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Let x be an irreducible character of a finite group G and let f be

the smallest integer such that {x(x)|x € G} C Q(j\l/f ). The question
raised by W. Feit is: Does G contain an element of order f. In this
article we given an affirmative answer to the question for solvable

groups.

Introduction. Let G be a finite group and x an irreducible complex
character of G. Denote by Q(x) the field obtained by adjoining the values
of x to the rational number field Q. For every positive integer m we
denote by Q,, the field Q(w), where w is a primitive mth root of unity.
Finally, denote by f(x) the smallest positive integer f for which Q(x) C
Q.
! The following question has been raised by Walter Feit (see e.g. [4] p.
178): Let x be an irreducible complex character of a finite group G, does
G contains an element of order f(x)?

In this article we show that if G is solvable the answer to the question
is positive. Before stating this result we survey the known positive answers
to the question.

Brauer ([3] Corollary 4) gave an affirmative answer in the case that
f(x) has the form f(x) = plps? --- ptx where «, > 2 for all i and the
p,’s are primes. There is no restriction on G. In [5] Gow gives an
affirmative answer in the case that G has odd order with no restriction on
f(x)- In [1}, Brauer’s and Gow’s methods are generalized and an affirma-
tive answer is given (Theorem 2.2 of [1]) in a case of which both Brauer’s
and Gow’s cases are special cases. Also, it is fairly easy to prove ([2]) that
if f(x) has the form f(x) = p°®, p and g primes, the answer is also
positive. The main result of this paper is:

THEOREM. Let G be a finite solvable group and x an irreducible
complex character of G, then G contains an element of order f(x).

Most of our notation is standard and taken mainly from [6]. Some
other pieces of notation will be introduced as we go along.
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2. Preliminaries and proof of the theorem. The notation o(a) will
be used to denote the order of the element a of a group. If G is a finite
group and x € Irr(G) we let 7(x) = { p|p a prime divisor of f(x)}. For
each p € «(x) we fix a generator, o,(x) of the cyclic group Gal(Q,/Q,,,),
where f = f(x). By Galois theory we have that

-
o(o,(0)) = {ﬁ -1 ;f; |+j;

We note that if p? t f then p # 2. It is clear from the definitions that for
all p € 7(x) we have that x%® # x.

LEMMA 1. Let H be a subgroup of the finite group G, x € Irt(G) and
Y € Irt( H).

(@) If Q(x) € Q(¥) then f()Nf(¥).

() If Q(4) € Q(x) and y»X +y for all p € m(X), then f(x) =
().

Proof. If Q(x) € Q(¢¥) then Q) C Q,,, and (a) follows. As %X
# ¢ is equivalent to Q(¢) € Qy,,,, We get that (b) holds.

PROPOSITION 2. Let x € Irr(G), f= f(x) and 7w = 7n(x). If G con-
tains no element of order f(x) then there exist p € m such that:

(a) p* t f, and

(b) x> = x" for some v € Gal(Q,/Q,).

Proof. Let o, = o,(x) for each g € 7 and set ¥= Gal(Q,/Q). De-
note by A4 the abelian subgroup of the ring of class functions of G that is
generated by {x°lo € ¢}. Foreach 0 € 4 and a € 4 define a - 0 = a°.
Then A becomes a Z%module, where Z is the ring of integers.

Let g € G. Then o(g) is not divisible by the full g-part of f for
some g € 7. Then a(g)% = a(g) for all « € 4. It follows thatif B € 4 -
(0, — 1) then B(g) = 0. Since each g € G has such a g €7, we get
that if B€4-I1 ,(o,— 1), then B(g)=0 for all g G. This
shows thatII . ,(o, — 1) annihilates 4 and in particular it annihilates x.

Let 7, be a subset of # minimal such that x - I1,, (0, — 1) = 0.
Let p be the largest prime in 7, and set m =7, — { p}. Write ¢ =
M,c.(6,— 1), then x-(g, — 1)e=0 and the minimality of m,
implies that x - ¢ # 0. Hence x - 6,¢ = x - ¢ # 0. An irreducible constitu-
ent of x - 0,6 = x% - ¢ has a form x - o,u = x - » where p, v are in the
abelian group B = (o /g € m). Thus x - 6, = x - vp~'. Let 7 = pp~', then
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x% = x" and 7 € B. We note that if ¢ € 7, then o, € Gal(Q,/Q,,,) ©
Gal(Q,/Q,) as g # p. It follows that 7 € B C Gal(Q,/Q,) as required.

Finally, we claim that p?+ f. For if p?|f, then o(o,) = p and the
equality x% = x” implies that p|o(7). On the other hand the maximality
of p implies that o(o,) < g <p for all o, € B. As 7 is a product of
elements of B we get that p + o(7), a contradiction.

DEerFINITIONS. (1) Let G be a finite solvable group. A p-chief factor of
G, K/L, is called distinguished if p +|G: K| There is in this case a
unique conjugacy class of complements of K/L in G, a complement being
a subgroup H of G such that G = KHand KN H = L, |H| <|G]|.

(2) If N<G and 6 € Irr(N) we define Irr(G|0) = {x € Irr(G) | [ x v, 0]
# 0}.

The next lemma sums up some known facts from character correspon-
dence theory that will be needed in the proof of the Theorem.

LeMMA 3. Let K/L be a distinguished chief factor of the solvable finite
group G and let H be a complement of K/L. Suppose that x € Irr(G) is
primitive. Then X x and x; have, each, a unique irreducible constituent,
and ¢ respectively, and there are just two possiblities:

(1) 0, = ¢. In this case the mapping p — |y is a bijection from
Irr(G|0) to Irt(H|¢). In particular: X, = & € Irt(H|p) and § and 6
together uniquely determine x. Thus if 6 € Gal(Q,,,/Q) and §° = § and
0° =0, then x° = x.

(i) 8, = e¢ with e* = |K: L|. In this case there is a canonically defined
bijection Irr(G|0) — Ire(H|¢). If x — & in this bijection then each of x
and § uniquely determines 6 and ¢ and so each determines the other. It
follows by Galois theory that Q(x) = Q(§).

Proof. See [6], [7] and [8].

PROPOSITION 4. Let G be a finite solvable group and x € Irt(G).
Assume that there exists no proper subgroup X of G and ¢ € Irr(X) such
that f(x) divides f({). For a p € m = w(x), let K/L be a distinguished
p-chief factor and let H be a complement of K/L. If 6, = 0,(x), then

(@) xg=§& € Irr(H) and £% = &.

(b) xx = ab, 0 € Irr(K), a a positive integer and 0% + 0.

(c) 8, = ¢ € Irri(L) and ¢ = ¢.

Proof. Assume that the Proposition is false and choose p as large as
possible to get a counterexample. Then the conclusions of the Proposition
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are false for some distinguished p-chief factor, K/L, and they hold for
distinguished g-chief factors for ¢ > p, g € .

If x is induced from some proper subgroup X of G, say x = ¢¢,
¢y € Irr(X), then Q(x) C Q(¢) and so f(x) divides f(i). This is a
contradiction. Thus x is primitive so we apply Lemma 3. Hence x , = af
for some 6 € Irr(K) and a natural number a. Let ¢ be the unique
irreducible constituent of x ;. If §, = e¢ with e? = |K: L| then there is a
£ € Irr(H) with Q(x) = Q(§). Therefore f(x) = f(§), a contradiction.
Thus 0, = ¢ € Irr(L) and x ,; = & € Irr(H).

Now Q(§) € Q(x) but f(£) # f(x) and thus there exist ¢ € = with
£% = £ (see Lemma 1). Note that £, = x; = a¢ and hence ¢% = ¢. Since
x% # x and x is uniquely determined by £ and 6, we must have 6% # 6.
If g=p, then K/L is not a counterexample contrary to hypothesis.
Therefore g # p.

Next (§%),; = ¢ = ¢ and so 6 and % are two distinct extensions of
¢ and hence 6 and 0% are two distinct irreducible constituents of ¢*. By
[6] Corollary 6.17 we get that 8% = Af for some A € Irt(K/L), A # 1.
Since o(A) = p # g we have that A% = A. Thus for every positive integer
k we have §(°° = G\ By taking k = o(o,) we obtain that § = §\* and
hence \* = 1 by (6.17) of [6]. It follows that p|o(a,). Recall that o(s,) = ¢
or ¢ — 1 and p # q. Therefore pj|g — 1 and g > p.

Hence, if K,/L, is any distinguished g-chief factor, then the conclu-
sions of the Proposition hold. This means that x x = aof,, (8,),, = %o,
05 + 6,, ¢ = ¢, where 0, € Irr(K,), ¢, € Irr(L,) and a, is a positive
integer. If ¢||G: K|, then we can choose K,/L, with K C L,. Then
X1, = aoPo and s0 al = x x = ay($,) x and hence (§y) x = (a/a,)0. Since
¢y = ¢, we get that 8% = 0, a contradiction. Therefore g + |G: K| Now
we choose K /L, with K, C L and as above we get that ¢ is a multiple
of 6,. But ¢% = ¢ and this yields (8,)% = §,, a contradiction. This
completes the proof.

Proof of the Theorem. Let G be a minimal counterexample. If G
contains a proper subgroup H with ¢ € Irr( H) such that f(x)|f(y), then
by induction H contains an element 4 with o(h) = f(). Then there exist
g € (h) with o(g) = f(x), a contradiction. Hence G satisfies the assump-
tions of Proposition 4 and therefore its conclusions. Set f = f(x), 7 =
7(x) and o, = o,(x) for all ¢ € 7. By Proposition 2 we can choose p € =
with p* + f and 7 € Gal(Q,/Q,) such that x% = x". Clearly p # 2. Let
K/L be a distinguished p-chief factor and H a complement of K/L.
Then by Proposition 4 we get: x,=§, xx=al, 0, = ¢ where § €



CHARACTER VALUES OF SOLVABLE GROUPS 261

Irr(H), 6 € Irr(K), ¢ € Irr(L) and a a positive integer. Moreover £% = £,
% = ¢ but 0% + 6.

Since ¢% = ¢, we have that Q(¢) C Q,,, and as p? t f we conclude
that ¢ is p-rational. As p # 2, Theorem (6.30) of [6] implies that ¢ has a
unique p-rational extension p € Irr(K). As 8, = u; = ¢ we get by (6.17)
of [6] that 8 = Ap for some A € Irr(K/L). Note that ¢ and p uniquely
determine each other so that Q(p) = Q(¢) € Q(8) € Q(x) € Q,. Also
p% is a p-rational extension of ¢%» = ¢ and by the uniqueness we have
p = p.

Note that A(g) € Q, forall g € K/L and so A" = A. Also, o, agrees
with 7 on Q(x). Since Q(8) C Q(x), this yields

0% =0"=(Ap) =ANu" =Ap%>=Ap=0.

This contradiction completes the proof.
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