Pacific Journal of Mathematics

CROSSED PRODUCT AND HEREDITARY ORDERS

GERALD HOWARD CLIFF AND ALFRED RHEINHOLD WEISS

Vol. 122, No. 2

February 1986

CROSSED PRODUCT AND HEREDITARY ORDERS

GERALD H. CLIFF AND ALFRED R. WEISS

Let Λ be the crossed product order $(O_L/O_K, G, \rho)$ where L/K is a finite Galois extension of local fields with Galois group G, and ρ is a factor set with values in O_L^* . Let $\Lambda_0 = \Lambda$, and let Λ_{i+1} be the left order $O_l(\operatorname{rad} \Lambda_i)$ of $\operatorname{rad} \Lambda_i$. The chain of orders $\Lambda_0, \Lambda_1, \ldots, \Lambda_s$ ends with a hereditary order Λ_s . We prove that Λ_s is the unique minimal hereditary order in $A = K\Lambda$ containing Λ , that Λ_s has e/m simple modules, each of dimension f over the residue class field \overline{K} of O_K , and that s = d - (e - 1). Here d, e, f are the different exponent, ramification index, and inertial degree of L/K, and m is the Schur index of A.

1. Introduction. Let O_K be a complete discrete valuation ring having field of fractions K and finite residue class field \overline{K} . Let L be a finite Galois extension of K, with Galois group G, and let O_L be the valuation ring in L. Let ρ be a factor set on $G \times G$ with values in the units of O_L . We are interested in the crossed product order $\Lambda = (O_L/O_K, G, \rho)$ contained in the simple algebra $A = (L/K, G, \rho)$. If ρ is trivial, Auslander-Goldman [1] showed that Λ is a maximal order in A if and only if L/Kis unramified, and Auslander-Rim [2] showed that Λ is hereditary if and only if L/K is tamely ramified. Williamson [8] extended the Auslander-Rim result to the case that ρ is any factor set. We are interested in the wild case. Benz-Zassenhaus [3] showed that Λ is contained in a unique minimal hereditary order in A.

We set $\Lambda_0 = \Lambda$, and define inductively

$$\Lambda_{j+1} = \{ x \in A \colon x \operatorname{rad} \Lambda_j \subseteq \operatorname{rad} \Lambda_j \} = O_l(\operatorname{rad} \Lambda_j).$$

Then we have the sequence of orders

$$\Lambda_0 \subsetneqq \Lambda_1 \subsetneqq \Lambda_2 \subsetneqq \cdots \subsetneqq \Lambda_s = \Lambda_{s+1}$$

for some integer s. Since $\Lambda_s = O_l(\operatorname{rad} \Lambda_s)$, it follows that Λ_s is hereditary ([6, 39.11, 39.14]). From the theory of hereditary orders (see [6, 39.14]) Λ_s may be described as follows: if $A \cong M_n(D)$, the ring of $n \times n$ matrices over a division ring D, and if Δ is the unique maximal order in D, then Λ_s is the set of block matrices, with entries in Δ , where there are r diagonal blocks of size $n_i \times n_i$, and blocks above the diagonal have

entries in rad Δ . The positive integer r is called the type number of Λ_s , and is also equal to the number of simple Λ_s -modules. Our main result is the following.

THEOREM. (1) Λ_s is the unique minimal hereditary O_K -order in A containing Λ .

(2) rad $\Lambda_s = P_L \Lambda_s$, where P_L denotes the maximal ideal of O_L .

(3) r = e/m, where e is the ramification index of L/K and m is the Schur index of A.

(4) $n_1 = n_2 = \cdots = n_r = f$, the inertial degree of L/K.

(5) s = d - (e - 1), where d is the exponent $P_L^d = \mathcal{D}$ of the different of L/K.

We prove this by first considering the split case (when $\rho = 1$), and then taking an unramified extension K' of K which splits A, and considering $A \otimes_K K'$ which is a crossed product (L'/K', G, 1), where $L' = L \otimes_K K'$. Then L' is not in general a field, but a Galois algebra over K', and we find it convenient to prove the Theorem when L is a Galois algebra over K to begin with; we take O_L to be the integral closure of O_K in L, we replace P_L by rad O_L , and we give suitable definitions of d, e, and f in §2. We deal with the split case in §3, and the general case in §4. We find generators for the hereditary order Λ_s in §5, in the totally ramified split case. In §6 we show how our results yield those of Auslander-Goldman-Rim-Williamson, as well as some others.

We cite Reiner [6] as a general reference.

2. Galois algebras. Let L be a commutative Galois algebra over K, with finite Galois group G, by which we mean that L is a commutative separable K-algebra with G a group of automorphisms of L fixing K such that the fixed subalgebra $L^G = K$ and $|G| = \dim_K L$. Let O_L be the integral closure of O_K in L. Let E denote the set of primitive idempotents of L. Then for $\varepsilon \in E$, the integral closure $O_{L\varepsilon}$ of O_K in the field $L\varepsilon$ is a complete discrete valuation ring, and $O_{L\varepsilon} = O_L\varepsilon$. Since $L^G = K$, G acts transitively on E.

LEMMA 2.1. Let I be a non-zero O_L -submodule of L which is G-invariant. Then $I = (\operatorname{rad} O_L)^i$ for some integer i.

Proof. For any primitive idempotent ε of L, $I\varepsilon$ is a non-zero $O_{L\varepsilon}$ -submodule of $L\varepsilon$, and therefore $I\varepsilon = (\operatorname{rad} O_{L\varepsilon})^{i_{\varepsilon}}$ for some $i_{\varepsilon} \in \mathbb{Z}$, since $O_{L\varepsilon}$ is a discrete valuation ring. Because G acts transitively on E

and I is G-invariant, it follows that $i_{\varepsilon} = i$ is independent of ε . Then

$$I = \sum_{\varepsilon \in E} I\varepsilon = \sum_{\varepsilon \in E} (\operatorname{rad} O_{L_{\varepsilon}})^{i} = \sum_{\varepsilon \in E} (\operatorname{rad} O_{L})^{i}\varepsilon = (\operatorname{rad} O_{L})^{i}$$

as desired.

First, let $I = P_K O_L$. Then $P_K O_L = (\operatorname{rad} O_L)^e$ for some integer e, and we call e the ramification index of L/K.

Next, let $\operatorname{tr}_{L/K}: L \to K$ be the trace map, and let

$$\tilde{O}_L = \left\{ x \in L \colon \operatorname{tr}_{L/K}(xO_L) \subseteq O_K \right\}$$

be the complementary module to O_L under the trace. Since

$$\operatorname{tr}_{L/K}(x) = \sum_{g \in G} g(x), \qquad x \in L,$$

it follows that \tilde{O}_L is a *G*-invariant O_L -submodule of *L*, so $\tilde{O}_L = (\operatorname{rad} O_L)^{-d}$ for some integer *d*. We call *d* the *different exponent* of L/K (and $(\operatorname{rad} O_L)^d$ the different $\mathcal{D}_{L/K}$ of L/K).

Define the *inertial degree* f of L/K to be dim_{\overline{K}} $(O_L/\text{rad }O_L)$.

Let $\rho: G \times G \to O_L^*$ be a factor set on G with values in the units of O_L . The crossed product algebra $A = (L/K, G, \rho)$ is the free left L-module with basis $u_{\rho}, g \in G$, with multiplication given by

$$xu_g \cdot yu_h = xg(y)\rho(g,h)u_{gh}, \quad x, y \in L, g, h \in G.$$

The order $\Lambda = (O_L/O_K, G, \rho)$ is the O_L -submodule of A spanned by u_g , $g \in G$. We assume that $\rho(g, 1) = \rho(1, g) = 1$, so that O_L may be identified inside Λ as $\{xu_1: x \in O_L\}$.

LEMMA 2.2. (1) L has a normal K-basis with respect to G.

(2) A is a central simple K-algebra, and A is isomorphic to a full matrix ring over K if and only if the class of ρ in $H^2(G, L^*)$ is 1.

(3) The reduced trace trd : $A \rightarrow K$ is given by

$$\operatorname{trd}\left(\sum_{g\in G}a_{g}u_{g}\right)=\operatorname{tr}_{L/K}(a_{1}).$$

Proof. These results are well known if L is a field, and the proofs are essentially the same if L is a Galois algebra. We omit the details.

3. The split case. In this section we assume that L/K is a Galois algebra, and we prove the theorem in the case that $\rho = 1$, with P_L replaced by rad O_L , and with d, e, f defined as in §2. Since $\rho = 1$, then

 $A \cong M_n(K)$, n = |G|. Let V be a simple A-module. The structure theory for hereditary orders ([6, 39.18]) provides a Λ_s -submodule M contained in V with the following properties:

- (a) r is the unique positive integer such that $(\operatorname{rad} \Lambda_s)^r M = P_K M$, (since $\operatorname{End}_A(V) = K$).
- (b) $\Lambda_s = \{ x \in A : x(\operatorname{rad} \Lambda_s)^i M \subseteq (\operatorname{rad} \Lambda_s)^i M, 0 \le i < r \}.$
- (c) rad $\Lambda_s = \{ x \in A : x(rad \Lambda_s)^i M \subseteq (rad \Lambda_s)^{i+1} M, 0 \le i < r \}.$
- (d) $(\operatorname{rad} \Lambda_s)^{i-1} M/(\operatorname{rad} \Lambda_s)^i M$, $1 \le i \le r$, are a full set of simple Λ_s -modules.
- (e) $n_i = \dim_{\overline{K}} (\operatorname{rad} \Lambda_s)^{i-1} M / (\operatorname{rad} \Lambda_s)^i M, 1 \le i \le r.$ The algebra A acts on L, via

$$\left(\sum x_g u_g\right) \cdot y = \sum x_g g(y), \quad \sum x_g u_g \in A, \ y \in L,$$

and acts irreducibly on L, so we may take L to be V. The non-zero Λ -submodules of L are O_L -submodules of L which are G-stable, so they are precisely $(\operatorname{rad} O_L)^i$, $i \in \mathbb{Z}$, by Lemma 2.1. We denote the Λ -module $(\operatorname{rad} O_L)^i$ by M_i .

LEMMA 3.1. For each integer $j \ge 0$,

(1) M_i is a Λ_j -module, $i \in \mathbb{Z}$, and every non-zero Λ_j -submodule of V is M_i for some *i*.

(2) $(\operatorname{rad} \Lambda_j)M_i = M_{i+1}$.

Proof. If (1) holds for some j, then $(\operatorname{rad} \Lambda_j)M_i \subseteq M_i$, by Nakayama's Lemma, so $(\operatorname{rad} \Lambda_j)M_i \subseteq M_{i+1}$, since M_{i+1} is the unique maximal Λ_j -submodule of M_i . But $\operatorname{rad} O_L \subseteq \operatorname{rad} \Lambda_j$, since $(\operatorname{rad} O_L)M_i \subseteq M_i$ for each i, and $(\operatorname{rad} O_L)M_i = M_{i+1}$, so $(\operatorname{rad} \Lambda_j)M_i = M_{i+1}$, proving (2). For (1), we use induction on j, having noted that it holds for Λ_0 . Then for j + 1,

$$\Lambda_{j+1}M_{i} = \Lambda_{j+1}(\operatorname{rad} \Lambda_{j})M_{i-1} \quad (by (2) \text{ for } j)$$
$$\subseteq (\operatorname{rad} \Lambda_{j})M_{i-1} \quad (by \text{ definition of } \Lambda_{i+1})$$
$$= M_{i}$$

so M_i is a Λ_{j+1} -module, $i \in \mathbb{Z}$. Since any Λ_{j+1} -module is also a Λ -module, the proof is complete.

LEMMA 3.2. (1)
$$\Lambda_s = \{x \in A : xM_i \subseteq M_i, i \in \mathbb{Z}\}.$$

(2) rad $\Lambda_s = \{x \in A : xM_i \subseteq M_{i+1}, i \in \mathbb{Z}\}.$
(3) rad $\Lambda_s = (\operatorname{rad} O_L)\Lambda_s = \Lambda_s(\operatorname{rad} O_L).$

Proof. The structure of Λ_s is given in terms of a Λ_s -submodule M contained in V. From Lemma 3.1, any Λ_s -submodule of V must be M_k for some integer k. We have, from (b) and Lemma 3.1,

$$\Lambda_s = \{ x \in A \colon xM_{k+i} \subseteq M_{k+i}, 0 \le i < r \}.$$

From (a), $M_{k+r} = (\operatorname{rad} \Lambda_s)^r M_k = P_K M_k$, and since P_K is a principal ideal of O_K , then $M_{k+r} \cong M_k$ as Λ_s -modules. Then for $i \in \mathbb{Z}$,

$$(\operatorname{rad} \Lambda_s)^{i} M_{k+r} = M_{i+k+r} \cong (\operatorname{rad} \Lambda_s)^{i} M_k = M_{i+k}$$

so $M_{i+r} \cong M_i$ as Λ_s -modules, $i \in \mathbb{Z}$. Thus

$$\Lambda_s = \{ x \in A \colon xM_i \subseteq M_i, i \in \mathbf{Z} \},\$$

proving (1), and (2) follows from (1). Since $\operatorname{rad} O_L \subseteq \operatorname{rad} \Lambda_s$ and $(\operatorname{rad} O_L)M_i = M_{i+1} = (\operatorname{rad} \Lambda_s)M_i$, $i \in \mathbb{Z}$, (3) follows from (2).

Parts (1)–(4) of the Theorem are now straightforward in this case. If Γ is a hereditary order in A containing Λ , then applying the structure theory to Γ , there is a Γ -submodule M of V such that

$$\Gamma = \left\{ x \in A \colon x(\operatorname{rad} \Gamma)^{i} M \subseteq (\operatorname{rad} \Gamma)^{i} M, 1 \le i \le \text{type number of } \Gamma \right\}.$$

Since $\Lambda \subseteq \Gamma$, M is a Λ -module, so $M = M_j$ for some integer j. Also, since $(\operatorname{rad} O_L)M_i \subsetneq M_i$, $i \in \mathbb{Z}$, then $\operatorname{rad} O_L \subseteq \operatorname{rad} \Gamma$, and then $(\operatorname{rad} \Gamma)^{i}M_j = M_{j+i}$, $i \in \mathbb{Z}$. It follows from Lemma 3.2 that $\Lambda_s \subseteq \Gamma$, proving (1) of the theorem. Part (2) is contained in Lemma 3.2. For (3), we know from (a) that r is the integer such that $(\operatorname{rad} \Lambda_s)^r M_k = P_K M_k$. But

$$P_K M_k = P_K O_L M_k = (\operatorname{rad} O_L)^e M_k = M_{k+e}$$

so r = e. (Note that m = 1 here.) For (4),

$$(\operatorname{rad} \Lambda_{s})^{i-1} M_{k} / (\operatorname{rad} \Lambda_{s})^{i} M_{k}$$

= $M_{k+i-1} / M_{k+i} = (\operatorname{rad} O_{L})^{k+i-1} / (\operatorname{rad} O_{L})^{k+i}$

and as \overline{K} -modules $(\operatorname{rad} O_L)^{k+i-1}/(\operatorname{rad} O_L)^{k+i} \cong O_L/\operatorname{rad} O_L$ so

$$n_i = \dim_{\overline{K}} O_L / \operatorname{rad} O_L = f, 1 \le i \le r.$$

In order to prove (5), we use the following result.

LEMMA 3.3. Suppose that a is an integer ≥ 0 such that $(\operatorname{rad} \Lambda_s)^a$ is the largest left Λ_s -ideal contained in Λ . Then s = a.

Proof. If a = 0, then $\Lambda_s \subseteq \Lambda$, so $\Lambda_s = \Lambda$, and s = 0. Assuming that a > 0, we show that $(\operatorname{rad} \Lambda_s)^{a-1}$ is the largest left Λ_s -ideal contained in Λ_1 . First,

$$(\operatorname{rad} \Lambda_s)^{a-1} \operatorname{rad} \Lambda \subseteq (\operatorname{rad} \Lambda_s)^{a-1} \operatorname{rad} \Lambda_s = (\operatorname{rad} \Lambda_s)^a.$$

Now $(\operatorname{rad} \Lambda_s)^a \subseteq \Lambda$ by hypothesis, and $\operatorname{rad} \Lambda_s \cap \Lambda \subseteq \operatorname{rad} \Lambda$, by Lemma 3.2. Thus $(\operatorname{rad} \Lambda_s)^a \subseteq \operatorname{rad} \Lambda$. Then $(\operatorname{rad} \Lambda_s)^{a-1}(\operatorname{rad} \Lambda) \subseteq \operatorname{rad} \Lambda$, so $(\operatorname{rad} \Lambda_s)^{a-1} \subseteq \Lambda_1$.

Next, if L is a left Λ_s -ideal contained in Λ_1 , then $L \operatorname{rad} \Lambda \subseteq \operatorname{rad} \Lambda$, so $L \operatorname{rad} \Lambda \subseteq (\operatorname{rad} \Lambda_s)^a$. Then

$$L \operatorname{rad} \Lambda_s = L(\operatorname{rad} \Lambda) \Lambda_s \subseteq (\operatorname{rad} \Lambda_s)^a$$
.

Since rad Λ_s is invertible, $L \subseteq (\text{rad } \Lambda_s)^{a-1}$ as desired.

Now by induction, the length of the chain $\Lambda_1 \subseteq \Lambda_2 \subseteq \cdots \subseteq \Lambda_s$ is a - 1, so s = a, and the proof is complete.

Let trd : $A \to K$ be the reduced trace, and for an O_K -submodule L of A with KL = A, let

$$\tilde{L} = \left\{ x \in A \colon \operatorname{trd}\left(xL\right) \subseteq O_K \right\}$$

be the complementary module.

LEMMA 3.4. Let Γ be any hereditary O_{K} -order contained in the split simple algebra $A = M_{n}(K)$. Then

$$\tilde{\Gamma} = P_K^{-1} \operatorname{rad} \Gamma.$$

Proof. Suppose that Γ has type number r, invariants n_1, \ldots, n_r , and Γ consists of block matrices as mentioned in section 1. Let π_K be a prime element of O_K . For integers $i, j, 1 \le i, j \le n$, let Y_{ij} denote the matrix whose i, j-entry is π_K if the i, j-position is above the diagonal of blocks of Γ , or 1 otherwise, and all of whose other entries are 0 (so $Y_{ij} \in \Gamma$.) Let y_{ij} denote the non-zero entry of Y_{ij} . Let $X = (x_{ij})$ be any element of A. Then XY_{ij} has at most one non-zero entry on the main diagonal, namely $x_{ij}y_{ji}$. We have $\operatorname{trd}(XY_{ij}) = \operatorname{trace}$ of matrix $XY_{ij} = x_{ij}y_{ji}$. Then $X \in \tilde{\Gamma} \Leftrightarrow x_{ij}y_{ji} \in O_K$, all $i, j \Leftrightarrow$ when X is partitioned according to the block partition induced by Γ , the entries below the diagonal of blocks are in P_K^{-1} and the other entries are in O_K . But such matrices are precisely those in P_K^{-1} rad Γ . Since the Y_{ij} give a free basis for Γ over O_K , the result follows.

LEMMA 3.5. Let w = d - (e - 1). Then $(\operatorname{rad} \Lambda_s)^w$ is the largest left Λ_s -ideal contained in Λ .

Proof. From Lemma 3.2, we have rad $\Lambda_s = (\operatorname{rad} O_L) \Lambda_s$, so $(\operatorname{rad} \Lambda_s)^w = (\operatorname{rad} O_L)^{d-(e-1)} \Lambda_s$. From Lemma 3.4

$$\tilde{\Lambda}_s = P_K^{-1} \operatorname{rad} \Lambda_s = (\operatorname{rad} O_L)^{-e} (\operatorname{rad} O_L) \Lambda_s = (\operatorname{rad} O_L)^{-e+1} \Lambda_s,$$

so

$$(\operatorname{rad} \Lambda_s)^w = (\operatorname{rad} O_L)^d \tilde{\Lambda}_s = ((\operatorname{rad} O_L)^{-d} \Lambda_s)^{\sim}$$

From Lemma 2.2, $\operatorname{trd}(\sum x_g u_g) = \operatorname{tr}_{L/K}(x_1)$, so

$$\tilde{\Lambda} = \mathscr{D}^{-1}\Lambda = (\operatorname{rad} O_L)^{-d}\Lambda \subseteq (\operatorname{rad} O_L)^{-d}\Lambda_s,$$
$$(\operatorname{rad} \Lambda_s)^w = ((\operatorname{rad} O_L)^{-d}\Lambda_s)^{\sim} \subseteq \tilde{\Lambda} = \Lambda,$$

so $(\operatorname{rad} \Lambda_s)^w$ is contained in Λ . If L is any other left Λ_s -ideal contained in Λ , then \tilde{L} is a right Λ_s -module containing $\tilde{\Lambda}$, so

$$\tilde{L} \supseteq \tilde{\Lambda} \Lambda_s = \mathscr{D}^{-1} \Lambda_s = (\operatorname{rad} O_L)^{-d} \Lambda_s,$$

$$L = \tilde{\tilde{L}} \subseteq ((\operatorname{rad} O_L)^{-d} \Lambda_s)^{\sim} = (\operatorname{rad} \Lambda_s)^{w},$$

completing the proof.

Now (5) of the Theorem follows from Lemmas 3.3 and 3.5.

4. The general case. In this section we continue with the assumption that L/K is a Galois algebra, and we prove the Theorem in the case that ρ is any factor set with values in O_L^* . Since \overline{K} is finite, there is an unramified field extension K' of K such that the algebra $A' = A \otimes_K K'$ splits ([7, Prop. 2, p. 191].) Let O' be the integral closure of O_K in K', and let $\Lambda' = \Lambda \otimes_{O_K} O'$.

LEMMA 4.1. If Γ is an O_K -order, then

 $\operatorname{rad}(\Gamma \otimes_{O_{\mathcal{K}}} O') = (\operatorname{rad} \Gamma) \otimes_{O_{\mathcal{K}}} O'.$

Proof. Denote O_K by O, and P_K by P. Clearly

$$(\operatorname{rad} \Gamma) \otimes_{O} O' \subseteq \operatorname{rad}(\Gamma \otimes_{O} O').$$

For the reverse inclusion, we have

$$(\Gamma \otimes_{O} O')/(\operatorname{rad} \Gamma) \otimes_{O} O' \cong (\Gamma/\operatorname{rad} \Gamma) \otimes_{O} O'.$$

Since $P \subseteq \operatorname{rad} \Gamma$, then $\Gamma/\operatorname{rad} \Gamma$ is an O/P-module, and

$$(\Gamma/\mathrm{rad}\,\Gamma) \otimes_O O' \cong (\Gamma/\mathrm{rad}\,\Gamma) \otimes_{O/P} (O'/PO').$$

Since K'/K is unramified, then O'/PO' is field, which is separable over \overline{K} since \overline{K} is finite. Then the semi-simple O/P-algebra $\Gamma/\operatorname{rad}\Gamma$ remains semi-simple after tensoring with O'/PO', so $\Gamma \otimes_O O'/(\operatorname{rad}\Gamma) \otimes_O O'$ is semi-simple, and the result follows.

We let G act on $L' = L \otimes_K K'$ by

$$g(x \otimes y) = g(x) \otimes y, \qquad x \in L, \ y \in K', \ g \in G.$$

Then L' is a Galois algebra over K' with Galois group G. We have $O_{L'} = O_L \otimes_{O_k} O'$, and

$$\Lambda' = \Lambda \otimes_{O_{\mathcal{K}}} O' = (O_{L'}/O', G, \rho).$$

Let us show that in going from L/K to L'/K', the numbers d, e, f are unchanged.

Applying Lemma 4.1 to the O_K -order O_L , we have rad $O_{L'} = (\operatorname{rad} O_L) \otimes_{O_K} O'$. Since the maximal ideal P' of O' is $P_K O'$, then

$$P'O_{L'} = (P_K O_L) \otimes_{O_K} O' = (\operatorname{rad} O_L)^e \otimes_{O_K} O' = (\operatorname{rad} O_{L'})^e$$

so the ramification index of L'/K' is still e. Similarly,

$$\dim_{\overline{K}'}(O_{L'}/\operatorname{rad} O_{L'}) = \dim_{\overline{K}}(O_L/\operatorname{rad} O_L) = f.$$

For the different exponent of L'/K', since

$$\operatorname{tr}_{L'/K'}(x \otimes y) = \operatorname{tr}_{L/K}(x) \otimes y, \quad x \in L, \ y \in K',$$

then clearly $\tilde{O}_L \otimes_{O_K} O' \subseteq \tilde{O}_{L'}$; since $\tilde{O}_L = (\operatorname{rad} O_L)^{-d}$, and $\operatorname{rad} O_{L'} = (\operatorname{rad} O_L) \otimes_{O_K} O'$, then $(\operatorname{rad} O_{L'})^{-d} \subseteq \tilde{O}_{L'}$. If $(\operatorname{rad} O_{L'})^{-d-1} \subseteq \tilde{O}_{L'}$, then $(\operatorname{rad} O_L)^{-d-1} \subseteq \tilde{O}_L$, which is not so. Therefore $\tilde{O}_{L'} = (\operatorname{rad} O_{L'})^{-d}$.

LEMMA 4.2. If Γ is an O_K -order contained in a semi-simple algebra A, then

$$O_l(\operatorname{rad} \Gamma) \otimes_{O_k} O' = O_l(\operatorname{rad}(\Gamma \otimes_{O_k} O')).$$

Proof. It is clear that the left side is contained in the right. There is an isomorphism

$$\phi: O_l(\operatorname{rad} \Gamma) \to \operatorname{Hom}_{\Gamma}(\operatorname{rad} \Gamma, \operatorname{rad} \Gamma),$$

where rad Γ is considered as a right $\Gamma\text{-module.}$ Similarly, there is an isomorphism

$$\psi \colon O_l(\operatorname{rad} \Gamma') \to \operatorname{Hom}_{\Gamma'}(\operatorname{rad} \Gamma', \operatorname{rad} \Gamma'),$$

where $\Gamma' = \Gamma \otimes_0 O'$. Since Γ is noetherian, then rad Γ is finitely presented over Γ , so from [6, 2.37] we have an isomorphism

$$\sigma: \operatorname{Hom}_{\Gamma}(\operatorname{rad} \Gamma, \operatorname{rad} \Gamma) \otimes_{O} O' \to \operatorname{Hom}_{\Gamma \otimes_{O} O'}(\operatorname{rad} \Gamma \otimes_{O} O', \operatorname{rad} \Gamma \otimes_{O} O')$$

$$= \operatorname{Hom}_{\Gamma'}(\operatorname{rad} \Gamma', \operatorname{rad} \Gamma')$$

from Lemma 4.1. The map

$$\psi^{-1}\sigma(\phi \otimes 1) \colon O_{l}(\operatorname{rad} \Gamma) \otimes_{O_{k}} O' \to O_{l}(\operatorname{rad} \Gamma')$$

is the identity, and the result is proved.

LEMMA 4.3. Let $\Lambda = (O_L/O_K, G, \rho)$ be a crossed product order in $A = (L/K, G, \rho)$ and suppose that A splits over K. Then $\Lambda \cong (O_L/O_K, G, 1)$.

Proof. Since the algebra A is split over K, the class of ρ in $H^2(G, L^*)$ is 1. We shall show that the map $H^2(G, O_L^*) \to H^2(G, L^*)$ is one-to-one, and then the class of ρ in $H^2(G, O_L^*)$ will be 1, and the result will follow.

Let *E* be the set of primitive idempotents of *L* and let $M = \bigoplus_{\varepsilon \in E} Z\varepsilon$ be the free *Z*-module with basis *E*; *G* acts on *M* via its action on *E*. For ε in *E*, let v_{ε} be the normalized valuation on the field $L\varepsilon$, and define $v: L^* \to M$ by

$$v(x) = \sum_{\epsilon \in E} v_{\epsilon}(x\epsilon)\epsilon, \qquad x \in L^*.$$

Then we get an exact sequence of G-modules

$$o \to O_L^* \to L^* \xrightarrow{o} M \to o,$$

giving rise to the exact sequence

$$H^1(G, M) \rightarrow H^2(G, O_L^*) \rightarrow H^2(G, L^*).$$

Since *M* is a permutation module, *M* is isomorphic to the induced module $\operatorname{Ind}_{H}^{G}(\mathbb{Z}) = \mathbb{Z}G \otimes_{ZH} \mathbb{Z}$, where *H* is the stabilizer of an idempotent in *E*, and $H^{1}(G, M) = H^{1}(H, \mathbb{Z}) = 0$, since *H* is finite. Then $H^{2}(G, O_{L}^{*}) \rightarrow H^{2}(G, L^{*})$ is one-to-one, as desired.

From Lemma 4.2, the chains

$$\Lambda_0 \subseteq \Lambda_1 \subseteq \cdots \subseteq \Lambda_s$$
$$\Lambda'_0 \subseteq \Lambda'_1 \subseteq \cdots \subseteq \Lambda'_s$$

have the same length, and Λ'_s is hereditary. Since the Theorem has been proved in the split case, and since $\Lambda' \cong (O_{L'}/O', G, 1)$, which follows from Lemma 4.3, we find that s = d - (e - 1). If Γ is a hereditary order in Acontaining Λ , then $\Gamma' = \Gamma \otimes_{O_K} O'$ is a hereditary order in A' containing A', and since Λ'_s is the unique minimal hereditary order in A' containing A', then $\Lambda'_s \subseteq \Gamma'$. We may embed Γ in Γ' as $\Gamma \otimes_{O_K} 1$, and A in A' as $A \otimes_K 1$, and then $\Gamma = \Gamma' \cap A \supseteq \Lambda'_s \cap A = \Lambda_s$, so Λ_s is the unique minimal hereditary order in A containing Λ . From [6, 39.14] we have

$$\Lambda_s/\mathrm{rad}\,\Lambda_s \cong \prod_{i=1}^r M_{n_i}(\overline{\Delta})$$

where $\overline{\Delta} = \Delta/\operatorname{rad} \Delta$, and Δ is the unique maximal order in $\operatorname{End}_{\mathcal{A}}(V)$, with V a simple \mathcal{A} -module. Then

$$\Lambda'_{s}/\operatorname{rad}\Lambda'_{s} \cong (\Lambda_{s}/\operatorname{rad}\Lambda_{s}) \otimes_{O_{K}}O' \cong (\Lambda_{s}/\operatorname{rad}\Lambda_{s}) \otimes_{\overline{K}}\overline{K}'$$
$$\cong \prod_{i=1}^{r} M_{n_{i}}(\overline{\Delta} \otimes_{\overline{K}}\overline{K}').$$

Now $\overline{\Delta} \otimes_{\overline{K}} \overline{K}' \cong (\overline{K}')^m$, where *m* is the Schur index of *A*, since \overline{K} is finite ([6, 14.3]). Thus

$$\Lambda'_s/\mathrm{rad}\,\Lambda'_s \cong \left(\prod_{i=1}^r M_{n_i}(\overline{K}')\right)^m.$$

Therefore the type number of $\Lambda'_s/\operatorname{rad} \Lambda'_s$, known to be *e* from §3, is equal to *mr*, yielding

$$r=rac{e}{m}$$

Each invariant $n_i = f$, since the invariants n_i of Λ'_s are f. Therefore the proof of the theorem is complete.

5. Generators for Λ_s in the split case. In this section we find generators for Λ_s in the case that $\rho = 1$. To simplify the exposition, we assume that L is a field, which is totally ramified over K. We let P_L be the maximal ideal of O_L , and let v_L be the normalized valuation on L. Let M_i denote the Λ -module P_L^i , $i \in \mathbb{Z}$.

LEMMA 5.1. Let w = d - (e - 1), and let x be an element of L such that $v_L(x) = -w$. Let $\alpha = x \sum_{g \in G} u_g \in A$. Then $\alpha M_i \subseteq M_i$, $i \in \mathbb{Z}$ (so $\alpha \in \Lambda_s$, from Lemma 3.2), and unless $i \equiv -w \pmod{e}$, $\alpha M_i \subseteq M_{i+1}$, whereas if $i \equiv -w \pmod{e}$, $\alpha M_i \not\subseteq M_{i+1}$.

Proof. Let tr denote the trace from L to K. We first compute $tr(P_L^i)$, $i \in \mathbb{Z}$. We have, for $j \in \mathbb{Z}$,

$$\operatorname{tr}(P_{L}^{i}) \subseteq P_{K}^{j} \Leftrightarrow \operatorname{tr}(P_{L}^{i}P_{K}^{-j}) \subseteq O_{K}$$
$$\Leftrightarrow \operatorname{tr}(P_{L}^{i-e_{j}}) \subseteq O_{K} \Leftrightarrow P_{L}^{i-e_{j}} \subseteq \mathscr{D}^{-1}$$
$$\Leftrightarrow P_{L}^{i-e_{j}+d} \subseteq O_{L} \Leftrightarrow i-e_{j}+d \ge 0$$
$$\Leftrightarrow j \le \frac{i+d}{e}$$

(we have used $\mathcal{D} = P_I^d$). Thus

$$\operatorname{tr}(P_L^i) = P_K^{[(i+d)/e]},$$

where [] denotes greatest integer. Since $\sum u_g \cdot y = \sum g(y) = \operatorname{tr} y, y \in L$, we have

$$O_L \alpha M_i = O_L x \operatorname{tr}(P_L^i) = x O_L P_K^{[(i+d)/e]} = x P_L^{e[(i+d)/e]}.$$

Write

$$\left[\frac{i+d}{e}\right] = \left[\frac{i+w}{e} + \frac{d-w}{e}\right] = \left[\frac{i+w}{e} + \frac{e-1}{e}\right]$$

If $(i + w)/e \notin \mathbb{Z}$, then [(i + d)/e] > (i + w)/e, so $e[(i + d)/e] \ge i + w$, and

$$O_L \alpha M_i \subseteq x P_L^{i+w+1} = P_L^{i+1} = M_{i+1}.$$

If $(i + w)/e \in \mathbb{Z}$, then [(i + d)/e] = (i + w)/e, so e[(i + d)/e] = i + w, and

$$O_L \alpha M_i = x P_L^{i+w} = M_i.$$

This completes the proof.

Let π_L be a prime element of O_L . Then from Lemma 3.2, we have $\pi_L^{-1}\Lambda_s\pi_L = \Lambda_s$. Let $\alpha = x\Sigma u_g$ be the element of Lemma 5.1, and define

$$\alpha_i = \pi_L^{-i} \alpha \pi_L^i, \qquad 0 \le i < e.$$

From Lemma 5.2, it follows that α_i acts non-trivially on M_{-w+i}/M_{-w+i+1} , whereas α_i annihilates M_j/M_{j+1} if $j \neq -w + i \pmod{e}$. Thus the simple Λ_s -modules M_0/M_1 , $M_1/M_2, \ldots, M_{e-1}/M_e$ are non-isomorphic, and hence form a complete set of simple Λ_s -modules. Recall that $\Lambda_s/\operatorname{rad} \Lambda_s$ $\cong \prod_{i=1}^r M_{n_i}(\overline{K})$, and each $n_i = f = 1$, since we are assuming that L/K is totally ramified. Hence $\Lambda_s/\operatorname{rad} \Lambda_s$ is commutative. Further, r = e, so $\dim_{\overline{K}}(\Lambda_s/\operatorname{rad} \Lambda_s) = e$. Then the elements $\alpha_i + \operatorname{rad} \Lambda_s$ generate $\Lambda_s/\operatorname{rad} \Lambda_s$ as a \overline{K} -module, $0 \le i < e$. Since $\operatorname{rad} \Lambda_s = P_L \Lambda_s$, we see that $O_L \alpha_i$, $0 \le i < e$, generate Λ_s as an O_K -module. So $\pi_L \alpha_i$, $0 \le j < e$, $0 \le i < e$, generate Λ_s as an O_K -module.

Finally, from the formula $\operatorname{tr}(P_L^i) = P_K^{[(i+d)/e]}$ from Lemma 5.1, if we set i = -w, then i + d = e - 1, so $\operatorname{tr}(P_L^{-w}) = O_K$. Thus we may find y in L with $v_L(y) = -w$ such that $\operatorname{tr}(y) = u$ is a unit of O_K . Then $x = u^{-1}y$ has $v_L(x) = -w$ and $\operatorname{tr}(x) = 1$. Now $(\Sigma u_g)x(\Sigma u_g) = \operatorname{tr}(x)\Sigma u_g = \Sigma u_g$, so $\alpha = x\Sigma u_g$ is idempotent. From the action of α on the simple modules M_i/M_{i+1} , we find that α is a primitive idempotent of Λ_s , and that the elements $\alpha_i + \operatorname{rad} \Lambda_s$ are all the primitive idempotents of $\Lambda_s/\operatorname{rad} \Lambda_s$.

6. Complements. The results of Auslander-Goldman-Rim-Williamson mentioned in the Introduction follow easily from our Theorem. If $\rho = 1$, Λ is a maximal order in $A \Leftrightarrow s = 0$, $r = 1 \Leftrightarrow e/m = 1 \Leftrightarrow e = 1$, since m = 1. For any ρ , Λ is hereditary $\Leftrightarrow s = 0 \Leftrightarrow d = e - 1 \Leftrightarrow L/K$ is tamely ramified, from [7, Prop. 13, p. 67].

We also recover a result of Janusz [4], who showed that, in the tamely ramified case, Λ has type e/m and invariants f. (See also Merklen [5].)

From the fact that r = e/m, we find a way to compute the Schur index *m* of *A* as follows: the centre of $\Lambda_s/\operatorname{rad} \Lambda_s$ has e/m component fields (each of dimension *m* over \overline{K}).

It may be shown that the index

$$(\Lambda_s:\Lambda) = \pi_K^{n^2(d-(e-1))/2e}$$

where n = [L : K]. This follows from

$$(\tilde{\Lambda}:\Lambda) = (\tilde{\Lambda}_s:\Lambda_s)(\Lambda_s:\Lambda)^2.$$

Note that Lemma 3.4 (that $\tilde{\Lambda} = P_K^{-1} \operatorname{rad} \Lambda$ if Λ is hereditary) also holds in the non-split case, as may be shown by tensoring with an unramified extension.

In the split case (§3), the Λ -lattices contained in a irreducible A-module V are linearly ordered, but this fails to be true if A is not split. However, it may be shown, in general, that the Λ -lattices M in V such that End_{Λ}(M) is the maximal order in End_A(V) are linearly ordered, and this can be used to prove the Theorem, just as in §3.

Note that we could have used right-orders $\Lambda'_{j+1} = O_r(\operatorname{rad} \Lambda'_j)$ throughout, instead of left orders, and still obtain the same answer s = d - (e - 1) for the length of the chain $\Lambda'_0 \subseteq \cdots \subseteq \Lambda'_s$. By uniqueness of Λ_s , we would get $\Lambda_s = \Lambda'_s$, but we do not know whether $\Lambda_j = \Lambda'_j$ for all j, 1 < j < s.

References

- M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97 (1960), 1-24.
- [2] M. Auslander and D. S. Rim, Ramification index and multiplicity, Illinois J. Math., 7 (1963), 566-581.
- [3] H. Benz and H. Zassenhaus, Über verschränkte Produktordnungen, J. Number Theory, 20 (1985), 282–298.
- [4] G. Janusz, Crossed product orders and the Schur index, Comm. Algebra, 8 (1980), 697-706.

CROSSED PRODUCT AND HEREDITARY ORDERS

- [5] H. Merklen, Hereditary crossed product orders, Pacific J. Math., 74 (1978), 391-406.
- [6] I. Reiner, Maximal Orders, Academic Press, London, 1975.
- [7] J.-P. Serre, Corps Locaux, Act. Sci. et Ind. 1296, Hermann, Paris, 1962.
- [8] S. Williamson, Crossed products and hereditary orders, Nagoya Math. J., 23 (1963), 103-120.

Received September 21, 1984 and in revised form March 26, 1985. Supported by NSERC.

UNIVERSITY OF ALBERTA Edmonton, Alberta Canada T6G 2G1

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

V. S. VARADARAJAN (Managing Editor) University of California Los Angeles, CA 90024

HEBERT CLEMENS University of Utah Salt Lake City, UT 84112

CHARLES R. DEPRIMA California Institute of Technology Pasadena, CA 91125 R. FINN Stanford University Stanford, CA 94305

HERMANN FLASCHKA University of Arizona Tucson, AZ 85721

RAMESH A. GANGOLLI University of Washington Seattle, WA 98195

ROBION KIRBY University of California C. C. MOORE University of California Berkeley, CA 94720

H. SAMELSON Stanford University Stanford, CA 94305

HAROLD STARK University of California, San Diego La Jolla, CA 92093

Berkeley, CA 94720

ASSOCIATE EDITORS

R. ARENS

B. H. NEUMANN

F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY

E. F. BECKENBACH

(1906 - 1982)

UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$190.00 a year (5 Vols., 10 issues). Special rate: \$95.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Copyright © 1986 by Pacific Journal of Mathematics

Pacific Journal of Mathematics

Vol. 122, No. 2 February, 1986

Gideon Amit and David Chillag, On a question of Feit concerning
character values of finite solvable groups
Constantin Gelu Apostol and Frank Larkin Gilfeather, Isomorphisms
modulo the compact operators of nest algebras
Parviz Azimi and James Neil Hagler, Examples of hereditarily l^1 Banach
spaces failing the Schur property
Brian Evan Blank, Boundary behavior of limits of discrete series
representations of real rank one semisimple groups
Jeffrey Carroll, Some undecidability results for lattices in recursion
theory
Gerald Howard Cliff and Alfred Rheinhold Weiss, Crossed product and
hereditary orders
Ralph Cohen, Realizing transfer maps for ramified coverings
Ronald James Evans, Hermite character sums
C. L. Frenzen and Roderick Sue-Chuen Wong, Asymptotic expansions of
the Lebesgue constants for Jacobi series
Bruno Iochum, Nonassociative L ^p -spaces
John McDonald, Unimodular approximation in function algebras
John Robert Quine, Jr., Ramification and unintegrated value distribution 441
Marc Raphael, Commutants of quasisimilar subnormal operators
Parameswaran Sankaran and Peter Zvengrowski, On stable
parallelizability of flag manifolds455
Helga Schirmer, A relative Nielsen number
Barry Simon, Schrödinger semigroups on the scale of Sobolev spaces 475
Viakalathur Shankar Sunder, Stochastic integration in Fock space
Jan de Vries, A note on the G-space version of Glicksberg's theorem493