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Motivated by a question about geometric packings in ^-dimensional
Euclidean space, R", we consider the following problem about finite
abelian groups. Let n be an integer, n > 3, and let k be a positive
integer. Let g(k,n) be the order of the smallest abelian group in which
there exist n elements, al9 a2,...,an, such that the kn elements iap

1 < i < k, are distinct and not 0. We will show that for n fixed,
g(k,n)~ 2cos(π/n)k3/2.

The geometric question concerns certain star bodies, called "semi-
crosses", which are defined as follows:

If k and n are positive integers, a (k, «)-semicross consists of kn + 1
unit cubes in R", a "corner" cube parallel to the coordinate axes together
with n arms of length k attached to faces of the cube, one such arm
pointing in the direction of each positive coordinate axis. Let K, the
"semicross at the origin", be the semicross whose corner cube is [0,1]".
Then every semicross is a translate of K; i.e. has the form υ 4- K for some
vector υ.

A family of translates {v + K: v e H) is called an integer lattice
packing if H is an ^-dimensional subgroup of Zn and, for any two vectors
v and w in H, the interiors of v + K and w + K are disjoint. We shall
examine how densely such packings pack R" for large k, and show that,
for n > 3, this density is asymptotic to

n sec m/n

(For n = 1 or 2 the density is 1 for every k.)
This result contrasts with the already known result for crosses. (A

(A:, «)-cross consists of 2kn 4- 1 unit cubes, a center cube with an arm of
length k attached to each face.) As shown in [Stl], for n > 2 the integer
lattice packing density of the (k, «)-cross is asymptotic to 2n/k.

0. Preliminary matters. Suppose M is a set of nonzero integers, G is
an abelian group, and n is a positive integer. We say that M «-packs G if
there is a set S c G such that \S\ = n and the elements ms with m e M
and s ^ S are distinct and nonzero. Such a set S is called a packing set.
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96 DEAN HICKERSON AND SHERMAN STEIN

Let S(k) = {I9...9k} and F(k) = { ± 1 , . . . , ±k). Then, as shown
in [Stl], there is a relation between integer lattice packings by the
(/:, «)-semicross (resp. cross) and ^-packings of finite abelian groups by
S{k) (resp. F(k)). We now develop this connection.

We will designate each unit cube in R" with edges parallel to the
coordinate axes by its vertex with minimal coordinates. Thus K, the
(k, «)-semicross at the origin, is the union of the kn + 1 cubes designated
by(0,0,...,0),(*,0,...,0),..., and (0,...,0,0 with 1 < i < k.

Let H be an integer packing lattice for K, i.e. an ^-dimensional
subgroup of Zn such that the interiors of υ + K for υ ^ H are pairwise
disjoint. Let G = Zn/H, f: Zn -> G be the natural homomorphism,
ei ^ Zn be the unit vector in the ith coordinate direction, and at = f(et).
Then it is easy to show that the kn elements ώy with 1 < i < k and
1 <j<n are distinct and nonzero; that is, S(k) w-packs G with packing
set{al9...,an}.

Conversely, suppose S(k) w-packs a finite abelian group G with
p a c k i n g s e t { a l 9 . . . , a n } . L e t H = { ( x l 9 . . . , x n ) e Z n : x λ a λ + ••• + x n a n

= 0}. Then JFί is an integer packing lattice for the (k, π)-semicross.
Moreover, the density of this packing is (kn + l)/!^*!, where G* is the
subgroup generated by al9..., an.

Thus, finding the densest integer lattice packing by the (A:, «)-semi-
cross is equivalent to finding the smallest abelian group G such that S(k)
w-packs G. Let g{k,n) be the order of the smallest such group. Clearly
g(k,n) > kn + 1, with equality if n = 1 or n = 2. Our main result is
given in the following theorem.

THEOREM 1. Forn > 3,

Since the integer lattice packing density of the (k, w)-semicross is
(kn + l)/g(k,«), this density is asymptotic to nsec(π/n)/2]fk as k ->
oo.

This result should be compared with the corresponding result for
crosses. Let h(k, n) be the order of the smallest abelian group G such that
F(k) H-packs G. Clearly h(k, n) > 2kn + 1, with equality if n = 1. As
shown in [Stl] for n > 2,
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Since the integer lattice packing density of the (k,n)-cτoss is
(2kn + l)/h(k, w), tins density is asymptotic to 2n/k as k -> oo.

Throughout the remaining sections, C(m) denotes the cyclic group of
order m, Z/mZ.

1. Motivation. In [Stl] it was shown that for any integer b > 1,
S(b2 - b) 3-packs C(b3 + 1) with packing set {l,-6,(-fc)2}. Since (-b)3

= 1 in C(b3 + 1), the packing set is a subgroup of the multiplicative
structure of the ring Z/[(b3 + 1)Z]. In these 3-packings, k = b2 - b and
the order of the group is b3 + 1, which is asymptotic to k3/1 for large k.

This method also gives some information in the case of 4-packings
and 6-packings. It can be shown that for an odd integer b greater than 1,
S((b2 - l)/2) 4-packs C((b + \){b2 + l)/2). The packing set is the
(multiplicative) subgroup {1, -Z>, (-b)2, (-b)3}, with (-ό)4 = 1 since
(b + \){b2 + l)/2 divides b4 - 1. Observe that, since k = (b2 - l)/2
and the order of the group is (b + 1)(Z?2 4- l)/2, the order of the group is
asymptotic to yfϊk3/1.

Similarly, for b = 1 (mod6) and greater than 1, S((b2 + b - 2)/3)
6-packs C((έ2 + Z> + 1)(Z> + l)/3) with packing set {1,-Z>, (-ό)2, (-Z>)3,
(-6)4, (-Z))5}, again a group since (-b)6 = 1. In this case, the order of the
group is asymptotic to }/3k3/2.

In these cases the order m of the group is a polynomial of degree 3 in
b and the number k is a polynomial of degree 2 in b. Since these
polynomials have rational coefficients, hmb_+O0m

2/k3 is necessarily ra-
tional. However, according to Theorem 1, only in the cases n = 3, 4, and 6
is

rational, since only for these n > 3 is cos27r/« rational.
To obtain Theorem 1, we will modify this approach. While we will

still consider packing sets in cyclic groups of the form (1, -b,
(-b)2,..., {-by1}, we do not demand that they form a subgroup, that is,
that {-b)n = 1. Our argument is motivated by a relation between pairs of
elements in these packings. To express their relation we introduce the
diagram in Fig. 1.1:

FIGURE 1.1
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In this diagram g and h are elements in some abelian group and JC and y
are positive integers such that xg + yh = 0.

In the 3-, 4-, 6-packings mentioned earlier, the relations expressed by
the three diagrams in Fig. 1.2 are valid:

FIGURE 1.2

Along each edge x = (1 - a)b + a and y = αb -f (1 - α) for some ra-
tional α e [0,1]. (For r = 3, α = 0 or 1; for r = 4, α = 0, 1/2, or 1; for
r = 6, α = 0, 1/3, 1/2, 2/3, or 1.) Furthermore, in any triangle in Fig.
1.2 labelled as in Fig. 1.3, we have xx'x" + yy'y" = m, the order of the
group.

FIGURE 1.3

These observations suggest that we look for packings in cyclic groups
of the form {(-b)1\ 0 < i < n - 1} with the relations shown in Fig. 1.4,
where xr = (1 — αr)b + αr and yr = αrb 4- (1 — αr). Moreover we de-
mand the equality xx'x" + yy'y" = m in each triangle.

FlGURE 1.4
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FIGURE 1.5

Note that ax = 0. Denote α2 by α. Then the triangle displayed in
Fig. 1.5 gives m = b2(ab + (1 - a)) + ((1 - α)ft + α), hence

= (ft - I ) 2

FIGURE 1.6

More generally, the triangle shown in Fig. 1.6 shows that

Thus (1 — ar)ar+1 = α, giving the recursion

~' + 1 I-a/

which will play a central role in the argument.
With these observations in mind, the construction is straightforward:

Solve the recursion, making sure that 0 < α r < 1 for 1 < r < n — 1,
restrict ft so that all xr and yr are integers, and then see how large k can
be for that choice of ft. The size of k is the substance of Lemma 2.1; note
that since in the construction xr + yr = ft + 1, k may be as large as
m/(b + 1) - 1 = a(b - I ) 2 + ft - 1 so, for large ft, m/k3/2 « 1/ ̂ α".
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The proof of Theorem 1 consists of two parts. First we construct for

large k an w-packing for S(k) in a cyclic group of order approximately

2 cos(π/n)k3/2. This will show that

<2cosπ/n,

which is Theorem 2. We then establish in Theorem 3 a lower bound for

g(k,n) which will imply that

Km ^ % ^ >2cos7r/«

Taken together, Theorems 2 and 3 yield Theorem 1.

2. A construction for group packings. We begin with the proofs of

several lemmas. The first one gives a criterion for a 2-packing of S(k) in

C(m). Its importance lies in the fact that a set {al9...,an} provides an

w-packing for S( k) if and only if every subset of two elements provides a

2-packing.

LEMMA 2.1. Let m, x, and y be positive integers and let a and b be

integers such that gcd(α, b, m) = 1 and xa s -yb (modm). Let 0 < k <

m/(x + y). Then S(k) 2-packs C(m), with packing set {a, b).

Proof. Assume the contrary. Then we have Xa = Yb (modm) for

some integers X and Y, with 0 < X, Y < k and not both 0. The

congruences xa = -yb and Xa = Yb (modm) imply the congruences

(Xy + Yx)a = 0 and (Xy + Yx)b = 0 (modm). Since gcd(α, b, m) = 1,

it follows that Xy + Yx = 0 (mod m). However,

0 < Xy + Yx < ky + kx = k(x + y) < m,

a contradiction.

LEMMA 2.2. Let n > 3 be an integer and let p and q be positive integers

such that p < q and gcd( p,q) = 1. Let a = p/q. Define aλ = 0 and

ocr+1 = α / ( l — ar) for r > 1. Suppose 0 < α r < 1 for 1 < r < n — 1.

Wh'te α r = pr/qr, where pr and qr are nonnegative integers with gcd(pr, qr)

= 1. Suppose b > 1 is an integer such that b = 1 (mod L) and gcd(ό, /?) =

1 where L = lcm(^1?<72> >4*-i) ^ m = (b + l)(a(b — I ) 2 + Z>) α«^/

A: = a(b — I ) 2 + b — 1. 77*e« m and k are integers and S(k) n-packs

C(m) with packing set {1,-fe, H > ) 2 , . . .,(-b)n~1}. Also

v m 2 1
hm — - = —.

fc-+oo A:3 «

(Some examples of this construction are given after the proof of Theorem 2.)
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Proof. Note that α2 = «, p2 = p, and q2 = q. By the definition of L,
6 Ξ 1 (modήr). Thus

* = f ( * - D 2 + » - i

is an integer. Since m = (Z> + ΐ)(k + 1), m is also an integer.
We next show that gcd(6, m) = 1. Assume that d = gcd(ό, m) is

greater than 1. Then d divides

but is relatively prime to b + 1 and b - 1. Thus d divides p, contradict-
ing the assumption that gcd(6, p) = 1.

Since gcd(6, m) = 1, it follows that, for 0 < e < f < n - 1,
{{-b)\(-b)f} is a packing set if and only if {l,(-b)f~e} is. Thus it
suffices to show that for 1 < e < n — 1, S(k) 2-packs C(m) with packing
set{l,H>r}.

For 1 < e < n - 1 let xe = ae 4- (1 - ae)b and ye = (1 - α J + αeZ>.
Note that xe and 7e are positive and that

x =

is an integer since b = I (modgj. Also, xe + ye = b + 19 so ye is an
integer.

We will show inductively that m divides xe + ye(-b)e. Consider
e = 1. We have xλ = b and yx = 1, hence xx + yλ{-b)1 = 0, which is
divisible by m. This checks the assertion for e = 1.

Suppose the result holds for some e < n — 1. It may be shown by
algebra that

χ.+i + Λ + i ( - * ) ' + 1 = H Γ Π Γ ™ + «.+i(i

Note that [1 - (-b)e]/(l + 6) is an integer. Writing α^+1 =^+1/9^+1,
we see that α e + 1 ( l — 6) = (Pe+i/Qe+iW ~~ *) i s a n integer since ̂ e + 1

divides b — 1. Since m divides xe + Λ ( " ^ ) β ^ follows that m divides
xe+ι + ye+ι(-b)e+1 and the induction is complete.

Since
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we may apply Lemma 2.1 with a, b, x9 and y replaced by 1, (-/>)e, xe9

and ye respectively. That lemma implies that S(k) 2-packs C(m) with
packing set {l,(-b)e}.

That

v m2 1
lim —- = —

b-*oo k3 «

is clear.
Note that the conditions b = 1 (mod L) and gcd(£, p) = 1 are satis-

fied for infinitely many b\ just let b = 1 (mod/?L). In fact, it can be
shown by induction that gcd(/?, L) = 1 and therefore for any integer a
the simultaneous congruences b = a (moάp) and b = 1 (modL) are
solvable. Choosing a relatively prime to p forces b to be relatively prime
to/?.

LEMMA 2.3. Let n > 3 be an integer and let a < 1 be a positive rational
number. Define aλ = 0 αwd α r + 1 = α/(l — ar) for r > 1. Suppose 0 < ar

< 1 /br 1 < r < « — 1. TTzew /<9r etfcλ positive integer k there is an integer
m(k) such that S(k) n-packs C{m{k)) and

Proof. Let A: be a positive integer. Let kr and k" be consecutive terms
in the sequence of k's produced in Lemma 2.2, kf < k <k". Let m' and
m" be the corresponding values in the sequence of m's. Then S(k)
/i-packs C{m") and

k3 " U

by the construction in Lemma 2.2, l i m ^ ^ & V & O = 1 and
kmk^OQ(m")2/(k")3 = I/a. Letting m(k) = ra", the proof is complete.

LEMMA 2.4. Lef a > 1/4, αx = 0, and ar+1 = α/(l - ar). Let θ =

cos~1(l/(2v^)). Then for any positive integer r < π/θ,

Λ r- sin(r 4-
= 1 vα ^r sm rθ sm r^

The inductive proof is omitted.

LEMMA 2.5. Let n > 3, 1/4 < α < ^sec2(7r/w). Zte/me α r as in
Lemma 2.4. 7%^ 0<ar<lfor2<r<n-2 and 0 < α n _ x < 1.
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Proof. We have

1 77
1 > — — > cos—.

2 ^ n

Thus θ = cos~1(l/(2v^)) is less than or equal to τr/n, or equivalently,
n < π/θ. By Lemma 2.4, ar > 0 for r = 2, 3,..., n - 1 and ar < 1 for
2 < r < n — 2. Moreover α w - 1 < 1, with equality holding only if a

THEOREM 2. jPor #«y integer n > 3

hm 5 V ' ; < 2 c o s - .
^ 3 / 2 n

Proof. Let ε > 0. Pick a rational number a > 1/4 such that

4cos2 h — > — > 4cos2—.
n 2 a n

Define ar as above. Then, by Lemmas 2.3 and 2.5, for k suitably large,

g(k,n)2 ^ 1 , e
1 ε Λ 2π

- + - < 4cos 2 - + ε.
a 2 n

Hence

T:— g(k,n) π Λ .
hm ^ v 7 < 2cos—, as claimed.

We illustrate the construction for n = 3, 4, 6, and then 5. The first
three cases coincide with the constructions given above.

For n = 3, \ sec2(τr/n) = 1, a rational number which we may take as
a. We then have c^ = 0, α2 = 1, so /? = L = 1. Thus b may be any
integer > 1,

m = (ft + i)((6 - l ) 2 + b) = (6 + l)(ί>2 - b + 1) = b3 + 1

and

For n = 4, ^ sec2(ττ/«) = 1/2, a rational number which we may take
as α. Then we have aλ = 0, α2 = 1/2, α3 = 1, so /? = 1 and L = 2. Thus
6 must be odd. Moreover,

m = (6 + \)(\{b - I ) 2 + b) = (fr

and k = (b2 - l)/2.
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For n = 6, \ sec2(ττ/«) = 1/3, which we may take as a. We have
aλ = 0, a2 = 1/3, α3 = 1/2, a4 = 2/3, a5 = 1, so /? = 1 and L = 6.
Hence 6 Ξ= 1 (mod 6),

m = (b + l)(b2 + 6 + l)/3 and k = {b2 + b - 2)/3.

In each of these cases J sec2(ττ/«) is rational and so can be used as a.
For other values of n this is not possible. Since

9 ( / )

cos 2 - = 2 '

we see that (1/4) sec2(π/«) is rational if and only if cos(27r/«) is. But
cos(2τ7/π), for n > 3, generates a field of degree φ(n)/2 over the rational
field, so is rational only when n = 3, 4, or 6.

For other values of n, we must let α be a rational number less than
\ sec2(ττ/«). For example, consider the case n = 5. We have \ sec2(ττ/5)
= (3 — /5~)/2. We may choose any rational number less than (3 — yf5)/2
~ 0.382 but as close to it as we please to serve as α, say a = 3/8. With
this choice we have aλ = 0, a2 = 3/8, α3 = 3/5, and α4 = 15/16. Thus
/? = 3 and L = 80, so we choose b = 1 or 161 (mod 240). We have

m = (b + l)(3b2 + 26 + 3)/8, )t = (3ό2 + 26 - 5)/8, and limm2/&3 =
8/3. Choosing b = 241 gives a 5-packing with m2/k3 « 2.682.

By choosing rational numbers closer to \ sec2(ττ/5) but less than it,
we may produce 5-packings of S(k) with m2/k3 as close as we please to
4cos2(ττ/5) = (3 + τ/5)/2.

3. A lower bound on g(/c, n). We next develop a sequence of lemmas
that will give a lower bound on g(k, n) for n > 3. The approach makes
use of the smallest positive integers x and y in diagrams of the type
shown in Fig. 1.1. Let / be the largest of the sums x + y for all pairs g
and Λ in the packing sets that will be considered. On the one hand, it will
be shown that m < ^3sec2(τ7/Ό> s o t > (4m)ι/3cos2/3(π/n). On the
other hand, it will be shown that m > (k + l)t — t2/4 and from this that
t < 2(k + 1) - 2)j(k + I) 2 - m. Combining the two inequalities for t
yields an inequality linking k and m from which Theorem 3 will follow.

LEMMA 3.1. If m < (k + I)2 and S(k) 2-packs an abelian group G of
order m with packing set {a,β}, then there are integers x andy such that
1 < JC, y < k, xa + yβ = 0, andm > (k + l)(x + y) - xy.

Proof. Consider the (k + I) 2 elements Xa + Yβ in G with 0 < X,
Y < k. Since \G\ < (k + I) 2 , some two of these must be equal; say
Xa + Yβ = X'a + Y'β with X > X'. Then (X - X')a = ( F - Y)β,
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where 0 < X - X' < k and -k < F - Ύ < k. However, since {α, β) is a
packing set for S(k), we must have 1 < X - X' < k and -k < T - Y <
-1. In other words, (X - X')a 4 (Y - Y')β = 0 with 1 < X - Xr < k
and 1 < Y - T < k. Pick integers x and y so that (x, y) is as close as
possible to (0,0) such that xa 4 yβ = 0, 1 < x < k, and 1 < y < k. We
will show that m > (k + l)(x + y) — xy.

Consider the elements Xa 4- Yβ with 0 < X, Y < k and either X < x
or Y < y. There are (k + l)(x + y) — xy such elements; we claim that
they are distinct.

For suppose two are equal, say Xa + Yβ = X'a + F β with X > X'.
As before, 1 < X - X\ Y -T <k and (X - JT)α + (Y - Y')β = 0.
Furthermore, either X < x or 7 < j>, so either X — Xr < x or Y — Y' < y.
If both inequalities hold, then (X — X', Y — Y') contradicts the choice
of (JC, y). So assume, without loss of generality, that X — Xr < x
a n d Y-Y' >y. T h e n (x - (X - X*))a = ((Y - F ) - y)β; \<x-
(X - X') < k and 0 < ( 7 - F ) - y < k - y < k, contradicting the fact
that {α,β} is a packing set for S(k). Hence the (k + 1)(JC + y) — xy
elements are distinct, implying that m > (k + l)(x + y) — xy.

LEMMA 3.2. Assume that {α, β, γ} is a packing set for S(k) in a group
G of order m < 2(k + 1)3 / 2. Then {α,β,γ} generates G.

Proof. Let H be the subgroup of G generated by {α, /?, γ}. As was
shown in [Stl], (k + I) 3 < |/f|2. If # is a proper subgroup of G,
\H\ < \G\/2. Thus

so m > 2(k 4- 1)3 / 2. This contradiction establishes the lemma.
Let α, β, γ be nonzero elements in C(p) for some prime p. Assume

that α, a\ b, b\ c, c' are integers not divisible by p such that

aβ + a'γ = feγ 4- Z>'α = cα 4- c'β = 0.

Then, in the field GF(/?) we have

Thus,inGF(^),

^ | ^ a'Vc' = 0.

That is, p\abc + α'&'c'. The next lemma generalizes this fact to all finite
abelian groups.
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LEMMA 3.3. Let G be a finite abelian group of order m. Let α, β, and y
generate G and let a, b, c, a\ b', c' be integers such that

aβ + a'y = by + b'a = ca + c'β = 0;

as in Fig. 3.1.

FIGURE 3.1

Then

m\abc + a'b'c'.

Proof. Consider the Z-lattice in i?3,

L= {(x,y9z)\xa+yβ + zy = 0}.

Since α, β, y generate G, Z3/L « G, and thus \Z3/L\ = m. Let K be
the lattice generated by (0, a, a% (b\ 0, b), (c, c', 0). The determinant

0 a a'
V 0 b
c c' 0

is equal to #Z>c + a'b'c'. Since # is a sublattice of L, |Z 3 : L| divides
| Z 3 : AΊ That is, m divides abc + tf'Z/c', which was to be proved.

We now begin the proof of Theorem 3, which will incorporate further
lemmas at the appropriate points in the argument.

THEOREM 3. // n > 3, k > 1, m > 1, and S{k) n-packs an abelian
group of order m, then

k 4

Proof. Suppose not. Then

k + 1 > (x + -:-)]fm where x = U c o s 2 - ) m1/6.
\ 4x) \ n I

But x + 1/4JC > 1 for x > 0, so m < (A: + I) 2 .
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Let the packing set be {go> >£n-i} Let K = k + 1. By Lemma
3.1, for i Φj\ there are integers atj with 1 < atj < k, a^ + α^ g,. = 0,
and m > K{au + αy, ) - a^a^

LEMMA 3.4. Le/ m, K, a, a' be positive real numbers such that
a, a' < K and K2 > m > K(a + a') - aa'. Let t = a + a'. Then
t <2K- liK1 - m.

Proof. We have m> Kt — aa'. Since a + a' = t, the largest possible
value of aa' is t2/4. Hence m > Kt - t2/4 so t2 - 4Kt > -4m. Com-
pleting the square shows that (2K - t)2 > 4K2 - 4m and, since 2K - t
> 0, 2K — t > ]/4K2 - 4m, from which the lemma follows.

Proof of Theorem 3 continued. Let t = maxo<i<J<n_ι(aij + αjΊ). By
Lemma 3.4, t < 2K - 2iκ2 - m.

Note that

K > Ucos2 ^ ) m 2 / 3 + -^4cos2 ^ ) m 1 / 3 > ( y

so m < 2AΓ3/2. By Lemma 3.2, if /, j , and / are distinct indices between 0
and n - 1, then {g^gj.gi} generates G. By Lemma 3.3, m\αijαjlαli +

Let btj = tf/y/f. Then we have btj > 0, btj + Z?yz < 1, and m <
^(bgjbjibjj H- bj;bιjbu). The next two lemmas will allow us to derive a
relationship between m, ί, and n from these inequalities.

LEMMA 3.5. Let n be an integer > 3. Let xv x29...,xn_1 6e reα/
numbers, 0 < xz < 1. Γλett /Λere ύtr̂  distinct indices j and I such that

Xj(l — jc7) αnJ X/(l — Xj)

are both less than or equal to ^sec2(τr/«). This is best possible in the sense
that isec2(ττ/n) cannot be replaced by a smaller number.

Proof. Let a = ^sec2(ττ/w), aλ = 0 and α / + 1 = α/(l — at). By Lem-
mas 2.4 and 2.5, 0 = aλ < a2 < < an_1 = 1, and the interval [0,1] is
partitioned into n - 2 sections, [α l 9α 2], [«2 )«3], • >[αn-2>αΛ-i] Hence
some section, say [α^α^+i], contains a pair xy and xh I Φ j . We then
have
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and

* 7 ( l - Xj) < ap+ι(l - ap) = a.

To show that this result is best possible, consider the sequence

xt = ai9 i = 1, 2 , . . . , « - 1. Note that x / + 1 ( l - c ) = a. Thus, if y > /,

Xj{\ - jcf ) > a. Hence, if j Φ I at least one of Xj(l - xt) and xA(l - Xj)

is > a = ^sec2(ττ/«).

LEMMA 3.6. Let n be an integer > 3. For 0 < i, j < r - 1, i

6zy be nonnegatiυe real numbers such that btj + bjt < 1. Then for somej and

/, 0 <j < l< r - 1,

Proof. Let x,. = ό0 /, / = 1, 2,...,« — 1. By Lemma 3.5, there are

distinct indices j and / such that Xj{\ — xz) and x ; ( l — xy) are both

i2

K j b j ι b ι o + b j θ b i j b o ι ^ ( * / / + * / 7 ) ( o 7 / o ? / o o / )

< 1 - max(i θ 7 ( l - boι),boι(l - bQj)) < $sec2(π/n).

Proof of Theorem 3 continued. By Lemma 3.6 we have m <

(t3/4)sec2(π/n) so t > (4cos2(τr/fl))1 / 3m1 / 3. Combining this with the

inequality / < 2K — 2VΛ 2 — m proved above, we obtain C < 2K —

liK2 -m, where C = (4cos2(π/n)) ι /W/3. Hence liK1 - m < 2K-
C. Squaring and simplifying gives K < m/C + C/4 from which Theorem

3 follows.

For n > 3, Theorem 3 implies that

Combining this with Theorem 2 completes the proof of Theorem 1.

4. Some questions. For n = 3 and 4 a stronger version of Theorem 3

holds, namely k + 1 < (4cos 2(ττ/«))" 1 / 3m 2 / 3 . The case n = 3 is treated

in [Stl] and the case n = 4 by Hickerson through a method that does not

seem to generalize to larger values of n. These facts suggest two questions.

Let n > 3 and k > 1. Is g(Jk, /i)/(fc + 1) 3 / 2 > 2 cos(τr/Ό?

For n > 3 what is the exact value of g(A;, n)Ί

The cases « = 3, 4, and 6 also suggest the following question:

Let g\k, n) be the smallest value of m for which S(k) n-packs C(m)

with a packing set which is a multiplicative subgroup of the ring of
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integers modm. What is ]imk_>OQ(g'(k,n)/k3/2)Ί Even for n = 5 the
answer is not known.

See [St2] for further information about g(k,n) and a discussion of
related problems.
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