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In the last fifteen years a large mumber of classes of isocompact
spaces were investigated by many mathematicians. In this paper we
introduce a new large class (i.e. the class of k-neat spaces) of isocompact
spaces. This class contains all of the following classes: neighborhood
F~spaces, spaces satisfying property § L, weakly [ w,, 00)’-refinable spaces,
80-penetrable spaces and pure spaces. Other properties of this class are
also investigated. For example we show that an «;-compact w,-neat
T,-space is a-realcompact and k-neatness is an inverse invariant of maps
under some conditions. In the last section we consider compactness of
isocompact spaces having a countably compact dense subset.

1. Introduction and preliminaries. A space is said to be isocompact
if every closed countably compact subset is compact [2]. Since Bacon’s
paper [2], many isocompact classes have been found. In this paper we
introduce a new large class (i.e. the class of k-neat spaces) of isocompact
spaces. This class properly contains the class of neighborhood %spaces
[7], spaces satisfying property 6L [6], weakly [w,, co)’-refinable spaces
[21], 86-penetrable spaces [4], and pure spaces [1]. By this concept we can
neatly review many results in the area of isocompactness.

In the second section the definition of k-neat spaces is given for an
infinite cardinal k. It is proved that every k-neat space is isocompact and
every w,-compact w;-neat T;-space is a-realcompact (i.e. closed complete).
These two theorems strengthen many results in this area. Behavior of
k-neat spaces under some operations is investigated in the third section,
and we give an example which demonstrates that neat spaces are strictly
weaker than the isocompact classes listed above. In the fourth section we
consider isocompact spaces having a countably compact dense subset, and
provide conditions for such a space to be compact. As one case we show
that a regular 7, isocompact space is compact if it is represented as the
union of a countably compact dense subset and an almost realcompact
dense subset.

In this paper all maps are assumed to be continuous.

The rest of this section is devoted to some definitions used in the
following sections. We denote by w(w,;) the first infinite (uncountable)
cardinal and #( X) denotes the power set of a set X.
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DEerINITION 1.1. [7] [13] A space X is called an Fspace if there is a
function B: w X X = 2(X) such that the following are true:

(1) Foreach n € w and x € X, B(n + 1, x) C B(n, x), and for each
x€ X,N,.,B(n,x)={x}.

(2) A subset U C X is open if and only if, for each x € U, there
exists n, € w such that B(n,,x) C U.

(3) If Fc X is closed and x & F, then there exists n € w such that
for each y € B(n,x) — {x}, there exists n, € & such that {x,y} &
UfeFB(ny’f)'

We say X is a neighborhood %space if B(n, x) is an open neighbor-
hood of x foreach n € w and x € X.

We denote by Card the class of all infinite cardinals. For a collection
¥ of subsets of a set, w¥” is the set of unions of countable subcollections
of 7.

DEerFINITION 1.2. [6] For k € Card, and % and ¥  collections of
subsets of a space X, we say ¥~ is k-weakly cushioned in % if and
only if there exists a function f from ¥~ to % such that if #'C ¥~ with
|# | <k and x: #'— U# with x(G) € G for each G € #°, then
(x(G): Gew )} cUf(#).

DEeFINITION 1.3. [6] For £ € Card, we say a space X satisfies property
0kL if and only if for every open cover % of X there exists a sequence
(92,: n € w) of collections of subsets of X and a sequence (¥,: n € w)
of open refinements of % such that U,. 9, covers X and for each
n € w, U2,cU”, and 9, is k-weakly cushioned in w¥;, in the space
U7,

n

We shall refer to property fwL as property 6L.

Spaces satisfying property L [2] and weakly §6-refinable spaces [19]
satisfy property 0L [6, Theorem 2.2, 2.3]. For # a collection of subsets of
aspace X and x € X, set I(x, Z) =N{B: B € %, x € B} and ord(x, #)
denotes the cardinality of the set { B: B € #, x € B}.

DErFINITION 1.4. [4] We say that an open cover U, ., 7, of a space X
is a f-penetration (resp. 86-penetration) of a cover Z of X if, for every
x € X,NI(x,7;): n € wand 0 < ord(x,7,) < w} C U for some U € ¥
(resp.{ I(x,7,): n € wand 0 < ord(x,¥}) < w} C U for some U € %),
and that X is #-penetrable (resp. §6-penetrable) if every open cover of X
has a #-penetration (resp. §8-penetration).
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Spaces with a point countable separating open cover and weakly
d6-refinable spaces are 86-penetrable [4, Remarks 2.1].

DEFINITION 1.5. [21] A space X is said to be weakly [w,, c0)"-refinable
if for any open cover % of uncountable regular cardinality there exists an
open refinement which can be expressed as U, . ¥, where |I'| < || and
if x € X there is some y € T such that 0 < ord(x,¥}) < |%|.

Obviously weakly 86-refinable spaces are weakly [w,, 00)"-refinable.

A cover =U,., &, of a space X is called an interlacing if for each
newand Ue g, Uisopenin & where &} = U(E: E € &,}. Let #
be a family of subsets of X. We say that an interlacing &= Ué&, is
8-suspended from s if for each n € w and x € &F there exists a

countable subfamily # of J such that St(x,&8,) N (NF) = 2.

DEFINITION 1.6. [1] A space X is said to be pure (ultrapure) if for
each free closed ultrafilter(filter) /£ on X with countable intersection
property (c.i.p.) there exists an interlacing on X that is d-suspended from
H.

Ultrapure and astral spaces [1], spaces with a quasi-G;-diagonal [15],
almost realcompact spaces [10], weakly Borel complete spaces [17] and
a-realcompact spaces [9] are all pure.

2. k-neat spaces. Define for each free closed ultrafilter # on X
with ci.p., A(J) = min{|F|: FC H#,NF= @}. A(SF) is an uncounta-
ble regular cardinal.

DerINITION 2.1. Let 5# be a free closed ultrafilter on X with c.i.p.
and k € Card. A system ({X,}, {7;},{£,}),cr is called a k-neat
system for 5 if the following are satisfied:

(1) [T} < A(#).

(2) { X,},<r is a cover of X and ¥ is an open collection of X such
that X C ¥ * foreachy € T.

(3) Each £, is a function from X, to ¥} suchthatif 4 C X, [4| < k
and f |4 is injective, then the closure of 4 in ¥}* is contained in
Usedf, (%)

(4) For each y €Tl and x € X, there exists H € 5 such that
f(X)NX,NH=2.
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A space X is called a k-neat space if for each free closed ultrafilter 5#°
on X with c.i.p. there exists a k-neat system for #. We shall refer to an
w-neat space as merely a neat space.

A k’-neat space is k-neat if k' > k. It is easily seen that for all
k € Card, a space X with countable tightness is k-neat if and only if X is
neat.

LEMMA 2.2. [4, Lemma 2.2] If 5 is a free closed ultrafilter on X with
c.i.p. and if ¥'=U,.,¥, is a O-penetration (resp. 86-penetration) of
%= {X— H: HeEJX)}, then ¥ has a subcover that is a weak @-refine-
ment (resp. weak 80-refinement) of %«.

PROPOSITION 2.3. The following spaces are neat. Moreover, the implica-
tions (a) — (b) and (d) — (e) hold.

(a) neighborhood spaces.

(b) spaces satisfying property GL.

(c) weakly [w,, 00)’-refinable spaces.

(d) 80-penetrable spaces.

(e) pure spaces.

Proof. (a) — (b) Let % be any open cover of X, and set S = {x € X:
x €U, x_yB(n,z) for each n € w and x € U € #}. We note that S
is a discrete subset of X. Take x € §, and select U, € % such that
x € U,. For x and X — U, there exists n, € w corresponding to (3) of
Definition 1.1. We may assume B(n,, x) C U,. Since for y € B(n,, x) —
{x} there exists n, € w such that {x, y} €U, x_ B(n,, 2), it follows
from x €U,y B(ny,z) that y €U,y B(n,,z). So y & S for
any y € B(n,,x) — {x}. Thus § is discrete in X. Set 9, = {{x}:
x €S8}, ¥y={B(n,,x): x €S} and define a function f, from 2, to
¥, such that f,({x}) = B(n,, x). 9, is k-weakly cushioned in ¥7, in the
space ¥,* for any k € Card.

For x € X — S we can take U € % and n, € » — {0} such that
x€U and x €Uzcx_y B(n,,z). Put X,={x€X—-8: n, =n)}.
Obviously X — S =U?_, X,. Set 2, = {{x}: x€ X}, ¥,={U;: x €
X, } and define a function f, from 2, to ¥, such that f,({x}) = U, for
n > 1. It is easily proved that 9, is k-weakly cushioned in ¥, in the
space ¥,* for k € Card. Thus X satisfies property 0kL.

(b) Let 5# be a free closed ultrafilter on X with c.ip.. Then
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%= {X-— H: He s} is an open cover of X. For this % there exist
sequences (9,: n € w) and (¥,: n € w) of Definition 1.3. Let f, be a
function of Definition 1.2 from 2, to w¥,. We may assume that each 9,
is a disjoint collection and each f, is injective. Put X, = 2*. For each
n € w and x € X, there exists uniquely D, € &, such that x € D,. Put
W,.=f(D,), #,={W, x € X,} and define a function g, from X, to
¥, such that g,(x)= W,. ({X,},{#.},{8,}),c. is a desired neat
system for 5.

(c) Let 5 be a free closed ultrafilter on X with c.i.p. We take a free
subfamily % of S such that |#| = A(5¢). Since the cardinality of the
open cover % = { X — F: F € %} is uncountable regular, there exists an
open refinement ¥=U_ ¥, of # such that |[I'| < A(5¢) and for each
x € X there exists Y € I' such that 0 < ord(x,¥,) < A(5¢). Now for
each yET we put X, ={xe€X: 0<ord(x,%9) <A(H#)}, ¥, =
{St(x,9,): x € X,} and define a function f, from X, to ¥ such that
f(x) =St(x,9,). <{XY}, {7}, {fy}>yel" is a k-neat system for ¢ for
k € Card. Hence X is k-neat for k € Card.

(d) = (e) Let 5 be a free closed ultrafilter on X with ci.p. By
Lemma 2.2 the open cover { X — H: H € 5} has a weak §6-refinement
U=U,. %, Put X,={x€ X:0<ord(x,%, <w) for n € w. If we
set &,={X,NU:U€,}, then £=U,, ., &, is obviously an interlac-
ing on X that is §-suspended from 7.

(e) Let 5% be a free closed ultrafilter on X with c.i.p. Since X is pure,
we can obtain an interlacing £=U,. &, on X which is 8-suspended
from 5. For each n € w and E € &, we take an open set U(E) of X
such that U= U(E)N&}. Now for each n € w put X, =86 ¥, =
{St(x, #,): x € X}, where #, = {U(FE): E € &,}, and define a function
f, from X, to ¥, such that f,(x) = S(x, ). ({ X,}, {7}, {fi})new
is a desired k-neat system for 5 for k € Card. Hence X is k-neat for
k € Card.

Davis asked in [7, Question 4.2] whether every (neighborhood) %space
satisfies property 6L. The above implication (a) — (b) affirmatively
answers the question in the case of neighborhood Fspaces. The following
lemma is easy.

LEMMA 2.4. Let Y be a closed subspace of a space X, and F be a free
closed ultrafilter on Y with c.i.p. Then #= {H: H is closed in X and
H N'Y € F} is a free closed ultrafilter on X with c.i.p. and N(F) = A(3¥)
holds.
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LEMMA 2.5. Every closed subspace of a k-neat space is k-neat.

Proof. Let Y be a closed subspace of a k-neat space X, and & be a
free closed ultrafilter on Y with c.i.p. By Lemma 2.4 5= { H: H is closed
in Xand HN Y € %} is a free closed ultrafilter on X with c.i.p. and
A(F) = A(5¢). We take a k-neat system for 5. We naturally restrict the -
system to Y. It is easily seen that the restricted system is a k-neat system
for #.

THEOREM 2.6. A neat space is isocompact.

Proof. By the above lemma we show that a countably compact neat
space is compact. Suppose that there exists a countably compact non-
compact neat space X. Since X is not Lindelof, X has an open cover %
which has no countable subcover. We take a closed ultrafilter 5 on X
containing { X — U: U € %}. Now 5 is a free closed ultrafilter on X
with c.i.p. There exists a neat system ( {(x,}, {7} {/, }> ,er for . By
the fact |I'| < A(5¢) we can get vy, € I such that X, N H # & for any
H € 5. We fix this y,. There exists F € 5 such that F C ¥ * because
X - ¥ * & By the way of the selecting of y, we can obtain a
countable subset 4 = {x,: n € w} of FN X, which satisfies f, (x,) N
{x;; j=n+1} = @ for any n € w. Take an w-limit point x of 4 (ie.
any neighborhood of x contains an infinite subset of A.). Since F is
closed, x € F C ¥ *. Hence x € U, f,(x,). This contradicts the fact
that x is an w-limit point of 4.

COROLLARY 2.7. The following spaces are isocompact.
(1) neighborhood %spaces. [13, Theorem 3.11]

(2) spaces satisfying property 0L. [6, Theorem 2.4]

(3) weakly [w,, ) -refinable spaces. [21, Corollary 3.3]
(4) 80-penetrable spaces. [S, Theorem 3. B]

(5) pure spaces.]1, Theorem 5]

Proof. Apply Proposition 2.3 and Theorem 2.6.

Though an Fspace is isocompact [13, Theorem 3.11], the author does
not know whether an Fspace is neat. The method of the proof of
Theorem 2.6 leads to the following theorem, whose proof is omitted. A
space is said to be w,-compact if the cardinality of every closed discrete
subset is countable.
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THEOREM 2.8. An w,-compact w,-neat T,-space is a-realcompact.

COROLLARY 2.9. The following spaces are a-realcompact if they are
w,-compact T;-spaces.

(1) spaces satisfying property Qw,L. [6, Theorem 2.5)

(2) weakly [w,, 0)"-refinable spaces. [21, Corollary 3.6]

(3) 80-penetrable spaces. [4, Corollary 2.5]

(4) pure spaces.

Proof. Apply Proposition 2.3 and Theorem 2.8.

3. Mapping theorems and an example. The following lemma is
easy.

LeEMMA 3.1. Let f be a closed map from X onto Y with Lindelof fibers
and F be a free closed ultrafilter on X with c.i.p. Then = {H: H is
closedin Y and f~'H € %} is a free closed ultrafilter on Y with c.i.p. such
that N(F) = A(F).

THEOREM 3.2. Let f be a closed map from X onto a k-neat space Y. If
each fiber of f is Lindelof, then X is k-neat.

Proof. Let % be a free closed ultrafilter on X with c.i.p. Then by the
above lemma #= { H: H isclosed in Y and /™ 'H € %} is a free closed
ultrafilter on Y with c.ip. such that A(F) = A(5¢). We get a k-neat
system <{Yy}, {7}, {g7}>yer for 5. Put X =f'Y, W, = (W,
x € X}, where W, = f~'(g,(f(x))), and define a function %, from X,
to %, such that h (x) = W, for each y € . It is easily seen that the
system < {(x,}, {7}, {h7}>y€1" is a desired k-neat system for %.

COROLLARY 3.3. A perfect preimage of a k-neat space is k-neat.

LeMMA 3.4. [14] Let ¥ be a free closed ultrafilter on X with c.i.p. If B
is a Borel set of X, and if B contains no member of 3, then there exists
H € 5 suchthat HN B = @.

A space is said to be Borel complete [12], if every Borel ultrafilter on
X with c.i.p. is fixed.
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THEOREM 3.5. Let f be a map from X onto a Borel complete T,-space Y.
If each fiber of f is k-neat, then X is k-neat.

Proof. Let # be a free closed ultrafilter on X with cip. Set
% = { B: B is a Borel set of Y such that f7'B O H for some H € 5#}. It
follows from Lemma 3.4 that & is a Borel ultrafilter on Y with c.i.p. So
N% = {y) for some y € Y (i.e. fly € ). Put E=f"'y and H#|E =
{EN H: He€}. We can easily see that 5#|E is a free closed ultrafilter
on E with c.i.p. such that A(5#) = A(H#|E). Let ({ E, }, {7} }, {g,}), 1
be a k-neat system for #|E. We extend this system in the following
manner. Set #, = {V U X — E: V € ¥} and define a function 4, from
E, to #, such that h (x) = g,(x) U X — E for each y € T. We get a
system consisting of {E,, X —E: ye '}, {#,, (X - E}: ye '} and
{h,, j: Y € '}, where j is the trivial function from X — E to { X — E}.
This system is a desired one for 7.

COROLLARY 3.6. A product of a Borel complete T,-space and a k-neat
space is k-neat.

The same method of the proof of Theorem 3.5 leads to the following
theorem, whose proof is omitted.

THEOREM 3.7. Let f be a closed map from X onto an a-realcompact
T,-space. If each fiber of f is k-neat, then X is k-neat.

ExaMPLE 3.8. We give a neat space that is not an Zspace, not a pure
space, not a weakly [w,, oo)"-refinable space and not satisfying property
fL. Let X be an hereditarily separable non-Lindelof space constructed in
[16] under the continuum hypothesis. X is a f-penetrable space (hence a
neat space) that is not weakly 86-refinable [4, Remarks 2.1.(b)]. X is not
even weakly [w,, co0)"-refinable because the cardinality of X is w,. More-
over X does not satisfy property L by [6, Theorem 2.8], and X is not an
Fspace by [13, Theorem 3.3]. Let Y be the Tychonoff space mentioned in
[11, 9L]. Since Y is a P-space (i.e. Gg-sets are open), it is neat. Since Y is
an w,-compact non-a-realcompact space {4, Remarks 2.7], by Corollary
2.9 (4), Y is not pure. By Corollary 3.6 X X Y is neat because X is
hereditarily realcompact (hence Borel complete [12, Theorem 3.6]). Obvi-
ously X X Y is not an Fspace, not a pure space, not a weakly [w,, 00)’-
refinable space and not satisfying property 6L.
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REMARK 3.9. The above space Y answers some questions in [6] and
[8]. Since a P-space satisfies property L, Y affirmatively answers Question
3.3, 3.4 and 3.5 in [6], because Y is an w,-compact non-a-realcompact
P-space (as mentioned in Example 3.8) which is not weakly §6-refinable
by [3, Corollary 3.3]. Question 3.3 in [6] was already answered in [8,
Example 2.2}, but the space is not regular though it is T,. The space Y
negatively answers Question 4.2 in [8]. Because an w,-compact P-space
must be preparacompact.

4. Isocompact spaces having a countably compact dense subset. In
this section we shall consider the following question. When are isocom-
pact spaces having a countably compact dense subset compact? For this
question we can obtain some answers from already known results. For
example the next proposition holds.

LeMMA 4.1. Let % be an open cover of a countably compact space X. If
there exists an interlacing €=U, . , &, on X such that, for eachn € w and
x € EF, SU(x, 8,) C ¥ * for some countable subfamily ¥"C %, then U has
a finite subcover of X.

Proof. This lemma is proved the same way as [19, Theorem 1.1].

PROPOSITION 4.2. The following spaces are compact if they are regular
T,-spaces having a countably compact dense subset.

(1) weakly Borel complete spaces.

(2) spaces satisfying property QL.

(3) 80-penetrable spaces.

(4) ultrapure spaces.

Proof. (1) is due to [18, Theorem 2.1]. We prove the case of (2). Let
be any open cover of X and ¥~ be an open cover of X such that for each
V € ¥ there exists U € % such that ¥ € U. For this ¥, since X satisfies
property L, we can take sequences (Z,: n € w) and (¥}: n € ) in
Definition 1.3. Let Y be a countably compact dense subset of X. If we
restrict the discussion of [6, Theorem 2.4] to Y, we can obtain a countable
subfamily %~ of ¥~ which covers Y. So Y is covered by a finite subfamily
of # . Since Y is dense in X, we can take a finite subcover of X from %.
(3) and (4) are similarly proved by [S5, Theorem 3.B] and Lemma 4.1
respectively.

A space is said to be CL-isocompact [18] if the closure of every
countably compact subset is compact. Since each property of Proposition
4.2 is closed hereditary, we get the following corollary.
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COROLLARY 4.3. The following spaces are CL-isocompact if they are
regular T,.

(1) weakly Borel complete spaces.

(2) spaces satisfying property GL.

(3) 80-penetrable spaces.

(4) ultrapure spaces.

For a general case we shall prove the next theorem.

THEOREM 4.4. Let X be a regular T, isocompact space. If X is
represented as the union of a countably compact dense subset X, and an
almost realcompact dense subset X,, then X is compact.

Proof. Firstly we show that X is almost realcompact. Let % be an
open ultrafilter on X, and suppose that % has c.i.p. Put | X, = {U N X,:
U € %). Then it is easily seen that %|X, is an open ultrafilter on X,. If
U| X5 has c.ip., then N%|X;? # @ by almost realcompactness of X,.
Hence N #+ @. If X)X, XX} has not c.ip., then there exists a countable
subfamily ¥"'C % such that (N¥") N X, = @. Since N is countably
compact closed in X, it is compact. So we get N\% # @. Thus X is almost
realcompact. Now we consider the absolute EX of X [20]. Since EX is
realcompact [20, Theorem 4.6] and pseudocompact, it is compact. We
conclude that X is compact.

COROLLARY 4.5. Let X be a regular T, neat space. If X is represented
as the union of a countably compact dense subset and an almost realcompact
dense subset, then X is compact.

EXAMPLE 4.6. We cannot omit the regularity of Theorem 4.4. Let X
be Tychonoff plank [11] (i.e. X =w; + 1 X w + 1 — {(w;,w)}) and Y be
the space obtained from X by contracting w; X {w} to the one point.
Though this T,-space Y satisfies all conditions of Theorem 4.4 except the
regularity, Y is not compact.
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