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The decomposition of the reducible unitary principal series of a
connected semisimple Lie group having real rank one and a simply
connected complexification is exhibited on a global analytic level in such
a way that it is seen to correspond to a phenomenon in classical Fourier
analysis. this is done by embedding limits of discrete series representa-
tions via a group equivariant passage to boundary values analogous to the
classical Hardy space inclusion used by Bargmann in the case of SL(2, R).
The boundary value map is shown to be a factor of the projection
operator given by the Knapp-Stein intertwining operator. From a repre-
sentation theoretic view, while these decompositions are already known,
the method of computing the leading term of the asymptotic expansion of
matrix coefficients is new and does not require a K-finiteness assump-
tion.

1. Introduction and preliminaries. The decomposition of represen-
tations in the unitary principal series of a connected semisimple Lie group
G having real rank one and a simply connected complexification is well
understood [10], [11]. In particular, Knapp and Wallach having used
Szegd kernels to decompose all reducible unitary principal series represen-
tations as sums of limits of discrete series representations [11, §12]. In this
paper we exhibit these reducibility results on a global analytic level by
explicitly embedding limits of discrete series representations in the reduci-
ble principal series. This is achieved by realizing the representations in
question in suitable function spaces and providing a group equivariant
passage to boundary values analogous to the Hardy space inclusion of
H?*(R) in L?(R) that was used by Bargmann in the case G = SL(2, R) [1]
and Knapp and Okamoto [9] more generally in the case of limits of
holomorphic discrete series.

Throughout this paper we assume that G satisfies the properties listed
above. Furthermore, from the point of view of exhibiting reducibility
results, there is no loss of generality in assuming that G has a compact
Cartan subgroup T C K where K is a maximal compact subgroup of G
corresponding to a Cartan involution § [10, p. 543-544]. Then G has
discrete series &2(G) [5]. To each nonsingular integral form A on the Lie
algebra t of 7, Harish-Chandra associates an invariant eigendistribution
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©®, [4, Theorem 2] and proves the existence of a discrete series representa-
tion (7, H*) with character ®, [5] and that these representations exhaust
&*(G); we call A a Harish-Chandra parameter.

Let g and f denote the Lie algebras of G and K, and let A
(respectively A,, A,) denote the roots (respectively compact roots, non-
compact roots) of (g€, t€). Normalize root vectors E, (@ € A) according
to [6, 155-156]. If A is a Harish-Chandra parameter we order A so that A
is A*-dominant; A" is thereby uniquely determined. If instead the in-
tegral parameter A is singular, but not orthogonal to any compact root, it
is easy to see that there is a noncompact root a for which { +a} is
precisely the set of roots orthogonal to A [11, Lemma 12.5]. For such a
parameter, called here a limit Harish-Chandra parameter, there are two
possible choices of positive roots A* for which A is A*-dominant.
Whichever the choice, the unique positive root orthogonal to A is non-
compact and simple [11, Lemma 12.5].

Let A be either a Harish-Chandra parameter or a limit Harish-
Chandra parameter. Order A so that A is A*-dominant and put &
= 3Lpca® 8, = 13X, csra and 8, =08 —§,. Let a; be any simple
noncompact root if A is nonsingular and the unique positive root or-
thogonal to A (hence also simple noncompact) if A is singular. Then « is
a fundamental sequence of positive noncompact roots in the sense of [11,
§4] and ¢, determines an Iwasawa decomposition G = ANK with the Lie
algebra a of 4 given by a=R-(E, + E_,) and E, + E_, in the
positive chamber of a. Observe that if A is singular, the Iwasawa
decomposition does not depend on which of the two possible systems of
positive roots A* that is used. Let M (respectively M’) denote the
centralizer (respectively normalizer) of 4 in K and denote by P the
minimal parabolic subgroup MAN of G. Let A = A — §, + §, be the
Blattner parameter corresponding to (A, A*). Thus, when A is nonsingu-
lar, A = A(A) is the lowest K-type in m,. Even when A is singular, A is
integral and A} -dominant [11, p. 198]; the Blattner parameter A’ corre-
sponding to (A,A"’), where A" = (A"—{ay}) U {-a,} is the other
possible positive root system, is given by A’ = A — «,. For p integral and
A7 -dominant let (7,,V,) denote an irreducible unitary representation of
K.

A convenient realization of the discrete series representation 7, (A
nonsingular) is one the space of square integrable functions in

(1.1) ¢=(G,1,)
= (F e C=(G,1,)|F(kg) = 1\(k)F(g),k € K, g € G}
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that are annihiliated by a certain first order elliptic differential operator
2, {13, 14] (A = A(A)).

For v € Homg(a,C) = a¢ and (o, H) a irreducible unitary represen-
tation of M, let U(o:v) denote the nonunitary principal series representa-
tion realized in the compact picture on L*(K, ) (cf. §2). In [11] Knapp
and Wallach associate to the parameter A (and the ordering A™ if A is
nonsingular) an irreducible unitary representation (o,, H,) of M with
highest weight A and H, C V, (A = A(A, A™)), a parameter »(A) in ag,
and an integral formula S, defined on the dense subspace

(1.2) C*(K,o0,)
= {f € C=(K, H,)|f(mk) = o,(m)f(k), m € M, k € K]
of L*(K,0,) by

(1.3) Syf(x) = /K n(k)f(kx)dk  (x € G).

The dependence on v(A) is incorporated into the extension of f to G
required for formula (1.3) (cf. §2). The point is that S, carries C*(K, g,)
G-equivariantly into the kernel of &, in C*(G,r,) and thus provides a
quotient map of U(o,: »(A)) onto m, when A is nonsingular. When A is
singular, the two Blattner parameters A and A’ give rise to equivalent
M-types o, and o,, and the formulas for both »(A) and »(\’) reduce to p
(cf. §2). The unitary principal series representations U(o,: p) and U(o,.:p)
are therefore equivalent. Nevertheless, their images under the Szegdé maps
S, and S, respectively have lowest K-types A and A’ = A — a, respec-
tively and so are independent limits of discrete series representations.
Knapp and Wallach showed that the unitary principal series represen-
tation U(o,:p) is infinitesimally equivalent with the direct sum of the
K-finite images of U(o,:p) and U(o, :p) under S, and S, respectively
[11, Theorem 12.6]. The completeness result that all reducibility of the
unitary principal series may be so accounted for is Theorem 12.7 of [11].
In this paper we will establish this decomposition in a global analytic
fashion by means of a boundary value embedding ¥ carried out in §3.
The point is that, although lim,_, S, f(a) =0 for f in C*(K,o0,), we
can write S, f(a) = c¢(f)e ?'°8? + lower order terms, with ¢(f) # 0 in
general. The boundary map is then defined by the constant term in the
expansion of e?'°84S, f(a) after projecting by E, from ¥, onto H,:

(1.4) L(S,f)(k) = Exe(U(oy:p:w k) f)

where w is a certain representative of the nontrivial Weyl group element.
The bulk of §3 is devoted to establishing the finite, generally non-zero
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limit in (1.4). The main tools in this analysis were developed in [10], which
we quote frequently. Particularly important for our purposes are the mean
value property [10, Proposition 20]

(1.5) f ACN dv =0

c<jvi<d ‘Ul

and another result of Knapp-Stein which we include here as Lemma 3.1.
Some consequences of the proof of this lemma, such as Proposition 3.3
and 3.4, may be of independent interest. The final limit result needed to
define & is given in Theorem 3.14. In Theorem 3.16 it is shown that &
maps the limit of discrete series represenation with lowest K-type A
G-equivariantly into U( o, : p).

Embedding theorems for limits of discrete series for the classical real
rank one groups were given in [12]. In addition to the greater generality of
the present paper, the results given here may be of interest through their
relationship with the Knapp-Stein intertwining operators. These were
given in [10] where it is shown [10, p. 517] that in the noncompact picture
% (o,:p) the intertwining operators consist of linear combinations of the
identity and the convolution operator with kernel |v| %o, (vw)~'. We show
in Theorem 3.16 that the composition

LN R Limit of < .Y )
Z(oy:p) = Uloy:p) = Discrete Series Ulor:p) = (oy:p)
(cf. §2 for the definition of W) is indeed of the type described.
Some of these results were announced in [2]. It is a pleasure to thank

Professors A. W. Knapp and N. R. Wallach for their valuable suggestions.

2. The Szego integral. Let A be a limit Harish-Chandra parameter.
Order A so that A is A*-dominant and let «,, 4, and a be as defined in
§1. Let @ denote the restricted roots of g with respect to a; for y € ® let
g” denote the corresponding restricted root space and set y € ®* if
Y(E,, + E_,) > 0. Our assumption that G has real rank one results in
®* having the form ®*= {a} or ®*= {a,2a}. In our notation a will
denote the smallest positive root. Let p = dimy g%, ¢ = dimp g>* where
g?* = (0) if 2a & ®, and let p denote half the sum of the positive
restricted roots with multiplicity so that

1) p=3(r+20)e

Let n =Y,., @ a” and let N and N denote the analytic subgroups of G
corresponding to n and 4n.



DISCRETE SERIES REPRESENTATIONS OF SEMISIMPLE GROUPS 303

Since dimg a = 1, the Weyl group v = M’/M has order two. Let M’
act in each equivalence class [o] in M, the set of equivalence classes of
irreducible unitary representations of M, by

(22)  wo(m)=0o(w'mw) (weM;me M:[c] e M).

By [8] we can choose a representation w of the nontrivial Weyl group
element that centralizes M so that

(2.3) we = 0.

We denote the factors of an element g in the Iwasawa decomposition
G = ANK by

(2.4) g=expH(g) -nk(g) (H(g)<a,«k(g)EK)
and write loga for H(a) when a € A. Every element g not in the lower

dimensional set Pw where P = MAN also has a unique Gelfand-Naimark
decomposition

(2.5) g =m(g)a(g)ni(g)

with factors in M, 4, N, and N respectively. By means of this decomposi-
tion we extend representations ¢ of M and characters x of A to functions
defined almost everywhere on G with respect to Haar measure:

o(manit) = o(m),  x(mann) = x(a)

where we adopt without further reference the lower case convention for
group elements with the exception that v will always denote an element of
N. The Bruhat decomposition shows that for each g in G there is at most
one v in N _for which n(vg) is not defined. If ]—V; is this exceptional set,
then N, = N — {1}.

Let A be the Blattner parameter associated to (A, A™) as described in
§1 and let (7,,V,) denote a K-type with highest weight A. Let ¢, be a
highest weight vector of 7, of length one, let H, be the M-cyclic subspace
of V, generated by ¢,, and let o, be the representation of M given by 1,
operating on H,. The proof of Proposition 5.5 of [11] and Lemma 12.3 of
[11] show that (o,, H,) is an irreducible representation of M.

We recall from [3] that

(2.6) f eW+DPHO gy < o0 ifRez > 0

N

where dv is unimodular Haar measure on N. We normalize Haar mea-
sures on M, K, and N so that

(2.7) fM dm = dek =f e2PHO gy = 1,

N
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We arrange parameters so that induction of o, ® e” ® 1 from MAN
to G gives rise to a unitary representation. In the compact picture of this
unitary principal series U = U(og,:p) the representation space is the
closed subspace L*(K,o,) of L*(K, H,) consisting of functions f such
that for every m

(2.8) f(mk) = o\(m)f(k)
dk-almost everywhere in K. The action of G on L*(K, ¢,) is
(2.9) U(g)f(k) = e*“Of (k(kg)).

We let C*(K,o,) denote the space of smooth functions in L*(K, o,).
Then C*(K,o,) is dense and is the space of C*-vectors for U. If /
belongs to K, it will be convenient to denote its action on f under U by

!
7.
In the unitarily equivalent noncompact picture % of U, the Hilbert
space is L*(N, H,) and the group action is given by
(2.10) %(g) F(v) = e****0(vg) F(7i(vg)).
The intertwining operator W between these two pictures is
(2.11)  Wf(v) = e”"f(k(v)) (v € N;fe LYK, 0,)).
For f in C*(K,0,) Knapp and Wallach define the Szegd map S,
with parameter A by

(212) S, f(x)= fK erH e (o(x ) (D dl - (x € G).

Extending f in C*(K,0,) to G by f(g) = e?"@f(k(g)) so that f(manx)
= e”%%4 (m) f(x) and f is in the induced picture of U, we have [11, p.
178]

(2.13) S, f(x) =fKTx(k)‘1f(kx)dk (x € G),

exhibiting the G-equivariance of the Szegé map into the space C*(G, 7y).
It is shown in [11] that the image of C*(K,¢,) under S, is in the kernel
of &, in C*(G, r,) and that infinitesimally the K-finite image of S, is a
direct summand of U(o,:p).

We will need another integral formula for the operator S,, one that
will be of use in conjunction with the noncompact picture %(o,:p).

LEMMA 2.1. Let f belong to C*(K,0,) and let S, be defined by (2.12)
or the equivalent formula (2.13). Then

(2.14) S, f(a) = fﬁ PO ((va)w) (W*f)(v) dv
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Proof. We use the integral formula

(2.15) qu>(k)dk=j;vchp(m;c(v))ez"”“)dmdv

of Harish-Chandra [3, p. 287]. Thus, since wa 'w™! = a, H(mx(v)a) =
—H(v) + H(va), and k(mk(v)a) = mk(va), we have

S, f(a) =fKep”“a‘l)ﬁ(x(la-l))‘lf(z)dz
=fKe"”(”‘)'z'}\(x(la)w)'lf(lw)dl
= [ [, e om (a(m(0)a)w) ™ F(m(0))e? " dm o
= [ [, e e en, (x(va)w) ra(m) 0y (m) "f (x(v)) dm o

=/_e"”(”“)'rx(x(Ua)w)'le"”(”) “f(k(v))dv. O
N

In view of the G-equivariance of S, this formula can be used globally
on G via the Cartan decomposition:

(2.16) S\(f:kak) = (k) Sy(*f: a).
Let &,: LN, H,) > C*®(A,V,) be defined by

(2.17) A F(a) = e"bgafﬁ ePHD s ((va)w) " F(v) dv.

By abuse of notation we define ¥, on C*(K, g,) by

(2.18) FS(a) = e, f(a);
then we have by Lemma 2.1
(2.19) y}\f= y}\(Wwf).

3. Boundary values of Szegé integrals. The group 4 acts on N by
the dilations §, where

(3.1) Sp=awa (veEN)
with change of variables given by

(3.2) d(8,p) = e?rlogagy,
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The homogeneous norm |v|on N [10, p. 512] given by

(3.3) |v|=e P8  (pe N, ,=N-{1})

is a-homogeneous of degree p + 2¢ and invariant under conjugation by
M, ie,

(3.4) |8p|=e?'e%p| and |[mom |=|v| (v#1).

The function v — a,(vw) is of class C* away from v =1 and has the
homogeneity property

(3.5) 0,(8,0 - w)=a,(vw).

These facts may be found in [10, §6 and §8]. The following lemma may

also be found in [10] but we provide an outline of its proof because we
will need several consequences of the proof not found in [10].

LeMMA 3.1. ([10, Lemma 29].) The map v — |v|? is a polynomial on N
that is a-homogeneous of degree less than 2( p + 2q) such that

(3.6) e 2PH® = 1 4+ P (p) + -+ +P.(v) +]|v]
Consequently e?*H") < 1 and
(3.7) 10 < 1 (p 1),

o]

Proof (sketch). Let w be a finite dimensional irreducible represen-
tation with a-weights p = p,, py,...,u,,; of which p is the highest and
such that the compact real form f @ ip of g€ acts by skew-Hermitian
transformations. If ¢, is a highest a-weight vector of length one then
l7(g)¢,lI> = e~*"(®. Let E, denote the orthogonal projection onto the
weight space belonging to p; and put P(g) = ||E, m( g)7'¢,|I>. Then

(3.8) e O = P(g) + --- +P1(g) (g€ G).

Routine computation shows that when gw belongs to MANN
N 2

(3.9) |E,,m(8) "6, | = eerezatsm

and in particular when v # 1

2
(3.10) E,m(v)"¢,| = e2etosom,

Since P, ,(v) = e 2Pl8") = |y|2, all statements follow from (3.8) and
(3.10). O
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We define the kernel K(v:a) on N X A by
(3.11) K(v:a) = e2rlosageH(3),
Then for f in C*(K,0,)

S f(a) =fﬁK(U:a)q-k(tc(b‘av)w)‘lW‘”f(v)dv.
The notation a — oo will signify a = exp#(E, + E_, ) with t = co.

LEMMA 3.2. For v in N different from 1 we have

(3.12) K(v:a) < I—l—l,
(3.13) lim K(v:a) = ll_l and

(3.14) K(v:a)dv=K(8p)d(8,p) whereK(v)=K(v:1).

Proof. Statement (3.12) follows immediately from (3.7) and (3.4) as
does (3.14) from (3.2). Statement (3.13) is a simple consequence of (3.6). O

PROPOSITION 3.3. The map p: g — e ?*1°0@") which is defined on
MANNw can be continuously extended to G by putting u(man) = 0.

Proof. By (3.9), p(g) = ||E,,,7(8) '$,I|> when g belongs to MANNw.
Since M preserves the highest a-weight space of 7, 4 acts by scalars, and
N acts _trivially, E, 7 ( man)‘1<1>p”2 = 0, the result follows because G =
P U PNw (essentially the Bruhat decomposition of G). a

The significance of Proposition 3.3 is that u| . is zero precisely on M
and so provides a means of testing when an element of K belongs to M.

PROPOSITION 3.4. For v in N different from 1, lim
m{ow).

k(0 0)w =

a—> o

Proof. For every a in 4 and v in N, writing §,v as e®*nk(8,v) we
get k(8,0)w? = w2 @ p'y’ belongs to MANN, since w? is in M, and
so, in particular,

}L(K(S U)W) — e—2ploga(x(8av)w2) — e2pH(8av)
. )
Thus, for v # 1,
lim p(k(8,0)w) = lim e"2*8K(p:a) =0

a—> oo a— oo
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by (3.12) and so x(6,v)w tends to M as a — oo. Since the Gelfand-
Naimark decomposition is continuous on MANN, the A, N, and N
components of k(8,v)w for v # 1 each converge to 1 as a — oo. The
result follows since m(k(8p)w) = m(d,pw) = m(vw) [10, formula
(6.12)]. a

Some remarks are appropriate before proceeding to the next sequence
of lemmas. If we define %, f(a) by (2.18), then by (2.14) and (3.11)

(3.15) &, fla) = fﬁ K(v:a)m(k(8,0)w) ' W*f(v) dv

(3.16) yxf(a)=/NepH<v>K(u;a)n(w(a,,u)w)-lf(x(u)w)dv.

We have now shown that the integrand converges pointwise, except for
v =1, to (a,(vw) " /Jo)W"f(v), but since |v|™! just fails to be integrable,
the dominated convergence theorem is not applicable. Instead, we obtain
more precise information about the rate at which k(8,v)w approaches
m(vw) in the case, essentially, of SU(2,1) to which the general solution
can be reduced. Positive constants that appear in these lemmas depend in
an essential way only on the subscripted objects and may change from line
to line. Let B denote the Killing form on g and let B, denote the positive
definite norm on g given by B, = Bo(1 X — 8). The associated norm on
g will be denoted by || - ||.

LEMMA 3.5. Suppose Y and Z are nonzero elements of ¢~ and g~*“
respectively. Then

(3.17) [Z,6Z] € a,
(3.18) [Y,[Y,0Z]] is a nonzero element of m,
(3.19) [2,[2,02]] =|2a 112’2, and

(3.20) (ad Y)*0Z = ¢y ,Z where cO][Y”4 <cyz< 01||Y||4

for two positive constants ¢, and c,.

Proof. The first statement is obvious, the second can be found in [7,
Lemma 1.8], and the third is an immediate computation. For (3.20),
observe that

B,((adY)*0Z, Z) = -B([Y,[Y,02]],]Y,[Y,6Z]])

2
=y, {y,6z]11I",
since by (3.18) [Y,[Y, 8Z]] belongs to f and so is f-invariant. O
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Let d(k, k") denote a translation invariant metric on K. For X in n
let k, = exp(X + 0X).

LEMMA 3.6. There exists a neighborhood I of O in n and a positive
number &, such that

(3.21) d(ky,1) < Cle~wploeatirm) (X € ).

Proof. We give the proof for the case where ®*= {a,2a}, it being
the more difficult. The modifications necessary when ®*= {a} are evi-
dent in the proof. For X in n write 6X =Y + Z with Y in R - X__ and
ZinR-X ,, where X_, and X_,, are nonzero vectors in g~* and g~2*
respectively. Let g, be the Lie subalgebra of g generated by X_,, X_,,,
0X_,, and 0X_,, and let G, be the analytic subgroup of G corresponding
to g . Then g, is isomorphic to $u(2,1) [7, p. 54] and direct computa-
tion shows that the analogue p, of p for g, is given by p, = 2a. Let 7,
be the representation of G, constructed in the proof of Lemma 3.1 so that
in fact 7y acts on (g, By) with my(X + 0X) = ad; (X + 6X). We carry
over from Lemma 3.1 the notation for weight vectors and projections. In a
neighborhood 7 of 0 in n we have
2

(3.22)

4 1 ;
E—Za( Z FWX(X+ aX) )¢—2a

n=0 """
2
< CI”E—2anp77X(X+ 0X)¢2a” .
But the left side of (3.22) is
”[%(ad Z) +ladYad ZadY + L(adY)*ad Z

+1adZ(adY)® + %(ad Y)4] Pra ’

and since [Y, Z] = 0, hence ad Z(adY)?> = adYad ZadY = (ad Y)?ad Z,
(3.22) for X in I simplifies to

|[3(ad 2)* + 3(ad Y)*ad Z + %(ad Y)"] ¢,
Now, if Z + 0,

(3.23) ¢ =210,
hence by (3.17) (ad Y)*(ad Z)¢,, = 0, so that

2
< )| E_yumy(ky) bl

2 2
(324)  [[3(ad Z)", + F(ad V) 0s0| < /| E_sumy(kx) b
Substituting in (3.23) and using (3.19) and (3.20) we get

2 2 4
210‘| ”Z“ + %zcollYll =< ClllE—ZaWX(kX)¢2a”'
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By shrinking the neighborhood I If necessary so thatif X € I

(k1) < e|¥ + Z] < ¢ (20al1ZI + Hel ¥ [) "
we have in view of (3.9)

d(k 4, 1) < c;(ePriosatan )/ — ¢ p=(p+29) plogathiw)
Since d(k3}, 1) = d(ky, 1), chosing I to be symmetric we get

d(ky,1) < c e corloaltkxw)
with g, = (p + 2¢9)7". O
PROPOSITION 3.7. The operator valued map of N into End.(V))

defined by v — e*H[1,(k(v)w)™ — 6,(vw) ] is integrable.

Proof. Because m(vw) = m(k(v)w), we have the Lipschitz inequality

“n\(x(v)w)‘l - o,\(vw)_ln < cd(k(v)w, m(x(v)w)).
Thus, in view of (2.6) it suffices to show that for some ¢ > 0
(3.25) d(k(v)w, m(k(v)w)) < cet*H®

for |v] sufficiently large. But by Proposition 3.4, for |v| sufficiently large
k = m(x(v)w) k(v)w is sufficiently close to 1 so that the neighborhood
I in Lemma 3.6 may be used as a chart via k, = exp(X + 6X). Thus, by
(3.21)

d(k(v)w, m(k(v)w)) < ¢,e~coplosalmx@Im)x(e)w?)

Since a(m(x(v)w) k(v)w?) = a(k(v)) = —H(v), (3.25) follows. O

We may now now use Proposition 3.7 to deal with the singularity of
lv|™ at v = 1. To do so we will construct a modification of a partition of
unity found in [10]. Following [10, p. 521, 523] we identify N and 6n and
transfer the norm | - || to N. The norm on ¥, will be denoted by || - ;-
Fix any positive number R, (with the intention of doing a Taylor
expansion in {||v]]| < R,}). Let ¢(s) be a nonincreasing element of
Cs°([0, 00),[0,1]) that is equal to 1 for 0 < s < d and to 0 for b < s < o0
where 0 < d < b and b is chosen so that {|v| < b} C {||v]| < Ry} (cf.[10,
p. 529)). Define ¢,(k) by

(3.26) ¥, (k) = {<P(|U|) if k = mx(v)wforsomeme M,vEN
' 0 otherwise.
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LEMMA 3.8. The function {, defined on K by (3.26) is a well-defined,
left M-invariant, smooth separation of the two closed disjoint subsets M and
Mw of K, and does not depend on the function f.

Proof. That ¢, is well defined and smooth follows from the Gelfand-
Naimark decomposition. It is clear that i; is left M-invariant and
Y1 | aw = 1. The existence of an element m in M for which ,(m) # 0
would imply the existence of an element v in N for which k(v) belongs to
Mw, contradicting the disjointness of N and MANw. Thus ¢, |,, = 0. O

Lety,=1—4y;, ¢, = ¢@,and ¢, = 1 — ¢,. Thus ¢, f 1sin C*(K, 0,)
(i=12) and Af =AW )+ AW,f). Let Yi(v) = W*f(v) -
f(w)eP"® and let Zf(v) = f(k(v)w) — f(w), that is, Yf(v) =
ePHZf(v). Then

(27 #f(a)= L [ elloDK(v:a)n(x(0)w) (o) do

+f via)m(k(8,0)w) " f(w)e? D ap.

We will deal with the integrals in (3.27) in the order in which they are
written. With » an integer to be determined by Lemma 3.9, the function
Zf(v) has a Taylor expansion in {||v|| < R,} of the form (cf. [10, p. 523])

(.29 Z10) = £ f(0) + R (0)
where f;(v) is a-homogeneous ofjdegree j and
(3.29) IR, (0) iy < ello]".
LeMMA 3.9. For v sufficiently large
Jim [ @(lo)K(v:a)n(x(8p)w) " e? R, (v) do

exists and equals

f o(lv I)OA(IWT) e?"™R (v) dv

Proof. By (3.12), (3.13), and Proposition 3.4, the result will follow
from the dominated convergence theorem if we show that
ePTOo| vl X (s <5y (v) is integrable for » sufficiently large. This
follows from [10, p. 529 (10.2)]. O
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LemMMA 3.10. Foreachj =1,...,2»
lim f_ (o)) K(v :a)T)\(K(SGU)W)—IePH(”)]g(v) dv
a—- 0o N

exists and equals

-1

f (o) 2 ey o) o,

Proof. Here it suffices to exhibit the integrability of the dominating
function

G,(v) =|U|—1Hfj(v)”V,\x{lul<b}(u)'

Now

hy(0) =l fi(0)

is a-homogeneous of degree 0. By [10, Proposition 3] there exists a real
number e(h;) for which

La@a=em) [ (1) otrar

r

The right hand side is clearly finite for any j > 0. a
COROLLARY 3.11. For fin C*(K, o)),

Jim [ g(lo) K (0:a)m(x(8,2)w) " ¥f(v) do

exists and equals

. #(lo |)°*‘!’”T) Y/(0) db.

LemMA 3.12. For fin C*(K,0,),
Jim [ ox(jo) K(0:a)m(k(8,2)w) ¥f(v) do

exists and equals

oo 20 o
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Proof. Here we may take 2||f|| .»|v]¢*®x 4 \,;(v) as the point-
wise dominating function and its integrability follows from (2.6) and
(3.6). ]

Lemma 3.12 together with Corollary 3.11 show that

6 Ema0n@ - [ 2y

Only the last integral in (3.27) remains. As a first step in this considera-
tion we write

(3.31) [ﬁ K(v:a)r(k(8,0)w) " f(w)e? O dy

= /_ ¢ (v)f(w)erP@ dp + f_ K(v 3a)G>\(UW)—1f(w)epH(") do
N N
where £,: N - EndV, is defined by

(3.32) £,(0) = K(v:a)[ry(x(8,0)w)™ = oy (ow)].

Note that by Proposition 3.7 £,(v) = e?TO[1,(k(v)w)™! — oy(vw) '] is
integrable. Furthermore, by the homogeneity property (3.5) and by (3.14),

(3.32) ¢, (v)dv=¢(8,0)d(8p).
Thus, if we let = be the element of End(V,) given by
(3.33) == f_ £,(v) dv,

N

a standard approximation to the identity argument gives
(3.34) lim f_ £.(0)f(w)e!H® dy = Zf(w)
a0 N

and so we may turn our attention to establishing the limit of the last term
in (3.31). We introduce the truncated kernel

(v-a) = |U|—1 if e2Pl8e < |y|
(3.33) K ) {0 otherwise
and we let
(3.36) 0,(v)[K(v:a) — K'(v:a)]o,(vw)™’

It is a simple matter using (3.6) to verify that 6,(v) belongs to
LY(N,End(H,)). Furthermore, ,(v)dv = 6,(8,v)d(8,v) by (3.2) and
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(3.4). If we let ¢ be the element of End( H,) given by
(3.37) 9 = [ (v) dv
then an approximation to the identity argument gives

(3.38) lim [ 0.(0)f(w)e?H® dp = 3f(w)

a— oo

LeMMA 3.13.

lim f K(v:a)o,(ow) " f(w)e?H® dy

a—>oo YN

exists and equals

pH(v) __
[ Lo (ow) (w) do

loj<1 [v]

+‘/;<Ivl epH(,U) ox(ow)” f( ) dv + 3f(w).

|v
Proof.
f_K (v:a)o,(vw) ' f(w)e?H® dv
pH(v)
—f ¢ ax(vw)'lf(w) dv
2ploga<lv'
epH(v) _
fzp‘oga bl ’ }\(UW) 1f(w) dv
pH(v)
+/ ¢ UA(UW)_lf(W) dv
1<p| |v]
Now

a,(ow)™
/ S f(w)dv =0
ewloragp<1 ||

for every a by [10, Proposition 20] so we may subtract it from the first
term on the right hand side above. Since (e?7® — 1)|v|™* is continuous
on the compact set {|v| < 1}, the lemma follows by decomposing K(v:a)
as K(v:a) = 6,(v) + K’(v:a) and using (3.38). m|
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We combine the results of (3.27), Corollary 3.11, Lemma 3.12, (3.31),
(3.34), and Lemma 3.13 as

THEOREM 3.14. Let f belong to C*(K,0,) and let ), E and 9 be the
operators defined by (2.18), (3.33), and (3.37) respectively. Then

lim %, f(a) = Ef(w) + 87(w)

+f ——-——"*ﬂ’j‘l’y (W1 (0) = e2#f (w)] dv

+f MUW [er#(w) = f(w)] dv

juj<1

+/ _______o,\(vw)_ e* O f(w) dv
1<pl ||

We can write this result in a more convenient form through the use of

principal value integrals. Thus, for F in L?(N, H,) we make the following
interpretation of the singular inegral with kernel |v| %o, (vw)™:

j;v |U|_10>\(UW)_1F(U) dv = lim ]v|—1ox(vw)_1F(v) dv

e—0 e<|v|

Then, by using the mean value zero property (1.5) of |v|%o,(vw)™! on
spherical shells, we can rewrite the conclusion of Theorem 3.14 as

(3.39) lim &, f(a) = Ef(w) + #f(w f °* ow) W¥f(v) do.
Furthermore, the same device shows that

[ e mo)w)” f(w) do

has meaning as a principal value integral and in fact

Jim ] e (k(0)w) " f(w) dv = (E + 8)f(w).
Thus,
(3.40) lim %, f(a) = [ e?™r, (x(0)w) " f(w) dv
a— o0 N

+[ﬁ ————OA([IZT)_ W¥f(v)dv
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Let E, be the projection of V, onto H,. Observe that the last term in
(3.40) already has values in H, and is not affected by the projection E,.

LEMMA 3.15. There exists a constant a, such that
(3.41)  lim E,7f(a) = anf(w) + [ |0 or(ow) WS (0) do.
Proof. That
E}"/N e Or, (k(v)w) do = a,I

is a consequence of Schur’s lemma. Indeed, for m in M, we have
wm = mw, m'k(v)m = k(m~'vm), and d(mvom™') = dv. Hence, o,(m)
and

E}\f_ e, (k( v)w)_1 dv
N
commute. O

To each element F in the image of S, in C*(G, 7,) we now associate
a function ZF on K with values in H, as follows:

(342) 2ZF(k) = lim E,5% (7 )(a)  (F=S\f;f€ C*(K,0,)).
Using the form of S, given in (1.3) we have

(3.43) LF(k) = lim eP'24E, f (1) f(law™k) dI,
K

from which it follows that

LF(mk) = o,(m)LF(k).
We extend the definition of £F to G by
(3.44) PF(g) = e"HOLF(x(g)).

THEOREM 3.16. The boundary value map £ defined by (3.42) maps
S\(C*(K,a,)) into L*(K,6,) in a G-equivariant manner. Furthermore,
the intertwining operator that is the composite

w! Lo w
#(0,:p) = U(oy:p) = Uloy:p) > %(oy:p)
is the projection a,I + [5 |v|o\(vw) *F(v - ) dv, i.e.
(3.45) WL(S\W'F)(u) = a\F(u) + f_ lv‘_lox(vw)_lF(vu) dv
N

for a smooth element F in LX(N, H,).
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Proof. Since S, is G-equivariant, to establish the G-equivariance of ¥
it must be shown that

(3.46) L(SU()f)(x) =Z(8:f)(xg)  (x,g€G).

It suffices to prove (3.45) when x = 1. For g in K this follows form the
definition. For g = a, € A we have by (3.43)

2(83U(ag)f)(1) = lim e*sE, [ (1) f(law™'ay) I

= P18 Jim ¢P84%'E f (1) f(laag'w™) i

= e?n2(8,f)(1) = £(5,/)(a,).

It follows from the Cartain decomposition G = KAK that (3.46) holds for
every g when x = 1. Finally, from the explicit limit formula given in
Theorem 3.14, it is clear that #£F(k) is continuous; hence, ZF belongs
to L*(K, o,). This proves the first part.

Now let F be a smooth element of L*(N, H,). Then

(WIF)(k) = e’ ®a, (m(k)) F(7i(k)).
By (3.41) and (3.42) we get

L(S\W'F)(k) = a,W'F(k) +/ZV Lo oy (ow) W (W F)(v) db.

Since W, W', and & o S, are equivariant, we have for u in N
w(L(S\WF))(u) = w(L(S\W o (u) F))(1)

= TP (S W U (u) F)(1)

= a,F(u +/| "oy (ow) Flou)dv. O
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