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KARSTEN JOHNSEN AND HARTMUT LAUE

Motivated by papers of H. Fitting, the problem arises whether there
exists a ring which contains a given ring and a semigroup acting on each
other. This problem is solved in the affirmative by the construction of a
"universal envelopment". Furthermore, the situation investigated gives
rise to a generalized wreath product which is used for a description of
certain automorphism groups.

0. Introduction. The endomorphisms of an abelian group form a

ring in a natural and well-known way, whereas in the case of a nonabelian

group one has no general "addition" of endomorphisms. One easily

proves that the "sum" of two endomorphisms α, β of a group G,

* + β:g-*gagβ for all geG,

is an endomorphism of G if and only if [Gft, Gβ] = 1. Hence the endomor-

phisms that can be added to any endomoφhism are exactly the homomor-

phisms of G into its center Z(G). In this sense, the ring Hom(G, Z(G)) is

a "pleasant" substructure of End(G). Long ago, Fitting [2] described the

structure of EndG(G) which, though not a ring, still has numerous ring

properties; if we put H:= EndG(G), S:= Hom(G, Z(G)), then e.g.

(1) (sιh)s2 = s1(hs2) for all h <Ξ H, sl9 s2 e S,

(2) (hλ + s)h2 = hιh1 + sh2, hλ(h2 + s) = hλh2 + hλs

for all hl9h2 e H, s e S,

(3) (h + sλ)s2 = hs2 + s1s2, sλ(h + s2) = sxh + sλs2

for all h e H, sl9s2 G 5.

Keeping these rules as axioms, we introduce so-called Fitting struc-

tures in the first chapter of this paper and show that firstly there does

exist a ring R containing H and S such that (1), (2), (3) are special cases

of its associative and distributive laws, and that secondly any ring with

this property (if—which is a non-essential restriction—it is generated by

H) is a homomorphic image of R. Emanating naturally from Fitting's

notion of "Bereich" [2], the problem of the existence of enveloping rings

for Fitting structures, which has been solved for H = EndG(G) by Fitting

i n
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in a special way, thus finds a general positive answer. Chapter 2 shows

that even if there is not given an addition of elements of H and S, such an

addition can be defined after a certain enlargement of H, and that this

process of making H and S into a Fitting structure is essentially uniquely

determined by the actions of H on S. In Chapter 3, we introduce to each

Fitting structure a generalized wreath product containing the usual wreath

product of (semi-)groups as a special case, and use this concept to give a

simple description of certain automorphism groups, applying a result of

another paper by Fitting [1],

1. Fitting structures. For every ring1 S, we put

E n d Λ ( S ) : = {a\a G End(S, + ) , ( ^ 2 ) α = sλ(s5) for all sl9s2e

E n d P ( S ) : = {a\a e End(S, + ) , (sιs2)
a = (s?)s2 for all sl9s2e

Obviously, End Λ (S) and End P (5) are subrings of End(5, + ).

1.1. DEFINITION. Let H be a semigroup, S & ring, φ a homomor-

phism of H into the multiplicative semigroup of End Λ (S), ψ an antiho-

momorphism of H into the multiplicative semigroup of EndpίS) such

that Hφ and H* commute elementwise. Let σ be a homomorphism of

(S, + ) into the symmetric group <3H on H such that hs° = h implies

s = 0 for all h e H, s e S (i.e., (5, + ) "acts freely" on H).

If h e H, s G S, we write sλ for 5Λ<P, As for SΛΨ, A + 5 for AΛ The

5-tuple (H, S, φ, ψ, σ) is called a F/ttiVigstructure if (1), (2), (3) hold.2

(4)

(5)

(6)

(7)

(8)

By definition, we

(shjh
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= h+(s
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— hx{sh

= h <=» s

h2), h^)

\ + s2) for

2h), h(s

2) for all hi

= 0 for all

ϊ2s)

aUi
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— (

for
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= (
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H,

all

H,

all

S €

h1,h2^H,

sl> S2 e *̂ >

XA11 rings in this paper are associative, but do not necessarily have an identity element.
2 If H is a "Bereich" in the sense of Fitting [2], let S be the set of all elements of H which
can be added to any element of H. Then S is a ring, and we get a Fitting structure with
the additional property that S is contained in H, and H has an identity element. Any
further possibilities to add elements of H (which might exist in Fitting's "Bereich") are
treated as non-existent in our Fitting structures.
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If H has an identity element 1, then (2) and (8) imply l φ = id = lψ.

Fitting structures &= (H, S,φ,ψ,σ), &' = (H\ S",φ',ψ',σ') are

called isomorphic if there are isomorphisms a of H onto H\ β of S onto

S' with the properties βσ' = σα, αφ' = φβ, αψ' = ψβ, where ά is the

isomorphism of (BH onto <3H, induced by a (such that π 5 = α"Vα for all

77 e @^), andjβ is the isomorphism of End(S) onto End(S") induced by

β (such that ξp = jβ- ĵS for all £ G End(S)).

&' is called a Fitting substructure of ^ " if H' is a subsemigroup of

/ί, S7 is a subring of S, and φr = φ\H,9 ψr = ψl^, σ' = σ\s,. If i/ ' is a

subsemigroup of if, S" a subring of S, then (H',S'9φ\H,,ψ\H,,σ\s,) is a

Fitting substructure of & if and only if SΉ' Q S'9 H'S' Q S'9 and

/f7 + S' = H'.

1.2. DEFINITION. Let F be a Fitting structure, R a ring, ~ a

homomorphism of if into the multiplicative semigroup of R, and a

homomorphism of S onto an ideal of R. The triple (i?, , ) is called an

envelopment of J^ if

(9) A + s = h + s for all λ G # , j e S

holds.

The envelopment (i?, , ) is called faithful if and are injective.

From (9), we conclude

(10) hs =hs9 sh =ϋh for all h G if, 5 G 5,

since

h2 + sh = (h + s)h = h + sh = (h + s)h =h2+sh,

and the second part of (10) is proved similarly.

1.3. DEFINITION. Let ίF be a Fitting structure and (i?, ~, ), (i?7, ~, )

envelopments of J ^ T h e n a mapping χ is called a homomorphism of

(i?, , ) into (R\ , ) if x is a homomorphism of R into i?' such that

hx = h, sx = s for all A G H, S G 5. If χ is an isomorphism of R onto i?',

we call our envelopments isomorphic. An envelopment tfl of J^ is called

universal if for any envelopment ^ of J^ there is a homomorphism of °U

into ^ .

Universal envelopments of isomorphic Fitting structures are isomor-

phic. We now prove the following existence theorem:

1.4. THEOREM. Every Fitting structure has a faithful universal envelop-

ment.
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Proof. Let &=• (H, S, φ, ψ, σ) be the Fitting structure given. We put
T:= ΣH and write + , c for the standard addition and multiplication in
T. (Then hι" h2 = h1h2 for all hv h2 e if.) For h e H, s e S define

8(h,s):= (h + s)-h

and let K be the additive subgroup of T generated by {8(hvs)—
8(h2, s)\hlt h2 e H, s e 5"}. Then
(11) Λx 8(h2,s) - 8{h2,hlS), 8(h2,s) • hx - δih^shj e K

for all hx,h2 & H, s & S,

as

h, -(h2,s) - 8(h2, V ) = K -{{h2 + s)- h2) - 8(h2, V )

= A^Λj + s) - A^j - δ(/ι2, ALi)

the second part of (11) being proved analogously. Obviously, (11) yields

(12) h, -(8(h2,s) - 8(h3,s)), (8(h2,s) - 8(^,3))-^ e K

for all hlf h2,h3 e H, s e S.

Thus A" is an ideal of T, and, by definition of K,

(13) δ(h1,s) + K=δ(h2,s) + K for all Λ1; h2 e /f, s e S.

We now define
Λ := T/K,

~: H -*R,h^h + K,

and for an arbitrary h e if

(By (13), is independent of the choice of h.) Obviously, is a homomor-
phism of H into the multiplicative semigroup of R, and

h + s= (h + s) + K = h +(h + s) - h + K

= (h + K)+(8(h,s) +K) = h + s for all h e H, s e S,

whence (9) holds. We want to show that is a ring homomorphism of S
into an ideal of R, and start with

(14) 8(h,s1 + s2) - δih^J - 8(h,s2) <Ξ K for all h e H, Sl,s2 e S.

For

δ(h,Sl + s2)-8(h,Sl)-8(h,s2)

= {h + sx + s2) - h -{h + sj + h- δ(h,s2)

= 8(h + ί1;s2) -8(h,s2) t=K.
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Furthermore,

(15) δ ( A , ^ 2 ) - δ(h9s1)τδ(h,s2) e K for all h^H, sl9 s2 e S,

since

A ) -((A + Sl) - A) -((A + * 2) - A)

= 8(h,Sls2) -(A + j J ίA + J 2 ) +(A + J J A + A(A + s2) - A2

= δ(A, j Λ ) - δ((A + Sl)h, (h + Sι)s2) + δ(h\ hs2) e tf,

by (13) and (14).

As (14) and (15) show, is a ring homomorphism, and by (12), S is

an ideal of R. Therefore, (R, , ) is an envelopment of &. We need some

preliminaries to show that and are injective:

Let D be the additive subgroup of T generated by {δ(h,s)\h ^ H,

s e S}. Then K < D, and D/K = S. Since

(16) - δ ( A , j ) = δ(A + J , - J ) for all A e //, j e 5,

every element of Z> has the form Σjδ(hj,Sj) for appropriate hj e //,

5y e 5. We claim:

(17) £δ(A, ,5,) = 0=» Σ ^ = 0
7 = 1 7 = 1

for all A l 9 . . ., Â  e /ί, ly1,..., sk e 5.

Suppose Σ^!δ(A y.,^0 = 0. Then we have Σ) = 1 (A y + Sj) = Σ)= 1A y,

Since (Γ, 4- ) is free over H, there is a permutation π of {1, ...,&} such

that Ay + 5y = hJπ for all y e {1,..., A:}. For / e {1,..., k}9 let ft be the

smallest positive integer such that iπfi = /. Then {/, iπ9..., iπ^ι~1} is the

orbit of i under TΓ, and Az 4- 5Z + siv + +5/7r/ = AlV/+i for 0 < / < /z,

hence in particular hi + j, . + siv + +5k/,-i = hi9 and 5f + J ^

+ +siv/i-ι = 0 by (8). Now if X denotes a full set of representatives

of the orbits of m in {1,..., k],

k

ΣSj= Σ (Si + Si* + * +Siwfi-ι) = 0,

proving (17).

As a consequence, we have

(is) Σ*{hJ9sj)- Σδ(h'Ps;)=>Σsj= Σ^;
7 = 1 7 = 1 7 = 1 7 = 1

f o r a l l h l 9 . . . 9 h k 9 h[9...9 h'k, G H, sl9...,
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Therefore, p: Σy= 1δ(Λy , Sj) -» Σkj=1sJ defines a mapping of D into S

which obviously is an additive homomorphism. We claim:

(19) K=keτp.

By (16) and the definition of K, we have K c kerp. One generally has

8(hp Sj) Ξ 8{hλ + sλ + +Sj_v Sj) mod K for hl9 . . . , hj e # ,

.?!,..., j y . e 5. If now Σj=ιδ(hj, Sj) e kerp, then Σ^= 15y = 0, and conse-

quently

k k

= 0,

If A e if and s e S \ {0}, then δ(A, 5) ί i^ by (19), and this means

(20) is injective.

We now want to show that is injective which we shall conclude from

(21) A - A ' e D = * A = A/ + s with s (= S, for all A, h' e H.

We reformulate (21) in the following form to make it accessible to an

induction argument:

Suppose A, A' e H and r e IM. If there are hl9...9hr^H9

(22) sl9..., sr e 5 such that h - h' = Σr

J=18(hp Sj)9 then there

is an element ί G X such that A = A7 + s.

If r = 1, then A = Aj + sλ = A' + 5̂ , as (Γ, 4- ) is free over H. Now

suppose r > 1 and (22) is true for r — 1 instead of r. Since A — A' =

Σy = 1 δ(A y , 5y), we may assume A = Ax + 51? A' = Ar. Furthermore, hλ = ht

+ j . with i e {2,..., r}. This yields

A - A7 = (A, + *, + 5J ̂ (AΛ + Si) + t

7 = 2



FITTING STRUCTURES 117

and an application of the induction hypothesis yields our claim. This
proves (22) and the equivalent assertion (21) by means of which we
conclude

(23) is injective:

For if A, Λ' e H and h-W^K, then a fortiori h - W e D and
therefore h = h' + s with s <= S. But then h - h' = δ,(h'9s), and (20)
implies s = 0. Therefore we have h = h\ and the proof of (23) is com-
plete.

It remains_to show that the envelopment (R, ~, ) is universal. To this
end let (R\ , ) be an envelopment of &. Since (Γ, + ) is free over H,

7 j

defines a ring homomoφhism. We show

(24) * c k e r χ 0 .

Let hl9...,hkeH, sv...,ske S andΣ k

j = s l 8(h p Sj) e iΓ. Then
A: \ Xo A:

Σ*(hj,sj)\ -
7 = 1 / 7 = 1

( )
7 = 1 7 = 1

A: k

-Σ*,-Σv-o,
7 = 1 7 = 1

by (9) and (19).
By (24),

χ:Λ-Λ', Σ^J + K^Σ^J (^Z
7 7

defines a homomorphism, and for all h e fί, 5 e S we have

by (9). This completes the proof of our theorem.

2. Fitting pre-structures.

2.1. DEFINITION. Let H be a semigroup, S a ring, φ a homomor-
phism of H into the multiplicative semigroup of EndΛ(S'), ψ an antiho-
momorphism of H into the multiplicative semigroup of Endp(S') such
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that Hφ and H* commute elementwise. (We use the notations introduced

in 1.1.) The 4-tuple J^o:= (i/, S,φ, ψ) is called a Fitting pre-structure if

condition (1) holds.

Let J^= (H*, S*9 φ*, ψ*, σ*) be a Fitting structure with 5 = 5*, and

μ a monomorphism of H into H*. The pair (J^, μ) is called a continua-

tion of J ^ if

(25) φ = μφ*, ψ = μψ*

holds.

Isomorphisms of Fitting pre-structures and Fitting sub-pre-structures

are defined in complete analogy to the corresponding notions for Fitting

structures, the conditions on σ, σ' being omitted.

If (&vμλ) and (^ 2 ,μ 2 ) with ^ = (//*, 5*, φ*, ψ*, σ ), ^ =

(i/**,S**,φ**,ψ**,σ**)are continuations of J*J>, then a homomorphism

of (J^, μx) into (J^2, μ2) is defined to be a homomorphism ω of H* into

i/** with the property

(26) μ 2 = μλω.

If ω is a bijection of H* onto J9"**, our continuations are called

isomorphic. A continuation & of J ^ is called universal if for any

continuation ^ of ^Q there is a homomorphism of J^ into &'.

Universal continuations of isomoφhic Fitting pre-structures are iso-

morphic. We now prove the following existence theorem:

2.2. THEOREM. Every Fitting pre-structure has a universal continuation.

Proof. Let J ^ = (H, 5,φ, ψ) be the Fitting pre-structure given. We

put H^0 := H X S and define

(* l ,* l ) (*2>*2) : = ( Λ 1 A 2 ? ^ 2 + hλS2 + SλS2)

for all hv h2 e i/, Λ(

1, ̂ 2 G 5. One readily verifies that H^° is a semi-

group and the mapping

μ: H -> H^\ h -> (A,0)

is a monomorphism. We call H^° the continuation semigroup of J^. We

put 5* := 5, and define for all h e # , 5 e 5

(Λ,^)φ*: 5 - ^ 5 , r^rhΛ-rs

(h9s)r: S -> 5, r*->hr + sr.

Then (Λ, ^) φ * e EndΛ(5), (Λ, 5)ψ* e EndP(5), since

(rxr)A +(r x r )^ = ^(rA) + r x (^) = rx(rh + rs),

h(rrλ) +^(rr x) = {hr)rλ +(sr)rx = (Ar + sr)rλ
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for all h e if, r, r1? ί E S . W e show

(27) φ* is a homomorphism of l ϊ^ 0 into E n d ^ S ) , ψ* is an

antihomomorphism of H^° into End P (5) , and (25) holds.

We confine ourselves to the assertions about φ, φ* and leave the proof of

the assertions about ψ, ψ* to the reader. For all A, hl9 h2 G H, r, sl9 s2^ S

we have

= (rhτ + rsλ)h2 +{rh1 + rSl)s2 = r ^ s ^ ^ s ^

and

rhΨ = rh + r 0 = r^Ψ* = rhμΨ\

In the following we write (as in 1.1) r{h,s) for r ( M ) Φ*, (h,s)r for
r(Λ'5)Ψ* and verify

(28) Hψ* and iί ψ * commute elementwise,

as for all hl9 h2 e H, r, ΛΊ, ί 2 e S

= (Λxr + sxr)h2 +(Λχr + v ) S2

= hι(rh2 + rs2) + ^(r/^ 4- rs2)

A similar standard calculation yields

(29) (r1(A,5))r2 = r1((A,^)r2) for all A e //, r 1 ?r 2, 5 e 5,

i.e., condition (1) is satisfied.
For all r e S we put

ro*. H^_^ H^ ( h , s ) ^ ( h 9 r + s ) .

Then ra* is a permutation of H^°. As before, we write (h,s) + r for
(Λ,5)r<1 and observe

(30) σ* is a homomorphism of (S, +) into @^̂ 0

(31) (A,s) + r = (Λ,5)^>r = 0,forallΛe JH
r, M e S .

We put J^ := (H^°y 5*, φ*, ψ*, σ*). In order to show that & is a Fitting
structure it remains to check conditions (2) and (3) which here turn into

(32) ((Alf j j + r)(Λ2,52) = (At, J J ( A 2 , * 2) + r(A2, J 2 ) ,

J 2 ) + r) = (Ai, Jx)(A2, J 2 ) +(AX, j j r

for all Λ1? Λ2 G H, r, sl9 s2 e S,
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(33)

for all Ae ί f , s,rλ,r2 e 5,

both being immediate consequences of our definitions. Now (27) and (30)

show that (J^\ μ) is a continuation of J^, and we claim:

(34) J*~ is universal.

For if (^ ' ,μ ' ) with &' = ( # * * , S**,φ**,ψ**,σ**) is a continua-
tion of J^Q, we put

ω: #^° -> # * * , (A, J ) -> A"' + 5

and calculate for hl9h2

 G #> ^i, £2 G ^ by means of (25):

+ sf + ,*r + SlSl

whence ω is a homomorphism. Since for all h e H we have hμω = (A, 0)ω

= Aμ', we put μ' = /xω so that (26) holds. Thus the proof of our theorem
is complete.

We add some remarks on the continuation semigroup H^° of a
Fitting pre-structure ^0. For any ring S,

sλ © s2 := JX + J 2 + ^ 2 ( J X , ̂ 2 ^ S )

defines an associative composition with identity element 0. As is well
known, S is a radical ring if and only if (S9 °) is a group. We have:

(35) If H has an identity element 1, then

v: S^>H*>, s^ (I,*)

is a monomorphism of (S, °) into iJ*^0.

(36) If H has a zero element 0, then

λ: S-> H^\s^ (0,5)
is a monomorphism of (S, •) into /f̂ >.

(37) An element (Ao, J 0 ) G H^° is an identity element of
H^° if and only if h 0 is an identity element of H,
sQH=Q = Hs0 and (Ao + 50)^ = id 5 = (Ao + sΌ)+,

since (Ao, .ΪQ) is an identity element of H^° if and only if hoh = h = hh0

and hos + 50A + J O J = J = AΛ Q + JA0 + ̂ Q^ for all h e //, 5 e 5.
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We obviously have

(38) If H^° is a group, then so is H.

(39) If H has an identity element 1 such that l φ = \άs = lψ,
then (1,0) is an identity element of H^°, and H^° is a
group if and only if H is a group and S is a radical ring.
In this case H^° is a semdirect product of H and (S, °).

Herein the statement about (1,0) follows from (37). Now let H be a
group and S a radical ring. If for h G //, s G 5 the ° -inverse element of
s/Γ1 is denoted by (sh~ι)~, we have

(Λ,5)(/z-1,Λ-1(^-1)") = ( l , l ( * * " T + s/Γ1 + sh-\sh-ιY) = (1,0).

Therefore i/^0 is a group. As to the converse, observing (38), it suffices to
show that S is a radical ring. But if s G £ and (λ1? 5X) e i/^0 is the
inverse of (1, s), then

(1,0) = (l,^)(/z1,^1) = (Λ1?l ^ + 5/zx + sSl),

(1,0) = ( Λ ^ j J ί l ^ ) = (hl9hιs + sι - 1 + ^ J ) ,

hence hλ = 1 and s1°5
i = 0 = ks

(o

ks
i

1. Thus 5 is o-invertible. Let finally μ
be the embedding of H into H^° as in the proof of 2.2 and ^ as in (35).
Then Sv is a normal subgroup of i/ °̂ and isomorphic to (5, °), Hμ is a
subgroup of H^° which is isomorphic to H such that Sv Π Hp = {(1,0)},
and for all h e i/, 5 G 5 we have

whence H** = SVH».

In order to give examples of Fitting structures, it is sufficient, by 2.2,
to construct Fitting pre-structures:

2.3. EXAMPLE. Let M be a set and A a subset of M which is an
abelian group with respect to some composition +. Then the set

S(M,A):= {s\s: M -> A , s\A €

is a ring with respect to the compositions

sλ + s2: M —> A

m •-> mSl + mSl

sλs2'' M -* A



122 KARSTEN JOHNSEN AND HARTMUT LAUE

and the set

H(M,A)'= {h\h: M -> M , h\A

is a semigroup with respect to the composition

hxh2: M-+M

m -> (mhήh\

For all h<ΞH(M,A), S<ΞS(M,A) let sh* (resp. sΛ*) be the usual
composition (of mappings) sh (resp. hs).

Then ( # ( Af, Λ), S(M, A), Φ, Ψ) is a Fitting pre-structure.
We show that all "well-behaved" Fitting pre-structures can be sub-

sumed under this type of example:

2.4. THEOREM. Let H be a semigroup with identity element 1, #"=
(H, S,<p, ψ) a Fitting pre-structure such that l ψ = id s. Then there are Λf, 4̂
<zs in 2.3 5wcΛ /Λα/ ^* is isomorphic to a Fitting sub-pre-structure of
(H(M,A),S(M,A),Φ,Ψ).

Proof. W.l.o.g. we may assume H Π S = 0 . Then we put
M:= H U 5, (A, +) := (5, +). For all h e # , ^ e 5 we define

ha: M -> Λί, m*+ mh = {
I mΛ for m e 5

for m G S.

Obviously, a is a homomorphism of H into H{M,A), and β is a
homomorphism of S into S(M, Λ). For h e kerα we have 1 = lh<x =
1 - h = h; thus α is injective. Similarly, 5 e kerβ implies 0 = V0 = 1 s
= s, hence jβ is injective, too. For all m e M, h e /f, 5 G S we have

h.as ( I \ ί 1 \ (hs}

m = \mn)s = m\ns) = #2V ^,

m5 Λ" = (ms)h = m(sh) =

= (ms)h =

= m(hs)
= „,*<•*> =
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Hence HaSβ c Sβ

9 SβHa c Sβ

9 αΦ = φβ9 aΨ = ψj8. Therefore
(i/α, S1 ,̂ Φl^α,Φ\H«) is a Fitting sub-pre-structure of (H(M, A), S(M9 A),
Φ,Ψ) and isomorphic to (i/, 5, φ, ψ). The hypothesis that H has an
identity element 1 such that 1* = id 5 has only been used to prove that a
and /ϊ are injective. As is easily seen, for that purpose even weaker
hypotheses on H are sufficient.

Let G be a group and A a characteristic abelian normal subgroup of
G. Then J^:= (H(G,A), S(G9A),Φ,Φ) is a Fitting pre-structure. If we
put H:= Aut(G), S:= Hom(G,^4), then we obviously have HS c S,
SH c 5, whence (H,S,φ,\p) with φ = Φ|^, ψ = Ψ\H is a Fitting sub-
pre-structure of &. If we put for h e H(G, A), s G 5(G, Λ)

then 5Σ e <5ffiGtA)9 and Σ is a homomorphism of (5(G, ̂ 4), +) into
® H{G,A) s u c ^ Λat AjΣ = h <=> 5 = 0 for all h e //(G, >4), 5 G S(G, ^4). It

is easy to see that (2) and (3) hold; thus (H(G, A), S(G, A), Φ, Ψ, Σ) is a
Fitting structure. We put σ := Σ|^. In general, (H, 5, φ, ψ, σ) need not be
a Fitting structure. But we have:

2.5. THEOREM. Let G be a group which has no nontriυial direct abelian
factor. Assume Z(G) is finite. Then (Aut(G), Hom(G, Z(G)),φ,ψ,σ) is a
Fitting structure.

(Here φ, ψ, σ have the meaning introducedabbve.)

Proof. By our preparatory considerations it suffices to show:

(40) α Γ G Aut(G) for all a G Aut(G), £ G Hom(G, Z(G)).

Since α r G Aut(G) if and only if id£~ l f ) a G Aut(G), for our proof of (40)

we may assume a = idG. Surely, id£ is a homomorphism. By our hy-

potheses on G and Z(G), we have (see [1]) ξn = 0 for an appropriate

n G IM. Since

idk id (

G-?+ί " ±j; ) = idG = id (

G" ί + ? ~ ± f > - idf

G,

id^J is bijective, proving (40).

3. Wreath products over Fitting structures.

3.1. DEFINITION. Let J^"= (H,S,φ,ψ,σ) be a Fitting structure and
n G M. For 77 G @Λ,a(w X w)-matrix yl = (atj) is called a π-matrix over
i / U Sif

Γ for j = /TΓ
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If π,π' G (g>n and {au) is a τr-matrix, (a^) is a π'-matrix over
H U S, we define, using the product and sum notations introduced in 1.1,

n

(aij){au):= (bu) w i t h bU = Σ */***/ for 1 < i, y < Λ.
£ = 1

We observe:

(41) If π, π' e @π and 4̂ is a π-matrix, A' is a τr'-matrix over
HU S, then A4' is a (7Γ7r')-matrix over H U S.

3.2. DEFINITION. Let J^= (if, S,<p, ψ,σ) be a Fitting structure and
#i e l\|. Let X be a subgroup of @π. We put

H\X:= {(A,π)\π G X, A is SL 7r-matrix over// US},

and define for (Λ, w), (A', π') (= H \ X
s

(A,π)(A',<ιτ'):= (AA',mr').

By (41), this is a composition in H \ X. We observe:

(42) // \ X is a semigroup.
sWe call # \ X the wratfΛ ^roJwc/ 0/ H and X over SΛi H Π S = 0

and (^4,τr) e /ί\ @ , then TΓ is uniquely determined by A. In this case

the elements {A, π) of the wreath product can be identified with their first

components, the matrices A.
We add a few simple remarks:

(43) If H = S and X is the trivial subgroup of @n, then H \ X
s

is isomorphic to the multiplicative semigroup of the ring
(S)n of all (n X «)-matrices over S.

(44) If &' = ( # ' , S\ φ\ ψ', σr) is a Fitting substructure of J^
and X' is a subgroup of X, then /Γ \ X' is a subsemi-

group of H \ X.
s

(45) The standard wreath product H \ X is isomorphic to
H \ X (writing So for the trivial ring); thus it is contained

So

in every wreath product H \ X as a subsemigroup.

For (if, {0},φo,ψo,σ|{O}) is a Fitting substructure of (H, 5,φ, ψ,σ)
where we write φ0, ψ0 for the (unique) actions of H on {0}, whence the
second part of (45) is a consequence of (44).
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Matrix multiplications yield actions of H \ X on (S)n: We put

:= BA, BA* = AB foτ{A,π)
ί 0 }

\ X, B
{0}

(S)n9

where these products are defined analogously to the matrix product
introduced above. Then one readily verifies that ^ : = (H \ X, (S)n,

φ, ψ) is a Fitting pre-structure. The mapping fc of the continuation
semigroup (H \ X)^ into H\X such that (A,B)K = A + B for all

{0} S

(A,π) G (H \ Xy\ B G (S) is an epimoφhism. (The addition of A
and B means, as usual, addition of corresponding components, using the
notations of 1.1 with regard to σ.) If H has an identity element 1, then

(+sx 0 \

ker K '=

We claim

\*J

(46) Let J^= (H, 5, φ, ψ, σ) be a Fitting structure, n e N and
X a subgroup of @rt. Suppose /f has an identity element
1. Then if \ X is a group if and only if if is a group and S

s

is a radical ring.

For, if H is a group and 5 is a radical ring, then, by (45), H \ X is a
{01

group and, by [3, I, 7. Th. 3], (£)„ is a radical ring. Therefore, (39) yields
that (H \ X)^° is a group, and so is a fortiori the semigroup H \ X,

{0} S

being isomorphic to (if \ X) °/ker/c. Conversely, suppose if \ X is a
group. Its identity element being denoted by (f, id), where I is the identity

matrix, we have (f + 5,id) G if I X for every β E ( S ) f l . If we put

C:= (1+ B)\ then BC G (£)„, and
= B - BC - B2C = B - B(I + £ ) C = 5 - £f = 0,

(-BC) o B = -J9C + 5 - £C£ = B - BC(I + B) = B - BI = 0.

Therefore (S)n, hence *S, is a radical ring. Now let h G ff and set

0\
1

\0 lj
As before, we have (A,id) ^ H \ X, and the entry c in the upper left

corner of A"1 satisfies he = 1 = ch. The assumption C G S would imply

l e S and, regarding the equations l φ = id 5 = l ψ , 1 were an identity
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element of S. As S is a radical ring, this would yield S = {1} c {1} H
c S, whence S = {1} = H, and everything would be trivial. But if c £ S,
then c e H, and h is an invertible element of H, as desired.

We finally show that our notion of a generalized wreath product is
useful for the description of automorphism groups of groups:

To this end let G be a direct indecomposable nonabelian group
satisfying the minimum condition on central subgroups, and let n £ N.
We put S := Hom(G, Z(G)). Then S is a nil ring, hence a radical ring. By
2.5, (Aut(G), S, φ, ψ,σ) is a Fitting structure, and the associated wreath
product (Aut(G)) \ @_ is a group, by (46). Since Aut(G) Π S = 0, we
may identify its elements (>4, π) with their first components, the matrices
A. For A = (α,7) e (Aut((7)) \ ©„ we define

1J

(47) (

This gives a mapping aA of G X XG (n factors) into itself which can
formally be regarded as the multiplication of the row (g 1 ? . . ., gn) and the
matrix A. The properties of A imply:

(48) For gl9..., gn G G, 7 e {1,..., n}, there is at most one
/ e (1,...,«} such that g ^ ί Z(G), viz. i =jπ~1, where
7r is the permutation determined by A.

Therefore for g1 ?..., gn9 hv..., hn e G, j e {1,..., n} we have

i = l i - l / = 1 i = l

yielding

(49) For all A e (Aut(G)) \ @ , α^ is an endomorphism of

G X X G.

For A = (α l 7), ΰ = (A7)
 G (Aut(G)) \ @Λ, g l , . . . , gn e G and 7

{1,...,«}, we have, by (48)
n n 1 n \βkj n i n \βkJ

Πgf-^= π ΠίΛ* = π π*H
i - l / = 1 \ A : = 1 / A: = l \ / = 1 /

which implies

(50) aAaB = aAB for all ^,"5 e (Aut(G)) \ @π.

This and the obvious statement

(51) α7 = id, where / is the identity element of (Aut(G)) \ (Bn

s
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imply:

(52) Associating to each A e (Aut(G)) \ ©„ the automorphism

aA yields a homomorphism i of (Aut(G)) I @w into

Aut(G X XG)(n factors).

If A e (Aut(G)) \ ®π such that aA = idGX... X G (n factors), then for all

i e {1,...,/i}, g%G

where g is in the / th place. Hence A = /. Thus we have

(53) t is injective.

Finally we claim

(54) i is surjective.

To this end we define for all j e {1,...,«}

εy: G -> GX X G

(where g is in the yth place)

x x G
n

and put for all a e Aut(G x X(?)

^« := (α l 7) with α l 7 = β^δ. for /, y e {1,...,«}.

Then α l 7 is an endomorphism of G, and by [1, Satz 2] there is exactly one
m e @w such that, for ie{l , , . . ,/i}, α zV e Aut(G) and α l 7 e S for
7 ^ /V. Hence Aa e (Aut(G)) \ ®_. By (47), ^4

α = α, proving (54).

Summarizing, we have proved:

3.3. THEOREM. Let G be a direct indecomposable nonabelian group and
suppose Z(G) is finite. Let n e N andput S:= Hom(G, Z(G)). Then

Aut(GX ••• X ( ? ) s (Aut(G))
IS

If G satisfies the additional condition Hom(G, Z(G)) = 0 (which is in
the finite case equivalent to (\G/G'\9 \Z(G)\) = 1), our Theorem yields via
(45) the well-known statement:

AutίG X XG) = (Aut(G)) \ ®Λ.
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