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Analogues over finite fields are presented for the major formulas in
the theory of classical Hermite functions.

1. Introduction. Character sum analogues over finite fields of the
most important transformation and summation formulas for ,F; and ;F,
hypergeometric series have recently been formulated by Greene [11],
[11A]. The power of this theory is demonstrated, for example, by the
evaluation it yields [12] of the double sum of Legendre symbols

¥y (x+ Dy + Dx +y) )
x,y (mod p) p

This evaluation proves a conjecture in [9, p. 370] and solves the problem
of finding explicitly the number of rational points (mod p) on the surface
z2=(x?+ 1)(y?+ 1)(x? + y?), a problem some algebraic geometers
had worked on without success.

Character sum analogues of the important formulas for orthogonal
polynomials are potentially as useful as those for hypergeometric series, so
a systematic study should be made. Indeed, many character sums studied
in the literature are analogues of special functions, e.g., the generalized
Kloosterman sum (see (2.5), Theorem 2.6, and, say, [10], [21A, p. 253]).

In this paper, the focus is on analogues of Hermite polynomials,
namely Hermite character sums H,(x) defined in (2.1). Each of the
theorems in §4 is an analogue over finite fields of a classical formula
stated just above it. The classical formulas are stated without conditions
of validity; such conditions are often unrelated to the unpredictable
conditions of validity for the finite field formulas.

It is not always possible to give proofs of the finite field formulas
which parallel classical proofs. This is because no satisfactory analogues
of limits, first derivatives, logarithms, and three term recurrence relations
are known. It would be of great importance to find a unified approach
which simultaneously explains formulas for orthogonal polynomials and
the analogues over finite fields. Perhaps this will be accomplished by
connecting the polynomials with Lie groups having counterparts over
finite fields.
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358 RONALD J. EVANS

Theorems 4.24 and 4.36 are particularly elegant and interesting.
Surprisingly, the former holds with absolutely no restrictions on the
characters 4, B, and C.

In §3, multivariable Hermite sums are defined and a biorthogonality
relation is proved. In §5, an analogue of the associated Hermite poly-
nomial [1] is briefly discussed, and an example is given to show how finite
field analysis may be used to construct explicit formulas for classical
special functions. The mysterious fact that such a technique generally
works reflects the beauty and unity of mathematics.

For some recent work related to finite field analogues of classical
formulas for special functions, see references [7]-[9], [11]-[16], [19], and
[21]. This subject of course dates back a long time. As early as 1837,
Jacobi [18, p. 257] had been aware of a finite field analogue of the Gauss
multiplication formula for the gamma function [25, p. 26]. Jacobi did not
have available the tools needed to prove his formula, and over a century
went by before a proof was provided by Davenport and Hasse [5]. No
elementary proof is known, but see [3, §8], [13].

2. Definitions, notation, and preliminary results. Let g be a positive
integral power of an odd prime p. The finite field of ¢ elements is denoted
by GF(q). The capital letters 4, B, C, M, N are reserved for multiplica-
tive characters on GF(q), but 1 and ¢ will denote the trivial and quadratic
characters, respectively. Write 2 to denote the sum over all x € GF(q),
and write 2, to denote the sum over all g — 1 characters N on GF(q).
For x € GF(q), Tr(x) denotes the trace of x from GF(q) to GF(p), and
¢* denotes exp(27i Tr(x)/p). If x € GF(q), let X be the multiplicative
inverse of x when x # 0 and let X = 0 when x = 0. The expression {*/?
means {*2, not exp(27i Tr(x)/2p). Define N by NN = 1.

Analogous to the gamma function

o . dx
T'(n) = j(; x"e™ —
is the Gauss sum

G(N) = LN(x)¢,

and analogous to the beta function

B(m,n)= '{)l x™(1 - x)" *———x(ldf )

is the Jacobi sum
J(M,N)=Y M(x)N(1 — x).
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For some basic properties of these sums, see [17, Ch. 8]; e.g., for 4 # 1,
MN # 1, G(A)G(A) = gA(—1), J(M,N) = G(M)G(N)/G(MN).

We wish to define character sum analogues of Hermite functions
H, (x), Laguerre functions L%(x), Legendre functions P,(x), and Bessel
functions J,(x), K,(x), motivated by the familiar integral representations

— ]‘ o —u?—2ux -—nfiﬁ
Hn(x)———r(_n)f e ur s [20, (10.5.2)],
a - n+a u e —ux_c_iz
Lé(x) = f (u+1) - [20, p. 77],
_ 172, —n dU
P,(x) = sz(l 2xu + u?)” = [20,p.45],
1 —n -1y 2 du
Jn(x)=2—w—i/ urer w2 22 [20, (5.10.7)],
C
K, (x)= %/w U~ Mg x(utuhH,2 % [20, (5.10.25)].
0

Thus for x € GF(gq), define the Hermite character sum

21 H — g‘u +2ux,
1) V() = s N

the Laguerre character sum

(2.2) Li(x —1ZN JAN(1 + u)¢*,
the Legendre character sum

(2.3) Py(x) =g ' XN(u)p(1 — 2xu + u?),
and the Bessel character sums

(24) Ty(x) = g7 LN (u) g2,
(2.5) Ky(x) =Y. N(u)gxw+u/2,

(Note that K, (x) is a generalized Kloosterman sum.) Confluent hyperge-
ometric character sums ¥(A4, B; x) and ®(4, B; x) (cf. [20, (9.11.6),
(9.11.1)}) can be defined as multiples of L2(x), as follows:

(2.6) (4, B; x) = (qA)LA(x)

. _ qA( 1) LB
(2.7) ®(A4,B; x)=1——= 7(A, BA—) LE%(x).
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Define an operator DV = DY on the set of complex functions F on
GF(q) by

(2.8) DVF(x) = G(N Z F(x —t).

Thus D) is the analogue of the nth derivative with respect to x (cf.
Cauchy’s integral formula for f("(x)). We next prove four theorems
involving DV. The first gives an analogue of composition of derivative
operators.

THEOREM 2.1. For a function F: GF(q) — C,

(2.9) D'F(x) = F(x) — L F(¢)

(2.10) D DNF(x) = F(x) —q 'Y F(t) forN #1,
and

(2.11) DNDM = DNM  for NM + 1.

Proof. By (2.8), one easily proves (2.9). Now,
L:= G(N)G(M)D"DMF(x ZM (s)N(t)F(x —t — s)

=Y M(s)N(t—s)F(x —t)

s, ¢

=Y Y M(s)N(t — s)F(x — t) + N(=1)F(x) Y, MN(s)

= J(M, N) S MN(:)F(x — t) + N(=1) F(x) ¥ MN(s).

If M=N+#1, then J(M,N)= —N(—1) and G(N)G(M) = N(-1)g,
SO

= N(=1{= X F(x = 1) +(¢ = DF(x)|

t#0

=N«D@Hn—;ﬂw

and (2.10) follows. If M # N, then J(M, N) = G(M)G(N)/G(MN), so
by (2.8), L = G(M)G(N)D"MF(x) and (2.11) follows.
The next theorem gives an analogue of Leibniz’s rule.
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THEOREM 2.2. If E: GF(q) - C and F: GF(q) — C, then

DY(E(x)F(x)) = ¥, SHGUN)

- Do) (DME(x))(DMF(x)).

Proof. By (2.8), the right side above equals

1 _ _
%mﬁ——)s’goM(s)MN(t)E(x — s)F(x - t)

1 _ 1
~ WSEON(z)E(x —§)F(x —1)- [PE) %M(t/s)
_ ﬁ;ﬁ(t)E(x ~ 1)F(x — 1) = DM(E(x) F(x)).

The next theorem gives an analogue of n-fold integration by parts.

THEOREM 2.3. Let E: GF(q) = C and F: GF(q) — C. Then
Y E(x)DNF(x) = N(—1) Y F(x)D"E(x).

Proof. By (2.8),
G(N) XL E(x)D"F(x) = ZE(u)?V(t)F(u — 1)
- ¥ AG) T E) N~ %)
= éF(x)iE(x —t)N(—t) = G(N)N(—l)ix:F(x)DNE(x).

The next theorem is the analogue of the Taylor expansion.

THEOREM 2.4. Let F: GF(q) — C and fix a € GF(q). For x # a,

F(x) = %g—(_]Y%DNF(x) N(a — x).

Moreover, this expansion is unique in the sense that if

0= %R(N)N(a - x)

for all x, then R(N) = 0 for all N.
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Proof. For x # a,

r %]?DNF(x) ) %: Ma —x) X)) F(a -1
1 a—x
- ;;OF(a -0 };N( t ) = F(x).

To prove the statement on uniqueness, multiply both sides of the equality
0 =Y,y R(N)N(a — x) by M(a — x) and then sum over x.

The next theorem gives an analogue of Fourier inversion. We omit the
easy proof.

THEOREM 2.5. Let F: GF(q) = C. Then F(x) = ¥ ,0Q(a){**, where
Q(a) = q~'T,F(u){~*“. Moreover, this expansion is unique in the sense
that if 0 = ¥, R(a)$?* for all x, then R(a) = 0 for all a.

The next theorem is the analogue of

K, () = \/g e [20,(58.5)].

It evaluates Salié’s sum over GF(q); see Mordell [23], [24].

THEOREM 2.6. For all x,
K,(x) =¢2x)G(o)(§* + {77).

Proof. By the uniqueness assertion in Theorem 2.5, it suffices to show
that for all a,

(212)  Q(a)=¢q 12K )§™

=q7'9(2 ¢)Z¢ J(§xA@ 4 X1,

The left side of (2.12) equals

(2.13) gL () L2 = 3 ¢(1)
! x t+t_€=2a

and the right side of (2.12) equals

97 '9(2)G(¢){G(¢)9(1 — a) + G(¢)o(—1 — a)}

(2.14) = ¢(2a + 2) + ¢(2a — 2).
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If ¢(a®— 1) = —1, then the expressions in (2.13) and (2.14) vanish;
if ¢(a’— 1) =0, these expressions equal ¢(a). Finally, assume that
o(a®? — 1) = 1. It remains to show that ¢(a + Va> - 1) = ¢(2a + 2).
This follows because

2a + 2Va* -1 =(1 Va? —

a+1 a+1

The next theorem generalizes Theorem 2.6; it is the analogue of

K (x) = ﬁ?%(g)flw e (w2 —1)""aw  [20,(5.10.24)].

THEOREM 2.7. Unless N = 1 and x = 0,

Ky(x) = —L’-‘—é(?iﬁ(iZM 1)¢,

Proof. The result is clear for x = 0, so assume x # 0. By (2.5),

Ky(x)G(No) = 3 N(r)Nep(u)grr+o/2ee,

t,u0

Replace ¢ by tx/(2u) to get

Ky(x)G(Np)= Y ¢ u)]\f(%)gx(zx/zwzu/u f2vu

t,u#0

Now replace u by ut to get

N3, (06 (N6) = Tl Voo o

= 2 No(1)S(x, 1),
where
S(x t 2‘1’ u)g'u(t+1)+ﬁx2/4

Ift+1=0, S(x,1) = G(¢). If ¢(t + 1) = —1, then replacement of u
by ux?/(4t + 4) yields

S(x,1) = ¢(t + 1) Y ¢p(u)f rDrur/é = —§(x,1),
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so S(x,t) = 0. If ¢(z + 1) = 1, then replacement of u by ux/(2vt + 1)
yields

S(x,t)=¢(2xvt +1 th u) Vi rn/2

=o2x/t + 1)K, (xVt+1) = G(¢)(§x\/t+_1+ ¢ )

by Theorem 2.6. Thus, with w2 =1¢+ 1, N(x/2)Ky(x)G(No) =
G(¢)X, No(w? — 1)¢*", as desired.

Finally, we record the following well-known special case of the
Hasse-Davenport multiplication formula mentioned in the Introduction:

(2.15) G(A4%)G(9) = A(4)G(4)G(49).

3. Multivariable Hermite sums. The following theorem is the ana-
logue of Taylor’s theorem in several variables. We omit the proof, as it is
similar to that of Theorem 2.4. We shall write a for the vector (a,,...,a,)
€ GF(q)"and N for the vector of characters (N, ..., N,).

THEOREM 3.1. Let F: GF(q)" — C and fix a € GF(q)". If u;, # a, for
eachi,1 <i <r, then

Fw = (g~ TDj -+ D
Moreover, this expansion is unique in the sense that if for all u,
0= ZR(N) H-Ni(ai —u,),
N i=1

then R(N) = 0 for all N.

HG( JN(a, = u,).

u=ai=1

Fix a symmetric » X r matrix D over GF(q) with nonzero determi-
nant d € GF(q). Given a row vector Xx, let x’ denote its transpose. For the
rest of this section, let w and u be vectors with w,u; # 0, 1 <i <r. In
view of Theorem 3.1 with a = 0, we can define multivariable Hermite
character sums Gy (x) and Hy,(x) by

(3.1) ¢ (= D7ty D(x~D"'w~x'Dx)/2

= (4= 1) Z6x() TTG(R)N (),
and

(32) {((x—w)’D(x—w)—x‘Dx)/Z

r

=(¢- 1) " XHu)T6(

M i=1
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The following theorem is the analogue of the biorthogonality property
of Hermite polynomials [6, p. 286, (1)].

THEOREM 3.2.

L(N,M):= Y {XP¥°Gy(x) Hy(x)

X

_J(a- 1)’¢(2'd)G’(¢)i=1?MT,

0, otherwise.

Proof. Multiplying the equalities in (3.1) and (3.2), we obtain

(4= 17 T LN [T6(H)6(F) (=) N (~u)

M,N
— g(u‘D"u+w'Dw)/ZZ§(x'Dx—2x‘(u+ Dw))/2
X
— §(u'D_1u+w’Dw)/22§((x—w-D'lu)’D(x—w~D_1u)—(u+Dw)’D’l(u+Dw))/2
X
— g(u’D-1u+w'Dw)/2Zg»(x'Dx—(u+Dw)'D“l(u+Dw))/2
x

— §~w’uZ§X'Dx/2.

X

Since g is odd, there exists an invertible matrix Q over GF(g) such
that Q'DQ is diagonal [4, p. 253, Theorem 15]. Thus, replacing x by Qx,
we find that

g—w’uZ{x’Dx/Z — g—w'ud)(zrd)Gr((p)

= 0Q)6"(6)(qg = )L [T6(H) (=),

by Theorem 3.1. Comparing coefficients of I1_; M,(—wu;), we easily
obtain the result.

4. Hermite sums. In this section, we catalogue the theorems (in
somewhat arbitrary order) corresponding to what we believe to be the
most important classical formulas for Hermite functions. In many cases, it
is more difficult to construct an elegant analogue (and find general
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conditions of validity) than it is to give proofs. If for example one had
made the reasonable guess that the analogue of the binomial coefficient in
(4.29) is

49G(N)/((¢ = 1)G(B)G(NB))

(instead of G(B)G(BN)/((q — 1)G(N)), used in Theorem 4.29), unnec-
essary complications would have resulted.
Corresponding to the Rodriguez formula

(4.1) H,(x)=(-1)"¢* Zjn -6, p. 193, (7)],

we have

THEOREM 4.1. H,(x) = N(—=1)¢{ *DN¢*,

Proof. By (2.8) and (2.1),

N xu__N( 1) N(u x+u)?
D¢ —G( T EN(u)gem = o BN (g

= N(-1){"Hy(x).

Corresponding to

42) () = (<", () [6.p. 119, (13),
we have

THEOREM 4.2.

Dty (3) = ML )
Proof.
" G(N) _
G(N)D"Hy(x) H); M(t)Hy(x — 1)
(M) X )§u2+2u(x—t) — Eu:M(_zu)N(u)guz-thx

= M(—2)G(MN)H,;(x).
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Corresponding to

(4.3) :j’;";-e-szn(x) —(=1)"e¥H,. (x) [6,p.119,(16)],

we have
THEOREM 4.3. If MN # 1, then
DngzHN(x) = M(-l)g‘szMN(x)'
Proof. Since MN #+ 1, DMD" = DMV by Theorem 2.1. Thus, by
Theorem 4.1,
DM¢*Hy(x) = N(—1) DMDNg*
= N(=1)DM¥¢x* = N(=1){ MN(—1) H,, (x).
Corresponding to

(4.4) Hy(x)=1 [6, p. 193, (8)],

we have
THEOREM 4.4. H,(x) =1 — ¢ *G($) when N = 1.

Proof. By Theorem 2.1, D% S ¢ xt G(¢), so the result follows
from Theorem 4.1. Alternatively, put N = 1in (2.1).
Corresponding to

(4.5) H,(-x)=(-1)"H,(x) [6,p.193,(14)],

we have
THEOREM 4.5. Hy(—x) = N(—1)Hy(x).

Proof. Replace u by —u in (2.1).
Corresponding to

(4.6) H,,00) = (-1)"(2m)!/m!  [6,p.193,(15)],
we have
THEOREM 4.6.
0 if N is not a square

H,(0)={ G(M) + G(M¢p)

G (i) , ifN=M".
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Proof. G(N)H,(0) = Zuﬁ(u)g'“z, which vanishes when N is not a
square. If N = M2, then

G(N)H ZM “ =Y M(u)¢ (1 + ¢(u))

=G(M) + G(M¢).
Corresponding to the generating function formula

] - Hn()C)Zn
(4.7) e = )

n=0

[6, p. 194, (19)],
we have
THEOREM 4.7. Forz # 0, {* "2 = £ N(—2)G(N)Hy(x)/(q — 1).
Proof. By (2.1), the right side above equals
y _]\;_(E_EllZN_(u)gu2+2ux R N SR Cr )
N u

U
u=—z

Corresponding to the polynomial expansion

[n/2) n—2m
(48)  H.(x)=n! Z (-1)"(2x)

[6, p. 193, (9)],

m!(n — 2m)!

we have

THEOREM 4.8. For x # 0,

— 1 AL 2 X Al 2N
Hy(x) PTEITOEEY %NM (2x)G(M)G(M?>N).

Proof. By Theorem 2.4 with a=0,

(4.8a) Hy(x)=—— ZG AYD H,(x)| A(—x).
x=0
By Theorem 4.2,
A(—2)G(AN)
D H, (x)|,_, = — H,+0).

VO0)lco = S L BT Hya(0)
Thus, by Theorem 4.6,

0, if NA is not a square
DAHN(X)|x=0= A(——Z_)

() (G(M) + G(Mg)), if NA=M>.

Replacing 4 by NM? in (4.8a), we obtain the desired result.
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Corresponding to the integral representation
(49) H,(x)= 2’) e f eX=rpngr (20, (4.11.4)],
we have

THEOREM 4.9. If N # 1, then

HN(X) xG(‘i’) ZN §2ux u?

Proof.
L:=G(N)™G(¢)q 1ZN(2u)s°2‘”‘“

=G(¢)g' X N(z—")f’“(“‘”z.

u,t+0 !

Replace ¢ by 2ru to obtain
L= G((;b)q‘l Z Zﬁ(t)ghu—-(u—x)z'

u#0 t

The condition u # 0 may be dropped since N # 1. Replace u by u + x
to obtain

= G(¢)q*‘;ﬁ(t)§2'x§§2'“‘"2
= G(¢)q'1;iv‘(t)§2’x+’z¢(—1)G(¢)
= L N(1)$2+7 = G(N)Hy(x),
as desired. t
COROLLARY 4.10. If N # 1, then

7o) - N@&r
)= Gara(ny )

where the bar on the left denotes complex conjugation.
Proof. By Theorem 4.9, the right side above equals

2ux—u® _ N( 1) —u'—2ux _ I
G(N) %N(u)f = G(N = Hy(x).
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Corresponding to

(4.11) foo e X *H (x) = Vwa"e”/*  [20,p.74],

— 00

we have

THEOREM 4.11. Unless botha = 0 and N = 1,
Y42 Hy (x) = G($)N(2a)¢ ™
X

Proof.
G(N ng ——ZaxH X) ZN t)got +2x(t—a)+x?

x,t

= {OLN()gR e G = (G (¢) LN (1)

X

and the result follows.

Corresponding to the integral equation

x/2
412) H,( e 2H (y) d 20, (4.12.3)],
(412) H,(x) =T [ (N [20,(4123)]
we have

THEOREM 4.12. If N # 1, then

HN(.X) — ¢(2)G(¢;)N(_1) {—xz/zzgfxu—uz/zﬁﬁ(u).

Proof. By Theorem 4.9, the right side above equals
¢(2)qG(¢) Wq—l Z§~xu+(u2—x2)/ZZN( _ 2t)§t2«2tu
u t

)q—lzN( _21)512—x2/22§(u2—2xu~4tu)/2
t u
— q_lG(qb)ZN( _2t)§t2—x2/2—(x+21)2/2
t

= {G(6) g EN(=20)87 77 = Hy(x),

again by Theorem 4.9.
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Corresponding to
(4.13) H,, (x)=(-4)"n'L;*(x?) [6, p. 193, (2)],
we have

THEOREM 4.13. If x # 0 and N # ¢, then
() = 28 1 2),

G(N)
Proof. By Theorem 4.8,
H,:(x) = (—_—f)lz;—(—)ZNzlt—lex)G(A_l)G(Mzﬁz).

Replace M by NM to obtain

(4.13a) HNz(x)=m%M (2x)G(MN) G (32).

By Theorem 2.4, for z # 0,

Thus, by the definition (2.2) of L{,
£4(:) = £ 2D w0 Tva + 0 Nape
M t u

= 245 1) M)ZMN u)NA(1 + u)
= q—l % (—z)G(M)J(MN, NA).
Therefore, with 4 = ¢ and z = x?,
(@130) MO e ()
G(N)
= NEA) 5 (= x2)G(R)T(MF, No).
G(N)g-1)'n

Comparing (4.13a) and (4.13b), we see that it remains to show that

(4.13¢) G(7) G(™)

M(4)G(MN)G(M?) _ N(-4)M(-1)G(M)J(MN, No¢)

371
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If M = ¢, then since N # ¢, we have J(MN, N¢) = — Né(—1), so (4.13c)

follows from (2.15) with 4 =N. If M # ¢, then J(MN, No) =

G(MN)G(N¢)/G(M¢), and again (4.13c) follows from (2.15).
Corresponding to

zz/2 zZ 22
(4.14) H_l/z(z) = e /% PP K, >

(which is stated incorrectly in both [6, p. 119, (20)] and [20, p. 298, #6)),
we have

THEOREM 4.14. Let x # 0 and let N be quartic, so that N* = 1. Then

Proof. By Theorem 4.13 and the definition of L%,

H,(x) = Hy(x) = V@ 1o (2)

G(N)
__—) x? —) tx?

G(7) ft_: (t)No(1 + t)¢ () ; t+ t%)¢
— ) -2 x2= _ 1x?
- G T - e , K

Thus, by Theorem 2.7,
_ 2 GIN)N(x%/4) . (%2
Hylx) = G(N) G(¢) K”( 2 )

as desired.
Corresponding to

(415) [~ e *w"H,(xw)dw = VanlP,(x)  [6,p. 195, (29)],
we have
THEOREM 4.15. Let N # 1. Then

_aN-16(@) , ), N )
%f N(W)HN(XW)— G(]v) Py(x) + G(N Z N(w).

(Note that the last sum vanishes if ¢(x> — 1) = —1.)
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Proof. By (2.3),
G(N)Z{sz(W)HN(xw) = Z]V(u)g-uz(l—xz)ZN(W)g,(MH_ux)z

— Z guz(l-xz)ZN(W)g(wu—Fux)z — ZN(W)Z§u2(1+w2+2wx)

u#0

w
wl+l=—2wx

=Y Nw)o(l +w?+2wx)G(¢)+q Y, N(w)

= gN(-1)G(¢)Py(x) +qN(=1) X N(w).

w?+ lw= 2wx
Corresponding to the addition theorem

(4.16) H, (ax + by) = Zi‘, (;:l)a’"b"_”’H (x)H,_,(»)

[6, p. 196, (40)],

we have

THEOREM 4.16. If a, b, x, y € GF(q) with a* + b> =1 and ab # 0,
then

G(M)G(MN) —
H,(ax + by) = —M(a)NM(b)H,,(x)H,5(y).
lax +by) = B T8 M (a) NHE(5) Hy (x) Hoe(7)
Proof. Let w # 0. By Theorem 4.7,
§u2w2+2wax = Z M(aw-)_Gl(M) HM(X)
M q
and
202 4 Jwhy bw)G(A4
s h;zz_(_w_l_l(__) H,(»).
1 q
Multiply to obtain

(4.163) §w2+2w(ax+by)
=(¢g—-1) ZM(a )A(b) MA(w)G(M)G(A) Hy(x)H,(y).
Also, by Theorem 4.7,

(4.16b) §w2+2w(ux+bv) Z Z(N) N(W)H (ax + by)
N
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The result now follows from Theorem 2.4 upon comparing the coefficients
of N(w) in (4.16a) and (4.16b).
Corresponding to (cf. (4.15))

Vo (2m)!

(4.17) f e"'H,, (w)dw= -

- o0

a2 (a - 1)"

[20, p. 75],
we have

THEOREM 4.17. Let a #+ 0,1. Then

5 Hy(w)

0, if Nis not a square

G(¢)
G(M?)

¢(a)(M(1 — a™1)G(M) + Mo(1 — a™')G(Ms)),

ifN=M?.

Proof. Let x = a~*. Then

G(N)ZfawzHN(W) = Z{WZHZN(u)§u2+2uw
= Zﬁ(u)g‘uz(l—X)Zg’a(W-Fux)z _ ¢(a)G(¢)Z]—\7(u)§“2““X),

and the result easily follows.

A generalization of the formula
fooo e H, (x)’cos(xyV2 ) dx = e /2w 2" 1n1L2( y?),
which is incorrectly stated in [6, p.195, (33)], is
(4.18) J7 e oE, () By () dx

— 0

= Lj;“’"(Zyz)e‘yz( —ip)"""2a m!,

which 1s stated incorrectly in [22, (4.166)]. Corresponding to (4.18), we
have (cf. Theorem 4.11)

THEOREM 4.18. Let N # 1, a # 0. Then

L:= Z§X2+2xaHN(X)HM(x) - - qG(¢2;]Z,](‘7_)2a)M(a)

LYM(~24?).
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Proof. By Theorems 2.3 and 4.1,
L= ZH (x)§2(N(=1) D<) = LeDY(§24H , (x)).
Thus, )
L=—=Y ¢ Y N(1)$“C H, (x — 1)

—1_______ N bV s2=25t—2at 4 2x(ats)
G(}V)G(M)%NU)M(SR gf

= __—_—G(¢) N M s st =2st—2ar—(a+s)?
= G(MG () gN(t)M( )§ (k)

_ G(d’)g“az AT __S —2Ast+at+as
_*—”G(N>G(A7)§N(’)M( )¢ ),

Since N # 1, the term with s = —a may be excluded. Replace ¢ by
—t/(a + s) to get

— G(qb){—az —a— A Y3 s 2t—2as
(4.18a) L= G(N)G(M);,N( )N(2)M(s)§

_ G(#)$ “N(=2) 2as.
= G (M) }:N( +s)M(s)§"

Since a # 0,

G(¢)¢ “N(—2a) M(a) N\ pmaas
() ;N(s + 1)M(s)¢

and the result follows by the definition of L (x).
Corresponding to the orthogonality relation

(4.19) f e “H,(x)H,(x)dx
/0, if m # n
2iWa . if m=n [20, (4.13.1), (4.13.4)],

we have

THEOREM 4.19.
0, ifM+ N

YETH (x)Hy(x) = { N(=2)G(9)(g — 1)
¢ G(N) '

if M = N.
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Proof. By (4.18a) with a = 0,

G(¢)N(-2)
g; Hy(x)Hy(x) = o) gMN( s)

and the result follows.
Corresponding to the Gauss transform formula

(4.20) (277u)“1/2fio Hn(v)exp(—(x — 0)2/2u) dv

(2x)", fu=1/2
=((1 - 2u)"/2H,,(x/\/i————2—u),
if0 <u<1/21[6,p.195,(30), (31)],

we have

THEOREM 4.20. Let N # 1, u # 0, and assume 1 — 2u = a*> € GF(q).
Then

tom G T = (0 . Tazo
Proof.
L= (T())@Zyx 0)? ”“ZN(W Jgn e

where we have replaced v by s + x. Now,
Z§2ws+xz/2u - §“2W2"q5(2u)G(qb).
Therefore,

— M u2+2wx_
oy T
If a = 0, clearly L = N(2x). Suppose a # 0. Then
N a — 2 ) Ja
_ M) 5 Gy 2 — N(a) Hy(x/a).
G(N) %
Corresponding to

x? i [2 TN —xt
(421) HH(X)H~)1fl(x) =e /(; J11+1/2(7)COS(XZ — *“2—)6 dt

[6, p. 120, (7)].
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we have

THEOREM 4.21. Let N # 1 and x #+ 0. Then

(o) g (x) = 2B T k(e

Proof.
L= Hy(x)Hy(x)gN(=1) = Hy(x)Hy(x)G(N)G(N)

Z N §r +u? #"\(Hru)

t,u#0

Since N # 1, we obtain, upon replacing ¢ by tu,

L= ZN(;)quZ(,ZHHZW(Hl)
= YIN(e)¢ 0 g (12 4 1)G ()
¢)ZN(Z)¢(t2 + 1)§~2r\»2/(,2+1,

&)Y N () (2 + 1) 2 /0,

It remains to show that

(421a) YK, (12)8> = $(2)G(6) D Ns(1) (1 + D)§ 27000,

By (2.5),
Kyo(u?) = L Ng(r)g 02
!
SO
ZKN¢, {2\11 _ ZN¢ ZgZ\‘u+uz(l+i)/2'
Since the rightmost sum on u equals

§ g1+ 1)9(2)G (),
(4.21a) follows.

377
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Corresponding to

(4.22) H,,(Z(l;i))Hn(z(lz_i))

S i T -z
= m‘/(; Kn+1/2(t2)COS(Zt - —Z—)e dt

[6, p. 120, (9)],
we have

THEOREM 4.22. If N # 1 and x # 0, then

Hy(0) Hy(x) = TN 3 (1)

Proof. This follows from Theorem 4.21 and Corollary 4.10.
Corresponding to (cf. (4.15))

(4.23) fow e=CtmH (1) % - r({iz_n_nmi(f;)/z) [6, p. 122, (20)],

we have

THEOREM 4.23. If N + M,

0, if MN is not a square,

Y M(1)Hy(1) = { _G(M) B
P G(MN)(G(A)+G(A¢)), if MN = A*.

Proof.

Zg’zM(l‘)HN(Z) = G—(ljv—)- ZN(W)M(t)§w2+21w+12

LY M)N(w - )

G(N) t,w#0
LS MR () V(1 —
o W§OMN( )¢ Xt:M(t)N(l t)
_J(M,N) V()" = G(M) V()"
) §MN( )§ *—G(M]V) gMN( )&,

and the result follows.
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By [27, p. 564, (14)], [26, Problem 87], we have

© 2
(4.24) / e “H,(x)H,(x)H.(x) dx
_ Vm 2~ "alb!c!
(=n=a)(-n—-b)(-n—2c)!’
when n = —(a + b + ¢)/2 is an integer and a, b, ¢ are positive integers.

Corresponding to (4.24) is (cf. Theorem 4.19)

THEOREM 4.24.

= ZK'YZHA(X)HB(X)HC(X)

0, if ABC is not a square

G(¢) =
G(I)G(E)G(E)(N( 2)G(AN)G(BN)G(CN)

+ No(—2)G(AN$)G(BN$)G(CNe)), if ABC= N2.

Proof. Successively applying Theorems 4.1, 2.3, 2.2, and 4.2, we have
L =3 H,(x)Hg(x)C(~1)D%* = Zf" “H,(x) Hy(x)

_ G(M)G(MC)
R Y YT

G(M)G(MC :C(—2)G(MA)G(CM B)
§ * — H,w(x)Hg,,~(x).
By Theorem 4.19, L = 0 if ABC is not a square, while if ABC = N2, only
M = ACN and M = ACN¢ contribute to the sum; these contributions
are easily seen to be respectively the two required terms in Theorem 4.24.
Corresponding to Mehler’s formula

(4.25) (1 — uz)_l/zexp{

DYH,(x)DVHy(x)

2xyu —(x2 + y?)u?

1—u?

_ ¥ H,(x)H,(y)(u/2)"

n!

n=0
we have

THEOREM 4.25. Let

r(x,y,z)= {G(¢)§_x2, ifx=yzandz = +1
0, otherwise.
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Then
G(N _
= T b () () W (-2)
N
- ¢(22 _ 1)§(nyz—x2—y2)/(l—zz) _ ¢(_1)§—x2—y2 + r(x,y,z).
e first term on the right is interpreted as 0 when z* = 1.
(The fi h h d as 0 when z* = 1.)

Proof. The result is clear for z = 0, so assume z # 0. Then

1 N(-2 2
Z Z N St g-s +1242sx+2ty
(¢g—1) 7% G(N) 5,1#0

L=

=7 _ 1 Z Z N(ZZSt/u){S +124+u+2sx+1y

(q_ 1) N#1s,t,u#0

1 Z §s2+t2+25x+21y

q_lst#O

Z Z I—V'—(zzst/u)§52+tz+u+2sx+21y
‘1(‘] N s,t,u#0

1 Z §x2+12+2sx+2ty

q s,t#0

1 Z (§s2+t2+225t+2sx+21y _ §s2+t2+23x+2[y)

q s,t#0

The restrictions s # 0, ¢t # 0 can now be dropped, so

—Gz((i)) 2_,2 1 2 2 2 2
L = ___________{—x A T Z{s +2sx—(y+sz) Z{t +1Q2y+2zs)+(y+sz)

= _¢(_1)§—x2—y2 + @{‘yzzg‘sz(l—22)+25(x—y;:).
If z2 =1 and x = yz, then
L=—¢(-1)¢§ " + G(e)§™,

as desired. If z? = 1 and x # yz, then
L= —¢(=1)¢,
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as desired. Finally, suppose z2 # 1. Then
L=—¢(=1)¢ %"+ @g—yz—(x—yzﬁ/a—ﬁ)q,(l - 22)G(¢)

= _¢(_1)§—x2—_v2 + ¢(22 _ 1)§(nyz—x2—y2)/(1—zz)’

as desired.

COROLLARY 4.26. If N # 1, and

N(-2x/y), ifx=42y+0
F(x,y)={N@2)+ N(-2), ifx=y=0
0, otherwise,
then
F(x,y)G(¢)¢*
Hy () Hy () = TN
N(2) AT _ 2\ pQRxyt+ixt+ 2y /(1-1%)
+—G(ﬁ) Zt:N(t)cp(l 12) ¢y y .

Proof. By Theorems 4.25 and 2.4,
Hy(x)Hy(y)N(2)

— DZN{¢(1 _ Z2)§(2xyz—x222—y222)/(22~1)

_¢(_1)§—x2-y2 + r(xayaz)}l

z=0
1 — 22, .22 2
= N(t 1_t2 Qxyt+x°t°+y“t°) /1 —1t%)
G(N); (1)o( )§
1 —
+————2N(t)r(x>y’_t)’
G(N) 7

and the result follows since

NQ@)LN(t)r(x,y, —1) = F(x, )G()¢ .

Under certain conditions [20, p. 71, Theorem 2], a function f(x) has
an expansion of the form

(4.27) f(x) = ienﬁ,xx),
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where

e x)H, (x)dx.

" 2"n'\/_ f
Corresponding to (4.27), we have

THEOREM 4.27. Let F: GF(q) — C. Then
F u) = ZBNHN(u) + q_lf_uzG(‘i’)ZF(t),
N t

where
G(N)N(-

S8l 1) T F ) Ay ).

ey =

Proof. By Theorem 4.25 with z = 1,
1 2 2_.2
ZeNHN(u)=~—Z§XF(x){—¢(—1)§X <+ r(x,u,1))
N

_—9(=1
- G(¢)§ "LF() + F(u).

Corresponding to

(4.28) H,(x)H,(x) = f;‘,ozmm!(rfl)(;q)ﬂ,w,m(x)

[6, p. 195, (37)],

we have

THEOREM 4.28. Let

B,C 0, if BC is not a square
S8l { W(Q)G(W) + ¢W(2)G(Ws), if BC=W>
Then

H,(x)Ho(x) = SEDEG(0)g(B.C) | 1

G(B)G(C) G(B)G(C)(q - 1)

XZM(—2)G( )G (MB)G(MC) BCMZ(X)

M
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Proof. By Theorem 4.27 with F(x) = Hpg(x)H(x),
(4.28a) Hp(x)H(x)= ZEAH (x)+q7%" XG(¢)ZHB(I JHc(1),

where

G(DA(=2) 00 R
G(o)(g = 1) B8 Halx) Hy(x) He().

When A4BC is a square, then as in Theorem 4.24, let N 2= ABC, and put
M = NBC, so that A = BCM?*. Then by (4.28b) and Theorem 4.24,

ZeAHA(X)

(4.28b) e, =

1 — _ _
= 6(316(E D) %M(—2)G(M)G(MB)G(MC)HBC,W(x).

It is easily checked that

Sy (1) H(1) = 1S _(p.0),

G(B)G(C)
so the result follows from (4.28a).
The formula
5 (n
(429) H(x+a)= X (})@a)H, (%)

k=0
is stated in [25, p. 252, Ex. 1] and, in slightly different form, in [25, p. 253,

Ex. 8]. Miller [22, p. 106] states (4.29) incorrectly. Corresponding to (4.29),
we have

THEOREM 4.29. Let a # 0. Then

(ot a) = o T OB gy ).

Proof. The right side above equals

1 — Y u?+2ux
m%G(E)BQa)ZBN(H)f
G(N) u§0 ( )g-u +2uxq ZG(B)B(zua)

— G(N) ZN( cu 24 2ux+2ua _ Hy(x + a).
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LeMMA 4.30. Let z # 0. Then (cf. Theorem 4.19)
L:= Y ¢"H, (1)H,(t + z) = G(MN)G(¢)N(2z)M(—z)/G(N).

G(M)G(N)L= Y, M(s)N(u)g"+s+2s+uis2utirs
t

S, tu

= G(¢) T M()N(u)-2»

s, u#x0

= G(6) X M(s) MN(u)g?>

s, u#0

= G(¢)M(-2)G(M)NM(2z)G(MN),

as desired.
Corresponding to (cf. (4.3) and (4.7))
) o0 H n
(431) e o (v —2) = 3 LD s g7 1),
n=0 .
we have

THEOREM 4.31. Let z # 0. Then
F(x)= {77 2H, (x - 2)

_ M(2)¢*G(9) G(N)N(-z)
G(M) * % qg-—1

Hyp(x).

__Proof. Define ey as in Theorem 4.27. By Lemma 430, ey =
NM(—2z)G(MN) /(g — 1). It s easily proved (cf. Theorem 4.11) that

Y72 H,, (1) = gM(z2)/G(M).
t
Thus the result follows from Theorem 4.27.

COROLLARY 4.32. Letz + 0. Then
_M(=2)6(s) , ¢ GDG(LM)AM(z)
G(M) y (¢ -1)G(4?)

fzzHM(z)

Proof. In Theorem 4.31, set x = 0, replace z by —z, and apply
Theorem 4.6.
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LEMMA 4.33. Let a # 0, +1. Then (c¢f. Lemma 4.30, Theorem 4.19)
L:= Y {*H,(x)Hy(ax)

0, if MN is not a square

M(—ZG)G(¢) — g2 — a2 Ae
) (401 - a®)G(A) + 94(1 - a*)G(A9)),
if MN = A°.
Proof.
1 TENTT s2+42 x*+2x(s+at
E Gt OO

G(¢) S H(s)N(1)¢r0 -
= —— M(S)N(t)g't (A—a®)=2ast
G(N)G(M) /%o

( 2‘1)G(¢)Z N g‘t 21— a)
G(M) 7
and the result easily follows.
Corresponding to

(n/2] 1 — a2)*
(4.34) aH(%) = n!kgo H"—(zif(_ )2(11()”(! ) [1, (4.16)]

(of which the special case a = V2 is given in [25, p. 253, Ex. 7]), we have
(cf. Theorem 4.20)

THEOREM 4.34. Leta # 0, +1. Then

§ v (x)G(A)G(NA*) A(a® - 1).

M@ 2) = e

Proof. By Theorem 4.27 with F(x) = H,(x/a),

(%) = St 0 SEHED v e, (01, £,

Applying Lemma 4.33 and replacing M by NA?, we obtain the result.
Corresponding to the formula

0 m-—n
(435) e H(x+1+2) = ¥ L;;'n(za)Hm(x)(i) ,
t o 2a
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a version of which is incorrectly stated in [22, (4.76)], we have (cf.
Theorems 4.29 and 4.31)
THEOREM 4.35. Forat +# 0 and N # 1,
F(t):= ¢"*>H (x + t + af)

_N(=0)G($)s™ ™ ¢ N7 ot
= o(M) + -1 %LM (2a) M(x)MN(2 )

Proof. By (2.8),
G(‘DDtAF(t)'t=O = ZA_(u)gluz~2uxHN(x —u- (117)

- - ZA U)N(U)§u2 Qux+v?+20x—2vu—2avn

G( N)

— G( ) ZA u)N(u+ u) v 24+ 2px—2avi—-2a

— § 2 —— uv v uv vV +20x—2an
- G(ﬁ)(ZA - T Aw) N+ w)s )

(Z (u) + Y AN(v)AN(u)N(1 + u)gvzﬂvx—m)
§ 2a ’
~ G(N)

Now, since N # 1 and a # 0,

G(AN) L AN(u)N(1 + u)¢ 7> = ¥ AN(0)N(1 + u)gC~2

u,v#0

| SN + Ho ()G (AR) TAN() N1+ ).

= =2 AN(v) + G(JV)ZW(U)N(U — 2a)§*

=-zm + §2°G(N) A( 2a)ZAN v)N(v + 1)¢2

= —ZAN(v)+s“2"G( )A(-2a)qL}y(2a).
Thus,

G(A)D/F(1)],- = a%zmum — Hyy(%))

+HAN(X)A("2")‘IL§N(2G)-
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Therefore, by Theorem 2.4,

g Al
F(t)—-(q——l)G(]V)%(l H y(x))A( I)ZAN(

() 4( 55| L1 Ca).

The result now follows w1th use of Theorem 4.4.

Let G,(x) denote the Hermite function of the second kind defined in
[2, (2.44)]. In view of [20, (9.13.8) and (1.2.3)], it is reasonable to consider
¢(—1)Hy(x) as the finite field analogue of G,(x).

Corresponding to (cf. (4.24))

(4.36) | v () () H(x)e > dx

_ (-1) 2"+’+m(ll€c!+ m)!(k + 1)! (2. (2.47)].

we have

THEOREM 4.36. Let A, B, C, and ABC be nontrivial. Then
Zf“ 4(x)Hy(x)Hc(x)

0, if ABC is not a square,
={q '¢(-1)N(2)G(AN)G(BN)G(CN)
+q7'¢(—1)No(2)G(AN$)G(BN¢)G(CN¢), if ABC = N2

Proof. We have

1 A1 B = 2, .2, ,2 2
L= - — Z A(r)B(s)C(t)g" +824+ 024 2x2 4+ 2x(r+s+1)
G(A)G(B)G(C) ,.57.x

G(¢)¢(2) i
G(4)G(B)G(C) r,:b;oA(’)B(S)C(t)U Y

G(¢)¢(2) Z Dy Ya 5 = 2 2,2
= = po ABC(f)B(S)C(r)g" (A+r2+s?=2rs=2r=25)/2
G(‘Z)G(B)G(C) r,s,t#0
Clearly L = 0 if ABC is not a square, so assume that ABC = N2 Then,
since N2 # 1,

___G(e)9(2)
(4.36a) L= G(E)G(E)G(é)(N(Z)G(N)Z(N)

+Né(2)G(No) Z(No)),
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where
(4.36b) Z(N)= Y B(s)C(r)N(1 + r> + s> — 2rs — 2r — 2s).

By [7, (20) and (27)),
N¢(=1)G(N?)G(B)G(C)J(BN¢,CNg, No )
qG(A4)

b

(4.36c) Z(N) =

where
J(M,, M), M;):= Y M(x)My(y)M,(z).

x+y+z=1
It is well-known [17, p. 100] that
(4.36d) J(M,, My, M;) = G(M,)G(M,)G(M;)G(M,M, M) /q
when M, # 1. By (4.36¢) and (4.36d),
(4.36€)
No(-1)G(N?)G(B)G(C)G(BN4)G(CNg)G(Ns)G(BCNg)

Z(N)= 4°G(4)

b

and Z(N¢) is found by replacing N by N¢ in (4.36¢). Thus, from (4.36a)
and (2.15), the result follows.

5. Associated Hermite sums. Let H,(x; c) denote the associated
Hermite polynomial defined in [1, p. 16]. In view of the generating
function formulas (4.7) and

0 tm+¢Hm(x; C)
2: . TTm\% ¥/
m=0 (0 J

it is reasonable to define the finite field analogue H,,(x; C) of H, (x; c),
for a nontrivial character C, by

— elxt~t2/t uc—leuz—qu du [1, (414)],
0

Hy(x; €) = Hyelx) gy SO,
Thus,
HM(X; C)= HMC(X)HC(X) = HMC(X)Hc(x)6(2)§xzq/(G(¢’)G(C))’

where the last equality follows from Corollary 4.10. In view of Theorem
4.19, the character sums H,(x; C) clearly satisfy an orthogonality
relation with weight function {*'/ H.(x)" (cf. [1, (4.7)]).

To obtain the analogue of the polynomial representation of H, (x; c)
in powers of x (see [1, (2.8) and §5]), one must, according to Theorem 2.4,
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compute DVH,,(x; C) at x = 0. This may be accomplished by applying
Theorems 4.28, 4.3, and 4.6. We omit the details.

We close with an example to show how finite field analysis might be
used to conjecture explicit formulas for special functions, which then may
be proved by complex analytic methods.

Suppose it is desired to find a formula for H,(x; c¢) as a linedar
combination of Hermite polynomials. By Theorem 4.27, we have essen-
tially

o x C(e(-1)
H(x: €)= T770600)

X ZHA('X)G(A—)/T(_2)ZKZIZHA(Z)HC(t)HMC(t)’

t

where the asterisk signifies that a few isolated terms have been ignored.
Using Theorem 4.36 to evaluate the inner sum on ¢, we have

. el c(2) 2
HM(X, C) = m%]fgfﬁz(x)G(BCN )

X BCN*(—2)N(2)G(BCN)G(BN)G(CN),
where B = MC. Replace N by NB to obtain
M(-1)
q(¢ - 1)G(C)

X Y Hy,x(x)G(N*M)N(2)G(NC)G(N)G(MN).

Il »

HM(x; C)

From this one might conjecture that

Hxs o) = § COG

n=0

m—2n(X),

which is in agreement with [1, (4.18)].
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