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ESTIMATES FOR PARTIAL SUMS OF CONTINUED
FRACTION PARTIAL QUOTIENTS

HARrROLD G. DIAMOND AND JEFFREY D. VAALER

Metric-type estimates are given for a class of partial sums involving
continued fraction partial quotients. These results extend a well known
theorem of Khinchin and yield an almost-everywhere estimate for the
quantity in the title.

1. Introduction. For « an irrational number in (0, 1) let

1
a= = (0,a,,a,,...)

1
a, +
a, +——

be the representation of a as a regular continued fraction ([4, Ch. X], [5]).
The numbers a, = a,(«a) are called the partial quotients of a.

A well-known theorem of Khinchin [5],[6] in the metric theory of
continued fractions asserts that if F is an arithmetic function satisfying
F(r) < r¥/?27% for some & > 0 and if Sy(F, a):= F(a,(a))
+ -+ + F(ay(a)) for each positive integer N, then

(1) Nli_r)nw %[—SN(F,a) = TS];_z EIF(r)log{1 + r(leLT)}
holds for almost all « in (0, 1). This result has been extended by others ([2,
§4],(7, Theorem 4]). In particular, we note that the Birkhoff Ergodic
Theorem implies that (1) holds if its right-hand side is absolutely conver-
gent.

Here we shall establish analogues of (1) for arithmetic functions F
which grow more rapidly than is allowed by Khinchin’s theorem. In
particular we shall consider the case F(r) = I(r) = r and estimate

Sy(I,a) =a,(a) + -+ +ay(a).
Khinchin noted at the end of his book Continued Fractions [5] that
Sy(1,a)/N could not have a finite limit for most values of «. Indeed, for

almost all « the inequality a,(a) > nlogn holds for an infinite sequence
of integers n in consequence of the following result of Borel and Bernstein
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[4, Theorem 197], [S, Theorem 30}, [1, Theorem 4.1]:

LeMMA 1. Let ¢(1),9(2),... be a sequence of positive numbers. For
almost all a € (0,1) the inequality a,(a) > @(n) has a finite number of
solutions n if and only if £°_1/@(n) < oo.

Khinchin showed in [6] that
(2) (by + --- +by)/(NlogN) — 1/log2
in measure as N — oo, where

4/3

b =b(a) = {an, if a, < n(logn)
0, otherwise.
The limit (2) cannot hold a.e., since for almost all « € (0, 1) the inequality
b, > nlognloglogn holds for an infinite sequence of integers n by
Lemma 1.
The obstacle to a.e. convergence, as we shall see, is the occurrence of a
single large value of a,. Here we shall establish an analogue of (1) by
excluding at most one summand.

THEOREM 1. Suppose that F is a positive valued arithmetic function
satisfying the bound

e {0

) F(j)/ﬁ}2 < N(log N) ™"
J<N

j<N

for some € > 0. Then for almost all a € (0,1) and for all N exceeding a
number Ny( ), we have

Sy (f,a) = (1 + 0(1))& NF(r)log{l + ———r(r1+ 2)}

4 F .
. max (a,(a))

Here 0 < 9,=9,(N,a, F) < 1.
If we take F(r) = I(r) = r we obtain

COROLLARY 1. For almost all a € (0,1) there exists a number N, =
N,(a)such that

1+ 0(1)

SN(Iaa) = 10g2

NlogN + 0+lmax a,(a)
<n<N

holds for all N = N,,.
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An immediate consequence of Lemma 1 and Corollary 1 is

COROLLARY 2. Let 0 < ¢(1) < 9(2) < --- satisfy X7_1/9(n) < .
Then

1+ o1
So(1,a) = TZ()ngN +9.0(N)

holds for almost all a € (0,1) and all N > Ny(a).

There are two main steps in the proof of the theorem. First, we show
that for most « there can be at most one “large” a,(a). Next we estimate
the variance of a truncated form of S,. The theorem follows easily from
these estimates.

2. Auxiliary results. Let [x] denote the integer part of a real
number x and let {x} = x — [x] denote the fractional part. Define T
(0,1) > [0,1) by Tx = {1/x}. Then the partial quotients of (an irra-
tional number) a are given by the formulas

a,(a) = [1/4], a,,,(a) =a(T"a), n=1.

(Rational numbers have terminating continued fraction expansions and
require slight alteration of the formulas. This is not needed here, since the
rationals form a set of measure zero.)

The so called Gauss measure p is defined on Borel subsets of (0, 1) by

1 dt
w(E) = log2f,eE1 +t

This measure satisfies the invariance relation

p(TE) = p(E), E aBorel set.

Note that p and Lebesgue measure have the same null sets.
For r and k,, k,, ..., k, positive integers, set

1 2.7
E,=E(kl kz_'_kr)={a: a(a)=ky...,a(a) = k).

E, is called a fundamental interval of rank r. If r and s are positive
integers, B is any Borel set, and E, any fundamental interval of rank r,
then p satisfies the mixing relation 1, Chapter 1, §4]

w(E, 0 T-B) = p(E)u(B){1 + 0(¢"))

uniformly in 7, s, B, and E,. Here g is some number in (0, 1). Together
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the preceding relations imply that
p{a: a,(a) =mand a,, (a) =n}
= H{a a;(a) = mand a,, (a) = n}
_ 1 1 o 1 l]
_“{(m+1’m]mT (n+1’n}

- g (M 1) V£

{1+ 0(q")}.

LEMMA 2. Let ¢ > 1/2, and for given N € Z™ set N’ = N(log N)*“.
For almost all a € (0,1) there exist at most finitely many positive integers N
for which the inequalities

(4) a,(a)>N’, a,(a)>N’
hold for two distinct indices m, n < N.

Proof. Fix m < n. By a weak form of the mixing condition we have
p{a<c(0,1): a,(a)>N’, a,(a)> N}
< pla:a,(a)>N'}-p{a: a,(a)> N’}
= p{a: a(a) > N’} < (N')> = N>(log N)
It follows that the measure of the set on which (4) holds for some

distinct indices m, n < 2N is of order at most (logN) . For K = 1,2,...
let

U, = kUK{a €(0,1): a,(a) > (2¢), a,(a) > (2¢)’

for some distinct m, n < 2"“}.
Then

p(U,) << Y k>0 asK - 0.
k=K

For a € U, and N > 2 there exists at most one index n < N for which
a,(a) > N(logN)°. O
3. Proof of the theorem. Given ¢ > 0 and N € N, set

a* = a* y(a) = {a,, if a, < N(logN)"/>"* =:N’

0 otherwise.
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Define F(0) = 0
S¥(a) = S¥(F,a) = Y, F(a*(a)),

Iy = fols,:(a)dma),
and
V= [(Sit(e) = 1) du(a).

We have

v= T ['Flaz() du(e) = N ['Flar() du(a)

b

NEIF(J)u{a a,(a) =j}

-~ togg £ et + 57t <V E R

(Wesay that f X g if f < K g and g < K, f for suitable K, and K,.)
Next we show that ¥V, < NI, _ F(j)?/j* We begin by writing

Vo+ I = [157(a) du(a)

- ¥ [ Flaz(@) Fla(@) du(e) = T &,

m,n=1 m,n=1
say. For1 ~ m < n < N we have
buw= 2L F(j))F(k)p{a: a,(a) =/, a,(a) =k}

Jj,k<N’

-z el bl oot

=JuN72(1 + 0(g"™™)).

The diagonal terms satisfy
b= [ "Flax(a)) dp(ea) = / "Far(a)) du(a)
Y F(j)p{a: afa) =j} < X F(j)* /%

J<N’ J<N’

Il
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Thus we have

N
V= Y b, —Ji<<JN* Y q""+NY F(j)l/?

m,n=1 m<n<N J<N’

< JY/N+N Y F(j)/?
J<N’

< N( Y F(j)/j2)2+ N Y F(j)/?

<N n<N’
<N ¥ F(j)'/i
J<N’
The last relation follows from the Cauchy-Schwarz inequality.
Now we apply the estimate of V), to show that

Su(a) = (1 +0(1))Jy
for most values of a. Let
c(k) = [expk!~*], k=1,2,....
We have

fl_oki (Sc?k)(“)_fdk))z(c(k) p» ﬂ;%"””“) dp(a)

a= j<c(k)
0
< Y k' < 0.
k=1
It follows that the integrand in the last integral is finite a.e. and hence
1/2

* F(.])2 1+e/4
Sc(k)(a) - Jc(k) =0 C(k) Z ) k
Jj<e(k)

for almost all a. The hypothesis of Theorem 1 and a small calculation
show that

F(j)° ‘
c(k) X —(.ﬁ—)k”s/“ < I3/ (og (k)™ = o(JZ,,),
Jj=<e(ky
provided that ¢ < 1. Thus
Skin(a) =(1+0(1)J, ae.
Suppose that ¢(k — 1) < N < ¢(k). Then

Sc’:k~1)(a) < S¥(a) < Sc*(tk)(a)’
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and so, off a set of measure 0,
1+ 0(1))Jc(k—1) <S¥a)<(1+ 0(1))Jc(k)'
Now we show that J,,, ~ J,
N
log2

(k—1)- Recall that

Yy F(j)log(l + 1—(1—1:-5-)-)

j<N’

Iy =

Another small calculation shows that
c(k = 1) = (1+ 0(k™/*))e(k),
so c¢(k — 1) ~ ¢(k) as k = oo. It remains to show that
1 1
6 T Feefl+ )~ X RO+ )
j<c(k) ( + 2) j<c(k—=1Y ‘](‘] + 2)
We shall show (5) and the final approximation of S¥ by using
LEMMA 3. Let F satisfy the hypotheses of Theorem 1. Then, as N — oo,
F(r r
z M0y 1)
N<r<NlgN 7T r<N r?
Proof. The Cauchy Schwarz inequality and condition (3) yield

¥ F(r)s{ 5 E(—rzi}l/z{zlz}l/z

N<r<NlogN T r<NlogN T r>NT

< ) F—(zf;)-(logN)'l/4_s/2.

r<Nlog N
Thus, as N — oo,
F(r F(r
1-oy ¥ fo,my i)
N<r<NlogN r r<N r’
and the lemma follows. O

Returning to the proof of Theorem 1, we see first that (5) holds, and
hence

S¥(a)=(1+0(1))Jy ae.
The lemma also implies that

St(a) = (1 + 0(1) 125

(1 + }(J_1+—27) a.e.
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since

1
> F(j)log(l T S )
N< j < N’ .] (.] + 2)
is negligible.

Finally, we have by Lemma 2, for almost all a and all sufficiently
large N,

0. Sy(a) - Si(e) < F( max a,(a)) < max F(a,(a)).

This inequality and the last estimate of S establish the theorem. O

It would be interesting to learn whether Theorem 1 could be estab-
lished by ergodic methods.

4. Further results. In this section we consider cases in which
Sy(1, a) can be estimated by N(log N)/(log?2) alone and when by ¢(N)
alone, where X, _;1/¢(n) < oo.

First we note that for any ¢ > 0 and fixed N € Z" we have

Sy(I,a) 1
- > ¢
NlogN log2

(6) ,u{aE(O,l):

< elog N~

(The implied constant here is absolute.)
This bound is achieved by setting
ar* = a*%, (a) = {an, ifa,<eNlogN ==:N
0, otherwise.

We compute the variance of the sum function S¥* as before and apply
Chebyshev’s estimate to obtain

u{a NllogN

Also, for each n < N,

D1SF*(e) -

1
> eNlogN} < clog N -

1
p,{a. an(a) > E.NlOgN} << m’

and estimate (6) follows.
Next, we show directly a sharp one sided estimate of Pruitt [9,
Theorem 5.2].

COROLLARY 3. For N > 3 set B(N) = exp(k log? k)k log? k for
(7) exp((k — 1)log?(k — 1)) < N < exp(klog?k).



PARTIAL SUMS OF PARTIAL QUOTIENTS 81

Then, for almost all a € (0,1)

: Sy(1, ) 1
ISP “g(n)  log2
Proof. In Corollary 2 set
¢(N) = B(N)/(loglog10k).
An easy calculation shows that ¥ 1/¢(N) < 0. If N satisfies (7), then by
Corollary 2
1+ 0(1)

Sy(I,a) < Tog 2 B(N) + B(N)/loglog10k a.e.,

so lim sup Sy(Z, a)/B(N) < 1/log2 ae. On the sequence N, =
exp(k log? k), the ratio Sy (1, @)/B(N) converges to 1/log?2 a.e. a

In another direction, we show that in Corollary 2, ¢(N) dominates
N log N for “most” values of N.

LEMMA 4. Suppose that 0 < (1) < p(2) < -+ and X°_1/p(n) <

. Let
S={neZ* ¢(n)<nlogn}.

Then S has logarithmic density zero.

Proof.LetT = {v € Z*: 21,2 N S # @). Suppose » € T. Then
there exists an integer n such that 2*~! < n < 2” and ¢(n) < nlogn, so

1 n —|[n/2] 1 1
ny2<kzn 9(K) = nlogn = 2logn = 2vlog2”

Thus
(8) ZT

Also, we have

%s 4(log2) i 1/9(k) < .

k=1

¥ l<{log2, veT

res ko, v&T.
2 l<k<?
With y = (log x) /log2 we have
1 1 1
x: Z T Z Z 7
logx s k g2 v<y+1 kes k
kES 2 l<k<?
Y 1= Ty+1) 1) say.

)’ v<y+1 y
veT
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We have from (8) that

1
LI -TN/D))s £ Lo
veT v
n/2<v<N
as N - oo. Thus T(y) = o(y) as y = oo. Finally,
limsup 8, < lim sup —T(—y;_—}—)-=0. O

X~ 00 y— o0

COROLLARY 4. Suppose that ¢ satisfies the hypotheses of Lemma 4.

Then for almost all « € (0,1)

Sy(I,a) < ¢(N)

holds for all integers N outside a set of logarithmic density zero.
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