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CROSSED PRODUCT AND HEREDITARY ORDERS

GERALD H. CLIFF AND ALFRED R. WEISS

Let A be the crossed product order (O, /O, G, p) where L/K is a
finite Galois extension of local fields with Galois group G, and p is a
factor set with values in Of. Let A, = A, and let A, , be the left order
O,(rad A;) of rad A,. The chain of orders Ay, A;,..., A, ends with a
hereditary order A . We prove that A is the unique minimal hereditary
order in 4 = KA containing A, that A has e/m simple modules, each
of dimension f over the residue class field X of Oy, and that s = d —
(e — 1). Here d,e,f are the different exponent, ramification index,
and inertial degree of L/K, and m is the Schur index of A4.

1. Introduction. Let Oy be a complete discrete valuation ring having
field of fractions K and finite residue class field K. Let L be a finite
Galois extension of K, with Galois group G, and let O, be the valuation
ring in L. Let p be a factor set on G X G with values in the units of O;.
We are interested in the crossed product order A = (O0,/Ox, G, p) con-
tained in the simple algebra 4 = (L/K, G, p). If p is trivial, Auslander-
Goldman [1] showed that A is a maximal order in A4 if and only if L/K
is unramified, and Auslander-Rim [2] showed that A is hereditary if and
only if L/K 1is tamely ramified. Williamson [8] extended the Auslander-
Rim result to the case that p is any factor set. We are interested in the
wild case. Benz-Zassenhaus [3] showed that A is contained in a unique
minimal hereditary order in 4.

Weset A, = A, and define inductively

A, ={x€4:xradA;CradA;} = O/rad A)).
Then we have the sequence of orders
ANGA A, --- CA=A,

for some integer s. Since A, = O,(rad A)), it follows that A is hereditary
([6, 39.11, 39.14]). From the theory of hereditary orders (see [6, 39.14]) A |
may be described as follows: if 4 = M, (D), the ring of n X n matrices
over a division ring D, and if A is the unique maximal order in D, then
A is the set of block matrices, with entries in A, where there are r

$

diagonal blocks of size n, X n;, and blocks above the diagonal have

333



334 GERALD H. CLIFF AND ALFRED R. WEISS

entries in rad A. The positive integer r is called the type number of A,
and is also equal to the number of simple A -modules. Our main result is
the following.

THEOREM. (1) A, is the unique minimal hereditary Oy-order in A
containing A.

(2) rad A, = P, A, where P, denotes the maximal ideal of O,.

(3) r = e/m, where e is the ramification index of L/K and m is the
Schur index of A.

4 n,=n,= -+ =n,=f, theinertial degree of L/K.

(5) s = d — (e — 1), where d is the exponent P = 9D of the different of
L/K.

We prove this by first considering the split case (when p = 1), and
then taking an unramified extension K’ of K which splits 4, and
considering 4 ® x K’ which is a crossed product (L'/K’,G,1), where
L’ = L ®K’. Then L’ is not in general a field, but a Galois algebra over
K’, and we find it convenient to prove the Theorem when L is a Galois
algebra over K to begin with; we take O, to be the integral closure of Oy
in L, we replace P, by rad O,, and we give suitable definitions of d, e,
and f in §2. We deal with the split case in §3, and the general case in §4.
We find generators for the hereditary order A, in §5, in the totally
ramified split case. In §6 we show how our results yield those of Aus-
lander-Goldman-Rim-Williamson, as well as some others.

We cite Reiner [6] as a general reference.

2. Galois algebras. Let L be a commutative Galois algebra over
K, with finite Galois group G, by which we mean that L is a commutative
separable K-algebra with G a group of automorphisms of L fixing K such
that the fixed subalgebra LY = K and |G| = dim, L. Let O, be the
integral closure of Oy in L. Let E denote the set of primitive idempotents
of L. Then for ¢ € E, the integral closure O,, of Oy in the field Le is a
complete discrete valuation ring, and O;, = O,&. Since L¢ = K, G acts
transitively on E.

LEMMA 2.1. Let I be a non-zero O,-submodule of L which is G-in-
variant. Then I = (rad O,)' for some integer i.

Proof. For any primitive idempotent ¢ of L, Ie is a non-zero
O, ,-submodule of Le, and therefore Ie = (rad O, )" for some i, € Z,
since O,, is a discrete valuation ring. Because G acts transitively on E
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and / is G-invariant, it follows that i_ = i is independent of . Then

I=YIe= Y (rad0,,) = ¥ (rad0,)'e = (rad 0,)’

e€E e€FE e€E

as desired.

First, let I = P,O,. Then PO, = (rad O,)° for some integer e, and
we call e the ramification index of L/K.
Next, let tr; ,,: L — K be the trace map, and let

0, = {xe€L:tr, ,(x0,) C O}
be the complementary module to O, under the trace. Since

tr, /K Z g x €L,
geGC

it follows that O, is a G-invariant O,-submodule of L, so O, = (rad 0,)™¢
for some integer d. We call d the different exponent of L/K (and
(rad 0,)“ the different 9, x of L/K).

Define the inertial degree f of L /K to be dim (0O, /rad O;).

Let p: G X G — Of be a factor set on G with values in the units of
O, . The crossed product algebra 4 = (L/K, G, p) is the free left L-mod-
ule with basis u,, g € G, with multiplication given by

xugy - yu, = xg(y)e(g,h)uy, x,y€L,gheQq.

The order A = (0,/0Ox,G, p) is the O;-submodule of 4 spanned by u,,
g € G. We assume that p(g,1) = p(1, g) = 1, so that O, may be identi-
fied inside A as {xu;: x € O, }.

LeEMMA 2.2. (1) L has a normal K-basis with respect to G.

(2) A is a central simple K-algebra, and A is isomorphic to a full matrix
ring over K if and only if the class of p in H*(G, L*) is 1.

(3) The reduced trace trd : A — K is given by

trd( Y agug) =tr, x(a,).
8€G
Proof. These results are well known if L is a field, and the proofs are
essentially the same if L is a Galois algebra. We omit the details.

3. The split case. In this section we assume that L/K is a Galois
algebra, and we prove the theorem in the case that p =1, with P,
replaced by rad O,, and with d, e, f defined as in §2. Since p = 1, then
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A = M,(K), n=|G| Let VV be a simple A-module. The structure theory
for hereditary orders ([6, 39.18]) provides a A ,-submodule M contained in
V' with the following properties:
(a) r is the unique positive integer such that (rad A )’M = P, M,
(since End (V) = K).
(b) A,={xeAd:x(radA)McC (radA )M, 0<i<r)}.
() radA,={x€ A:x(radA,)')M C (rad A))'"'M,0 < i <r}.
(d) (radA,)' " 'M/(rad A,)'M, 1 <i < r, are a full set of simple A -
modules.
(e) n,=dimg(radA,) 'M/(rad A)'M,1 <i<r.
The algebra A4 acts on L, via

(Xxg,) -y =Yx,g(y), Txu,cd, yel,

and acts irreducibly on L, so we may take L to be V. The non-zero
A-submodules of L are O,-submodules of L which are G-stable, so they
are precisely (rad 0,)’, i € Z, by Lemma 2.1. We denote the A-module
(rad 0;)' by M,.

LeMMA 3.1. For each integerj > 0,

(1) M, is a A -module, i € Z, and every non-zero A ~submodule of V' is
M, for some i.

(2) (rad A )M, = M, ;.

Proof . 1f (1) holds for some j, then (rad A )M, ¢ M,, by Nakayama’s
Lemma, so (rad A ;) M; € M, ,, since M, is the unique maximal A -sub-
module of M,. But radO; C rad A, since (rad O,) M, ¢ M, for each i,
and (radO,)M, = M, ,, so (rad A )M, = M, ,, proving (2). For (1), we
use induction on j, having noted that it holds for A . Then for j + 1,

Aj+1M1= Aj+1(radAj)M1—1 (by (2) forj)
C (radA;)M, | (by definition of A, ;)

= Ml
so M, isa A, ;-module, i € Z. Since any A, ;-module is also a A-mod-
ule, the proof is complete.

LEMMA 32 (1) A,={x € A: xM,C M,, i € Z}.
2radA,={x€Ad: xM,C M, ,,i €L}
(3)rad A, = (rad O, )A, = A (rad O;).
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Proof. The structure of A, is given in terms of a A -submodule M
contained in V. From Lemma 3.1, any A -submodule of V' must be M,
for some integer k. We have, from (b) and Lemma 3.1,

A,={xe€ed:xM,, Cc M, , 0<i<r}.
From (a), M, ., = (rad A,)’M, = P, M,, and since Py is a principal ideal
of O, then M, ., = M, as A ~-modules. Then for i € Z,
(rad A))'My, =M, = (rad A )M, = M,
so M,,, = M, as A -modules, i € Z. Thus
A={x€d:xM.Cc M, icZ},

proving (1), and (2) follows from (1). Since radO, Crad A; and
(radO, )M, = M, , = (rad A, )M, i € Z, (3) follows from (2).

Parts (1)—(4) of the Theorem are now straightforward in this case. If
I' is a hereditary order in A4 containing A, then applying the structure
theory to T, there is a I'-submodule M of V' such that

r'= {x € A: x(radT)'M C (radT)'M, 1 < i < type number of F}.

Since AC I, M is a A-module, so M =M . for some integer j. Also,
since (rad O, )M; ¢ M,, i € Z, then rad O, C rad T, and then (radI')'M,
=M i € Z. It follows from Lemma 3.2 that A  C I', proving (1) of

J+
the theorem. Part (2) is contained in Lemma 3.2. For (3), we know from

(a) that r is the integer such that (rad A;)’M, = P, M,. But
PyM, = PO M, = (rad O, )M, = M,
so r = e. (Note that m = 1 here.) For (4),
(radA,)' "M, /(rad A,)'M,
=M, /M., = (rad OL)Hlvl/(rad OL)k+i
and as K-modules (rad 0,)**'~! /(rad 0, )" = O, /rad O; so
n,=dimz0O,/rad0, = f, 1 <i<r.
In order to prove (5), we use the following result.

LEMMA 3.3. Suppose that a is an integer > 0 such that (rad A )¢ is the
largest left A -ideal contained in A. Then s = a.

Proof. If a=0,then A, C A,so A, = A, and s = 0. Assuming that
a > 0, we show that (rad A )" ! is the largest left A -ideal contained in
A,. First,

(rad A,)“ 'rad A C (rad A,)“ ‘rad A, = (rad A ).
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Now (rad A,)¢ € A by hypothesis, and rad A, " A C rad A, by Lemma
3.2. Thus (rad A,)* c rad A. Then (rad A,)* *(rad A) C rad A, so
(rad A )" ' C A,

Next, if L is a left A -ideal contained in A, then Lrad A Crad A,
so Lrad A C (rad A,)“ Then

LradA,= L(rad A)A, C (rad A,)".

Since rad A | is invertible, L C (rad A,)*~! as desired.
Now by induction, the length of the chain A, C A, C --- C A, is
a — 1,50 s = a, and the proof is complete.

Let trd: 4 — K be the reduced trace, and for an Ox-submodule L of
A with KL = 4, let

L={xeAd:trd(xL) c Oy)
be the complementary module.

LEMMA 3.4. Let T be any hereditary Oy-order contained in the split
simple algebra A = M, (K). Then

I'=P;'radT.

Proof. Suppose that I" has type number r, invariants n,,..., n,, and
I' consists of block matrices as mentioned in section 1. Let 7 be a prime
element of Og. For integers i, j, 1 <i, j < n, let Y;; denote the matrix
whose i, j-entry is 7 if the i, j-position is above the diagonal of blocks of
T, or 1 otherwise, and all of whose other entries are 0 (so Y;; € T'.) Let y;;
denote the non-zero entry of Y,.. Let X = (x,;) be any element of 4.
Then XY, has at most one non-zero entry on the main diagonal, namely
x;;y;- We have trd(XY;;) = trace of matrix XY;; = x,;y;. Then X €T’
< x;;¥; € O, all i, j « when X is partitioned according to the block
partition induced by I', the entries below the diagonal of blocks are in
Pg', and the other entries are in Oy. But such matrices are precisely those
in Pg'radT. Since the Y, ; give a free basis for I' over O, the result
follows.

LEMMA 35. Let w=d — (e — 1). Then (rad A,)" is the largest left
A -ideal contained in A.

Proof. From Lemma 3.2, we have rad A = (rad O,) A, so (rad A )"
= (rad 0,)% ¢~YA . From Lemma 3.4

A, =P'rad A, = (rad0,) “(rad O,)A, = (rad0,) " 'A,,
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SO
w dx ~-d =
(rad A,)" = (rad 0,) ‘A, = ((rad 0,) AS)
From Lemma 2.2, trd(Xxu,) = tr; x(x;), s0

A=9" = (rad0,) A C (rad0,) A,

(rad A,)" = ((rad 0,) “A,) € A = A,

so (rad AS)““~ is contained in A. If L is any other left A -ideal contained
in A, then L is a right A -module containing A, so

A, =27\, = (rad0,) A,

LD
Lc ((radOL) A ) (rad A))",

L=

completing the proof.
Now (5) of the Theorem follows from Lemmas 3.3 and 3.5.

4. The general case. In this section we continue with the assump-
tion that L/K is a Galois algebra, and we prove the Theorem in the case
that p is any factor set with values in O}*. Since K is finite, there is an
unramified field extension K’ of K such that the algebra 4" = 4 ® K"’
splits ([7, Prop. 2, p. 191].) Let O’ be the integral closure of O in K’, and
let A=A ®,0"

LEMMA 4.1. If T is an Og-order, then
rad(F ®OK0') = (radT') ®,0".
Proof. Denote Oy by O, and Py by P. Clearly
(radT) ®,0" C rad(T ®,0’).
For the reverse inclusion, we have
(T ®,0")/(radT) ®,0’ = (T /radT) ®,0".
Since P C rad T, then I' /rad I is an O /P-module, and
(T/radT) ®,0" = (I'/radT) ®, ,,(0"/PO’).

Since K’/K is unramified, then O’ /PO’ is field, which is separable over
K since K is finite. Then the semi-simple O /P-algebra I'/radI' remains
semi-simple after tensoring with O’/PO’, so T' ®,0’/(rad ') ® ;0" is
semi-simple, and the result follows.



340 GERALD H. CLIFF AND ALFRED R. WEISS

Welet G acton L' = L ® K’ by
g(x®y)=g(x)®y, =x€L,yekK' g€g.

Then L’ is a Galois algebra over K’ with Galois group G. We have
OL/ = OL ®OKO/, aIld

N=A®,0 =(0,/0,G,p).

Let us show that in going from L/K to L’'/K’, the numbers d, e, f are
unchanged.

Applying Lemma 4.1 to the Oyorder O,, we have radO, =
(rad 0,) ®,, O’. Since the maximal ideal P’ of 0" is P O’, then

POy, = (PxO,) ®, 0" = (rad 0,)° ®,0" = (rad 0,)°
so the ramification index of L’ /K’ is still e. Similarly,
dimg (0, /rad O;,) = dimy(0,/rad 0;) = f.
For the different exponent of L’ /K’, since
try (X ®y)=tr, ,(x)®y, x€L,yeEK’,

then clearly O, ®,,0’ € 0,; since O, = (rad0,) ¢, and radO,, =
(rad O;) ®, O’, then (rad0,)™*C O,. If (rad0;) "' € O, then
(rad 0,)~“~! ¢ O,, which is not so. Therefore 0,, = (rad 0,,)~“.

LEMMA 4.2. If T is an Oy-order contained in a semi-simple algebra A,
then

0,(radT) ®,0" = O,(rad(T ®,,0")).

Proof. 1t is clear that the left side is contained in the right. There is an
isomorphism

¢: 0/(radT) » Homp(radT,radT),

where radI' is considered as a right I'-module. Similarly, there is an
isomorphism

Y: 0,(radT’) - Homp (rad I, rad '),

where IV = T ®,0’. Since I' is noetherian, then radI' is finitely pre-
sented over I', so from [6, 2.37] we have an isomorphism

o: Hom(radT,radT) ® ,0’ — Homwoo,(radI‘ ®,0",1ad T ®,0")

= Hom (radT’,rad T'")
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from Lemma 4.1. The map
y7lo(¢ ® 1): O,(radT) ®, 0" - O(rad ")
is the identity, and the result is proved.

LEMMA 4.3. Let A =(0,/0x,G,p) be a crossed product order in
A =(L/K,G,p) and suppose that A splits over K. Then A =
(0,/0x. G, 1).

Proof. Since the algebra 4 is split over K, the class of p in H*(G, L*)
is 1. We shall show that the map H*(G,0;) —» H*(G, L*) is one-to-one,
and then the class of p in H*(G, O;*) will be 1, and the result will follow.

Let E be the set of primitive idempotents of L andlet M = & __,Ze
be the free Z-module with basis E; G acts on M via its action on E. For
e in E, let v, be the normalized valuation on the field Le, and define
v: L* > M by

v(x)= ) v,(xe)e, X € L*.

e€E

Then we get an exact sequence of G-modules
0 0F > L* 5> M- o,

giving rise to the exact sequence
HY(G,M) - H*(G,0r) —» H*(G, L*).

Since M is a permutation module, M is isomorphic to the induced
module Ind%(Z) = ZG ® ,,,Z, where H is the stabilizer of an idempotent
in E, and H'(G, M) = H'(H,Z) = 0, since H is finite. Then H*(G, O})
- H 2(G, L¥*) is one-to-one, as desired.

From Lemma 4.2, the chains
AgS A C - CA

’ ’ ’
NycANyC --- CA,

have the same length, and A’ is hereditary. Since the Theorem has been
proved in the split case, and since A’ = (0,./0’, G, 1), which follows from
Lemma 4.3, we find that s = d — (e — 1). If T is a hereditary order in 4
containing A, then I'' = I ® , O’ is a hereditary order in A4’ containing
A’, and since A’, is the unique minimal hereditary order in A’ containing
A’, then A/, C T'. We may embed I' in I'" as T ®OK1, and 4 in A’ as
A ®kl, and then T=T"NA2AN, NA=A, so A, is the unique
minimal hereditary order in 4 containing A.
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From [6, 39.14] we have
A/rad A, = [1M, ()
i=1

where A = A/rad A, and A is the unique maximal order in End ,(V), with
V a simple A-module. Then

N/rad N, = (A/rad A;) ®, 0" = (A, /rad A,) ®K’

= ].—[Mn,(Z ®]?E,).
i=1

Now A ® zK’ = (K’)™, where m is the Schur index of 4, since K is finite
([6, 14.3]). Thus

N /rad N, = (]_[Mn’(f’)) :
i=1

Therefore the type number of A’,/rad A’;, known to be e from §3, is equal
to mr, yielding

r=—.
m

Each invariant n, = f, since the invariants n, of A, are f. Therefore the
proof of the theorem is complete.

5. Generators for A, in the split case. In this section we find
generators for A in the case that p = 1. To simplify the exposition, we
assume that L is a field, which is totally ramified over K. We let P; be
the maximal ideal of O,, and let v, be the normalized valuation on L. Let
M, denote the A-module P}, i € Z.

LEMMA 5.1. Let w=d — (e — 1), and let x be an element of L such
that v, (x) = -w. Let a=xYL,.;u, €A. Then aM,C M,, i€ Z (s0
a €A, from Lemma 3.2), and unless i = -w (mode), aM, C M,_,,
whereas if i = -w (mod e), aM, ¢ M, ,.

Proof. Let tr denote the trace from L to K. We first compute tr( P}),
i € Z. We have, for j € Z,

tr(P;) € P{ =t P{Pg/) € Ok
o tr(P) C Op & P9 C 97
e P C O, oi—e¢+d=0
i+d
e

c»j<
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(we have used 2 = P/). Thus
tl'(P;) —_ P[[((i+d)/e],

where [ ] denotes greatest integer. Since Yu, -y = Xg(y) =try, y € L,
we have

0,aM, = O, x tr( P) = xO, PYi* /el = xpgli+di/el,
Write

[i+d]_[i+w+d—w]_[i+w+e—l
e - e e B e e |’

If (i+w)/eg¢Z, then [(i +d)/e]> (i +w)/e, so e[(i+d)/e]=>
i +w,and

+wt+l — pitl _
OpaM, C xP[™""" =P =M,_,,.

If i+w)/e€Z, then [(i + d)/e]l= (i +w)/e, so e[(i +d)/e]=1i+
w, and

O,aM, = xP!** = M.

l

This completes the proof.

Let 7, be a prime element of O,. Then from Lemma 3.2, we have
7 'Am, = A,. Let « = xXu, be the element of Lemma 5.1, and define

— —i i ;
a, = a; 'am, O<i<e.

From Lemma 5.2, it follows that «; acts non-triviallyon M__, /M_, ...,
whereas «; annihilates M;,/M;,, if j # -w + i (mod e). Thus the simple
A -modules M,/M,, M,/M,,...,M,_,/M, are non-isomorphic, and
hence form a complete set of simple A -modules. Recall that A /rad A |
= f=1M,,'(I?), and each n, = f = 1, since we are assuming that L/K is
totally ramified. Hence A /rad A, is commutative. Further, r = e, so
dimg(A,/rad A,) = e. Then the elements «, + rad A generate A /rad A
as a K-module, 0 < i < e. Since rad A, = P, A, we see that O,a,, 0 < i
< e, generate A as an Og-module. So 7j/e;, 0 < j <e, 0 <i < e, gener-
ate A, as an Og-module.

Finally, from the formula tr(P}) = P{'*¥/¢l from Lemma 5.1, if we
set i = —w, theni +d=e — 1, so tr(P;") = O. Thus we may find y in
L with v, (y) = -w such that tr(y) = u is a unit of Oy. Then x = u~'y
has v;(x) = -w and tr(x) = 1. Now (Zu,)x(Zu,) = tr(x)Lu, = Xu,, so
a = xYu, is idempotent. From the action of a on the simple modules
M,/M, |, we find that « is a primitive idempotent of A, and that the
elements a; + rad A are all the primitive idempotents of A /rad A ,.
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6. Complements. The results of Auslander-Goldman-Rim-William-
son mentioned in the Introduction follow easily from our Theorem. If
p=1 Aisamaximalorderin A ® s=0,r=1ee¢/m=1ec¢=1,
since m = 1. For any p, A is hereditary ® s=0eod=¢—-1e L/K
is tamely ramified, from [7, Prop. 13, p. 67].

We also recover a result of Janusz [4], who showed that, in the tamely
ramified case, A has type e/m and invariants f. (See also Merklen [5].)

From the fact that r = e/m, we find a way to compute the Schur
index m of A as follows: the centre of A /rad A, has e/m component
fields (each of dimension m over K ).

It may be shown that the index

(As: A) - .,,]?2(11—(6’-1))/28
where n = [L : K]. This follows from
(A:A)=(A,: A)(A,: A

Note that Lemma 3.4 (that A = Pglrad A if A is hereditary) also holds
in the non-split case, as may be shown by tensoring with an unramified
extension.

In the split case (§3), the A-lattices contained in a irreducible A-mod-
ule V' are linearly ordered, but this fails to be true if A is not split.
However, it may be shown, in general, that the A-lattices M in V such
that End ,( M) is the maximal order in End ,(V') are linearly ordered, and
this can be used to prove the Theorem, just as in §3.

Note that we could have used right-orders A’ ., = O,(rad A’)
throughout, instead of left orders, and still obtain the same answer
s = d — (e — 1) for the length of the chain A’y C --- C A’. By unique-
ness of A, we would get A = A, but we do not know whether A; = A,
forall j,1 <j<s.
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