocompact spaces and rel
Thomas Richard Shemanske, Representations of ternary
and the class number of imaginary quadratic fields ..
Tsuyoshi Uehara, On class numbers of cyclic quartic fiel



http://dx.doi.org/10.2140/pjm.1986.122.1
http://dx.doi.org/10.2140/pjm.1986.122.11
http://dx.doi.org/10.2140/pjm.1986.122.11
http://dx.doi.org/10.2140/pjm.1986.122.11
http://dx.doi.org/10.2140/pjm.1986.122.35
http://dx.doi.org/10.2140/pjm.1986.122.43
http://dx.doi.org/10.2140/pjm.1986.122.73
http://dx.doi.org/10.2140/pjm.1986.122.73
http://dx.doi.org/10.2140/pjm.1986.122.83
http://dx.doi.org/10.2140/pjm.1986.122.83
http://dx.doi.org/10.2140/pjm.1986.122.95
http://dx.doi.org/10.2140/pjm.1986.122.95
http://dx.doi.org/10.2140/pjm.1986.122.111
http://dx.doi.org/10.2140/pjm.1986.122.129
http://dx.doi.org/10.2140/pjm.1986.122.147
http://dx.doi.org/10.2140/pjm.1986.122.147
http://dx.doi.org/10.2140/pjm.1986.122.169
http://dx.doi.org/10.2140/pjm.1986.122.169
http://dx.doi.org/10.2140/pjm.1986.122.197
http://dx.doi.org/10.2140/pjm.1986.122.197
http://dx.doi.org/10.2140/pjm.1986.122.211
http://dx.doi.org/10.2140/pjm.1986.122.223
http://dx.doi.org/10.2140/pjm.1986.122.223
http://dx.doi.org/10.2140/pjm.1986.122.251

	
	
	

