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L?-spaces associated to Jordan algebras with traces are defined.
They have the usual properties of their equivalents on a measure space,
but the product is non-associative.

1. Introduction. The Banach lattices L?(Z,v) where (Z,v) is a
measure space can be extended in a non commutative algebraic context
then it remains a commutative notion under the form of a trace on a von
Neumann algebra ([12], [34], [29]). Here we show that it is possible to use
the same approach in the non associative case of Jordan-Banach algebras
with predual (J.B.W. algebras). The Jordan algebras appeared in the
thirties as a formalism of quantum mechanics and are useful in this
context (see for instance the references in [19]). There are many connec-
tions between operator-algebras and Jordan Banach algebras and this
explains why we use ideas from von Neumann algebra theory, especially
those in Dixmier’s paper [12]. Actually it is possible to prove part of the
results of this paper using the paper [2] by Ajupov and a structure
theorem on J.B.W. algebras (see [35], [16]) which reduces the problem to
the study of all possible cases. However we prefer a global and direct
approach since in our opinion the close relations between the non associa-
tive but commutative product of Jordan algebras and the associative but
not commutative product of operator algebras are not sufficiently well
understood.

The paper is organized as follows: In section 2 we recall the necessary
details about Jordan Banach algebras and semifinite traces. In section 3
the LP-spaces are defined and we prove that (L?)* is isomorphic to L¢
for p > 1, where 1/p + 1/ = 1. It follows from Clarkson’s inequalities
that these spaces are uniformly convex and uniformly smooth for p > 1.
The case 0 < p < 1 is also investigated. Section 4 contains related results.

2. Notations and basic properties. A Jordan-Banach (J.B.) algebra
M is a real Banach space and a real Jordan algebra such that

ol <llx ] 1y
Ix2) = x|
x| <[lx>+y*| x,yinM

417
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(see [4]). Let L, be the multiplication operator by x: L .y = xy and
U.= 2L,)* — L, the triple product. For instance, if M is the selfadjoint
part of a C*-algebra, and L y = 27}(x - y + y - x) where - is the opera-
tor product, then Uy =x-y-x. If M is the dual of a (necessarily
unique) Banach space M, then M is called a J.B.W. algebra ([35], [16]).
Note that if M*= {a*la€ M} then M™ is a closed convex cone
such that M = M*— M. In particular |x| = (x?)/?2 € M*. If § is the
set of symmetries (i.e. s> = 1) and M is a J.B.W. algebra then each x in
M has the decomposition x = s|x| where s € S. A trace ¢ on a J.B.
algebra M is an application from M™ to [0, o] satisfying the following:

e(x +y)=o(x) +o(y),
@(Ax) = Ap(x),
o(Uy?) = 9(Ux?), x,y€M,AeR"

Define M{'= {x € M*|p(x) < oo} and < the order in M given by M*.
¢ is said to be faithful if @(x)= 0 yields x =0, semifinite if
9(x) = sup{@(»)ly € M{, y < x}, normal if @(x,)1¢(x) for every
increasing net x, 1 x x,, x in M* (M is a J.B.W. algebra).
Recall some basic facts on traces ([19] V.1.2, V.1.4, [20], [31] and [3])
where M now as in the following denotes a J.B.W. algebra and ¢ a
semifinite faithful normal trace.

LEMMA 1.
(1) M, = M{"— M} isaJ.B. ideal in M and ¢ can be extended by
linearity to M.
() o(x(yz2)) = o((xy)2) = @(y(x2)), x,y € M, z € M,.
(i) p(U;x) = p(x), s€ S, x € M.
W) U,z + Uyz) = (U 24 2902), X,y €M, z € M,.
V) o(U,y) = o(x%), x € M, y € M.
In particular p(xy) > 0ifx € M*, y € M.
(Vi) p(e'lt=blzy=p(z) teR, x,y €M, z € M,.
(vii) (x(U ) = 9(¥(Ux)), x,2 € M, y € M.
(viit) (|xy]) < [Ixllo(Iy), x € M, y € M.
(ix) The o(M, M,) closure of M, is M.

DEFINITION 2. For x € M and 0 < p < oo define

Ix [, = o(Ix")"”" [0, »].

We adopt the convention ||x||, = ||x||.
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Note that ||x]|, < co for all p € [1, 0] if x € M,.

LEMMA 3.
(i) Holder inequality: If p,q € [1, o0] such that 1/p + 1/q =1, then

vl < Wil iyl x, y € M.
(i) ||x|l, = sup{lp(xp)|ly € M, |Iyll, < 1} and the supremum is at-

tained.
@) eyl < Wxhliyll,, x € M, y € M,.
@) |- I, is a norm in M.

Proof. (1) We first prove the inequality ¢(a(xy)) < |Ix|l Iyl llall,
where a € M, for x(A) and y(p) of the form ¥}_; Ae; (resp. Z 1;ujf)
where A = (X)), (resp. p = (p,); is a set of reals and { ;}; (xesp. {f} ) is
an orthogonal family of non zero idempotents in M,.

Let a € M such that ||a|| < 1 and let 4, be the bilinear form defined
by

4,(A,p) = 9(a(x(A) y(p))) = Z?\,M, (a(e.f)))-

The Riesz’s theorem (cf. [32], p. 472) asserts the convexity of
log(M,(p’,q")) for (p’,q’) in the triangle0 < p’ < 1,0 < ¢’ <1, p" + ¢’
= 1 where M (p’,q’) = sup|A4,(A, p)| for A and p such that

1) = 2: A ple) <1
and

Ily(ﬂ')lll/q' =X Iﬂ’j'l/q'(p(fj) <1

j=1
(take sup,JA,| < 1 if p’ =0 and supj|p ;| <1 if ¢’ = 0). Thus, if p’ =1
and ¢’ = 0, the condition |p(a(xy))| < 1for ||x||; < 1, |||, < 1 (Lemma
1) yields log M,(1,0) < 0. For the same reason log M,(0,1) < 0, thus for
p'=1/p,q" =1/q,l0gM,(1/p,1/q) < 0, so that the conditions ||x||, <
1 and ||y, < 1yield p(a(xy)) <1 as claimed.

Let now x, y be arbitrary in M,. By spectral theory, there exists
{x,},.en such that x, is in the J.B.W. algebra generated by x,0 < x, < 1,
x, tends to 1 in the s(M, M,)-topology and xx, has the previous form.
Let {y,}, be analogous sequence for y. The application: z € M —
o((x(a(yy,)))z) is o( M, M,) continuous, hence by Lemma 1,

o(x(a(yy,))) = lim o((x(a(3,)))x,) = lim((xx,)(a(3,)))

<l gl alltim fxx, |,
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Since
1/ P\1/,
lex, I, = @(1x17x2)? < ||z "o (|x")"" <llx]l,

we obtain the result by taking the limit in m and afterwards choose a = s
where s is the symmetry given by s(xy) = |xy|.
(i) For x € M, |x| = sx, where s € S, thus for p = 1,

¢(Ix]) < sup{lo () || Iyl < 1} < o(|x]).

For p > 1, take z = ||x||;P/"s|x|”_1. Clearly ||y|l, = 1 and @(xz) = ||x| .
(ii1) Follows from (ii) and Lemma 1.
(iv) | - |l , is a seminorm as sup-limit of seminorms and a norm by the
faithfulness of ¢. a

3. L?-spaces.

DEFINITION 4. For p € [1,00[, L? = M,'" is a Banach space. For
p = oo we adopt the convention L* = M.

Note that it is also possible to define L? = M, ", where M, ,, =
{x € M||ix||, < oo}, but this definition is of interest only if it is known
that M, ,, is an ideal of M such that (M, ,)"/* = M, ,,, and M, M, ,,
=M /pi1/p

REMARK. Suppose that M is the space Cx(X) of real valued continu-
ous functions on a compact hyperstonean space X. Then M is a J. B.W.
algebra [35] with the usual product of functions. Let {pu,},or be a
maximal family of positive normal measures on X with disjoint supports
S .fQ=U,S, p=2,p, then Q is a locally compact dense set in X, p
is a positive Radon measure on € and M is isomorphic to the space
L*(Q, p) of real valued essentially bounded p-measurable functions over
Q. The L”-spaces defined above are exactly L?({2, u). This justifies the
above convention. In this case, the following theorem is well known.

THEOREM 5. The application: x € M; - p(x ) € M, can be ex-
tended to an isometrically isomorphism from L' onto My (i.e.: (L)* = M).
In the same way, for p € |1, co[ the Banach space L? is isometrically
isomorphic to (L?)* withq = p/p — 1.

In the general case, several preliminaries are necessary.

LEMMA 6. Hansen inequality. Let A be a J.B. algebra and x € A*. For
every x in A, ||x|| < 1 and all operator monotone functions f (i.e. x < y,
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x,y € 4= f(x) < f(y))
U,f(x) < f(Ux).
In particular U, x? < (U,x)? if p €10, 1] ({30}, 1.3.8).

Proof. This results from [17] and [39] pp. 2.1. O

Note that a non spatial proof of the Hansen inequality can be carried
out with [5] using Lowner’s theory (see [14], Th. 5).
Now we follow [38].

LEMMA 7. Let x, y € M}
(1) if x < y then o(x?) < @(y?) forp € 10, oo]
(i) @(x"?) < @([Upr(x + y)?~11") forp € 11, 00[, n € N\ {0}.

Proof. First we prove

(1) ((Ul/zy)zn) = ((Ux/zx)zn), 0#neN.

Recall that (U,b)* = UU,a? and U,. = UU,. The J.B.W. algebra gener-
ated by x, y is special (Shirshov-Cohn’s theorem [16]) so we easily check
that

([Jxvzy)zn = le/z(]yl/z ( U;l/zx )2n- !
Thus by Lemma 1

q)((l]xl/zy)zn) = (p(xl]yl/z(l/:vl/z.X)zn~1>

= 9{(Ux) o)) = g (Ux))

(i) We first prove the result by induction for p = 2", n € N. If n = 1,
p
o(y* = x?) = @((x + »)(x = »)) = @(Usiyyr(y = x)) 2 0

(Lemma 1). Assume now the result for p = 2”. Then

o(»7") = o((Upry)”)

( (U mx)2 ) by hypothesis because Ujv2y > Up2x
( U1/zy)2n)
> <p((U x)’ ) y hypothesis
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For an arbitrary p, it is possible to choose n such that g = p27” < 1.
Since x7 < y7 (cf. [30], 1.3.8),

e(»?) = o((¥9)”) 2 9((x9)*) = p(x7).
(ii) By induction: If p € 11, 2], x? ! < (x + y)? ' and
x? = Uxm(xp“l) < U;l/z((x +y)p—1)'
Using part (i),
p(x"?) < qJ([U;m(x + y)p—l]n), 0+neN.

Suppose now that (ii) is satisfied for p €]1, m] where 2 <m € N. If
q = m + p’ where p’ €]0, 1], we have

Usr (U %) < Usa{(x + )77
Using (1)
(})((le/z(x + y)q_—l) ) P (Ul/Z(](x+y)q/2—1x)n)

(
= ¢((Tan(x + )77
(

= ¢(x")
where in the second step we used (U,b)? = UU,a>. O

Parts of the following propositions were proved in [8] for the L ”-spaces
on a measure space and in [6], [11], [12], [13], [15], [18], [22], [25], [26], [27],
[28], [33], [34], [36], [37], [38], [40], [43] in the associative context of
operator algebras.

PROPOSITION 8. If p €]0, 1] then
@ llx + ylIp < Ixl7 + Il5, x, y € M*
(i) Ix? =yl < llx = ylIJ, x, y € My

Proof. We can suppose p < 1. We first prove the inequality (i) for
x,y € M*. For integers n, m define x,, = x + 1/m, y,, =y + 1/m and
z,=x+y+1/n. Let {e,},r be an increasing net in M;" such that
e, 11 with respect to I' (see [19], Appendix 5 and Lemma 1).

o(xbe.) + @(re.) = o((Unpli02,) e,) + 9((Ugal;102,) )
> (p(([]x:"/zl]z;vzzf)ea) + q)(((]y;'/z(]z;vzzf)ea)

(Lemma 6 and Lemma 1(v)).
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Note that U,za tends in norm || ||, to Ugaza for all a in M. (In
fact,

|Usea — Upal < 2)x2(x/%a) = x1/2(x2 = a) | +[(x, — x)a]
and
“x}'/z(x}’/za) _ x1/2(x1/2 ~a) ”
<[l(x? = x2)(x> = a) | +[x**((x)> = x*2) a) |
<[lxy2 = =2 (<2 + 121l all.

Then, taking the limit in m in the previous inequality and using Lemma
1(v) and (vii)

p(x7%,) + (y%e,) = o([(Uar + Upn)(z271)]e,)
= (p(l]z’(,p—l)/Z(le/Z + (Jyl/z)ea).

Using ¢(a’e,) = ¢(U,e,) for a € M and the normality of ¢, we obtain in
the a-limit

@ (x?) + 9(y?) 2 9(Ug-v2(Upn + Upr)l) = 9(227Y(x + y))

= ‘P(U[zr‘<x+y)1‘/21)

because z, and (x + y) operator commute (cf. [4]) and zZ2 }(x + p) is
positive

2 (p(U[lzé’z’l(x—i-y)]ea) = (p((ztlt’—l(x + .y))ea)'
Hence
9(x?) + 9(y?) = lim g((277}(x + y))ea) = 9((x +)"e.)
= (P(Uv(x+y)"/zea)'

As before, the limit in « gives
(2) Ix + ylp <lxlfs +1yll,  forx,ye M*.

(11) [24] Suppose 0 < y < x. Since y? < x” ([30]1.3.8.)

D
lx = yllp =lx? = y2ll = @((x = »)”) = @(((x — y) +»)7) + @(¥?)

>0 by part (i).
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Let now x, y be arbitrary. If x — y = (x —y),—(x — y)_ is the

Jordan decomposition of x — y in M,

[x? = p2lh <||x? = (y +(x = ») )+l (¥ +(x = y))” = »y2|;

<I(x=y)_I, +I(x = »). | using the previous result

4
=lx =yl
PROPOSITION 9. Clarkson inequalities.
(1) Letp € [1, oo[. Then
_ » » p
27 x 4yl <lxlls +lixvllp,  x, 9 € M.
(i) Let p € [1, oo[. Then
P 4 P
Ixlts +1p 1> <llx +plp,  x,p € M.
»
27 = 7], <llx =yl
(iii) Let p € [2, oo. Then
4 p — P P
b + vl +lx =yl < 227 (Ixl5 +lvlp), xy € My

(iv) Let pel,2land 1/p +1/q = 1. Then

) q/p

q q '3 '3
I+ ylp +lx =yl < 2(Ixls +1015)", x,y € M.

O

Proof. (1) follows from the convexity of s € R — s” and the Minkow-

ski inequality ||x + y||, < |Ix]l, + Y]l -
(i1) The previous lemma yields for p > 1

Ix > + 1215 = o(x7) + @(»?)
< o{Unal + 907 + Uyl 437
< (p((x +y)(x + y)p*l) (Lemma 1(v))

P
=[x +ylf.

Second estimate: Suppose first that x > y € M;". Then using x'/? >

y'/? and the previous inequality extended to L,

Ix =yl =152 = y77 |, = @(x) = @(y +(x'7 = y/7)")

=¢((u+0v)") - p(u? +v?) >0
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where u = x'/? — y}/? € M* and v = y*/? € *, For general x, y in M;,
let (x — y),—(x —y)_ be the Jordan decomposition of x — y
and e the support of (x'? —y/P),. Since x <y + (x —y),,
xV? < (y + (x — y),)"? hence

(x1/7 = y/P) = U(x? = yV7) < U([y +(x = y) . ] = y¥7).
Thus

[(x2/? = yt77), ||1;, <|ly +(x=») ' —yVP“Z (Lemmas 1 and 3)

<|(x = y).|l, by the first half of the proof.

Switching x and y, we get ||(x'/7 — y'/7)_||2 < ||(x — y)_]||, and we are
done by adding the last two estimates.

REeEMARK 10. Notice that for p = 2, this reduces to the Powers-Stermer
inequality.
Case p = 1 is trivial.
(iit)
p/2

I + vl +lx = vl =+ 0270+ = 91

<[(x+ ) +(x = p)*|[, by part (ii)

—_ /2 .
< 227Y(|Ix2 52 +]1y? 1)) by part (i)

=27 Y|xfp + 1y 1l5)-

(iv) We use now an idea from [22], also exploited by H. Kosaki.
The inequality follows from

“P((xl + xz)x3 +(x1 - xz)x4)[
< 274zl + 1 05) 7 (sl + 1xall)

valid for x; € M. In fact, if

(3)

Xp =X, Xp=)Y
x3=|]x+y||;’“ps[x+y|p—1 wheres€ S and x +y =s|x + y|

)cé,zllx—yllg—pt!x—y]p‘1 wherer€ S and x —y =t|x — y|
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then it is easy to check that
q P
‘P((xl + xz)xa) =||x + )’”p = ”x3”q

q P

(p((xl - xz)x4) = ||x - J’”p =”x4”q'
It is routine using spectral theory to verify that each x in M{" is a
|| |l -limit of elements of the form X}_, A,e; where A, € R and {¢,}, is a
finite set of orthogonal idempotents in M;". It is sufficient to prove (3) for

n(k)
Xe= 2 Asews,  ke{1,2,3,4}).

Denote also by ¢ the complex linear extension of ¢ on the complex
Jordan extension MC = M, + iM,. (Actually M€ = M + iM is a JB*-al-
gebra for the natural involution but we do not use this fact.) We also use
the notation ||x||, = @(x*x)'/? for x € M. Define

n(k) .
J’k(z) = Z Sgn(}\k,i)l)\k,ilp €, fork=1,2

i=1

pr-qi—2)" ) g -2)
J’k(z) = ”xk”q Z Sgn(}\k,i)l}\k,it e,; fork=3,4.

i=1

If g(2) = @((y1(2) + (2D 33(2) + (11(2) = ,(2))y4(2)) then g is an
analytic function bounded in the strip ¥ < Rez < 1. For Rez = 1

lg(2)| <lo(n(2)y3(2))] +]o(3:(2) y3(2))]
+o(ri(2) ya(2)) | +]@(r2(2) ya(2)) |
< (Ially + a5 ) (x5 + Dxaly)-
For Rez = 1,
12(2) | <|o((n(x) +22(2)) 33(2)) | +|o((11(2) = 32(2)) ya(2)) |

<|y1(2) + 2:(2) [l »s(2) |, + | 31(2) = y2(2) 1l va(2) |,
Cauchy-Schwarz inequality for ¢

< (I9(2) + 3a(2) s +13(2) = 32 ) (a2 s +ya(2) 1)

= 22(() s + ) () s + () )

Since

g(%) =((x; + x,)x; +(x; — x,)x,)
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we obtain the desired inequality by the case of the Phragmén-Lindelof’s
principle known as the three lines theorem [44] p. 93,

g(}l;) < Sup{lg(z)HRe(z) - %}2(1—1/p)sup<|g(z)”Re(z) - 1}2(1/,,_1/2)

1/p 1/p
< 2Y4(|lx, I, + e l5) 7 (sl +xally) O

RemMARrk 11. It is possible to prove the two last inequalities of
Proposition 9 appealing again to Riesz’s convexity theorem and the
reduction to simple elements used in Lemma 3. For instance, as in [8]
Theorem 1, we obtain the following generalization

(4) (hx +»llp +lx = »1l,

where x,y€ M, r>p >s5s>1and s > r/(r — 1). In fact, the inequal-
ity asserts the truth of Proposition 9—(iit1) for r = s = p and of (iv) for
r=gqand s =p.

)l/r )1/3

<27 (lxlp + 1yl

COROLLARY 12. L? js uniformly convex for p €11, ool.

Proof. Recall that a Banach space X is uniformly convex if its
modulus of convexity 8,(e) = inf{1 — 27Y|x + y|||x, y € X, ||x|| = ||yl
= 1 and ||x — y|| = &} is strictly positive for 0 < & < 2 [21]. In fact, the
inequalities (iii) and (iv) in Proposition 9 yield

8,,(e)>1—(1 —27)" forp>2
>1—(1-2%)"" forp>1.

Proof of Theorem 5. Suppose p > 1.

The map: x € L? - @(x - ) € (LY)* is a linear isometry extending
the application with x € M, endowed with the norm [ - || ,. By a Milman’s
theorem, L9 is reflexive being uniformly convex. If the previous applica-
tion is not surjective, there exists y € L9 with y # 0 such that ¢p(xy) =0
for all x € L?, in contradiction with {|y||, = sup{|p(xy)||x € M;, ||x]||,
<1}.

Suppose p = 1.

The map: x € M, = ¢(x - ) € M, is again a linear isometry for the
norm || ||, on M, and can be extended to L'. We now show that the image
of M, is dense in M,: Let C be the || - || ,, -closure of the image, so that C
is a closed convex cone. Thus by Hahn-Banach theorem for every non
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zero w € M, \ C, there exists a non zero y € M such that ¢(yx) = 0 for
all x € M, and w(y) < 0. Using [19] Appendix 5 and Lemma 1, there
exists an increasing net { x,}, o in M;" o(M, M,)-convergent to 1 which
respect to I'. Let s € S be defined by sy = |y|. We have

o(1y1) = ¢(Uypal) = liin P(Up2x,)

= lim ¢(]yx,) = lim ¢(y(sx,)) = 0.

The fidelity of ¢ yields a contradiction. O
Using [21] §26.10 (6) and (9) we obtain immediately

COROLLARY 13. The LP*-spaces are uniformly smooth and the norms
| - |l , are uniformly strongly differentiable ( Frechet differentiable) except at
0 for p€]l, 0.

As an application of this corollary we obtain as in [23] some related
results without analytic proof (see [38]) in our real context.
We define (L?)* as the || - ||-closure of M;".

LEMMA 14. If the map f: t€ R — f(t) € (L?)*, p €]l 00 is
differentiable for the norm || ||, at t, such that f(t,) + O then t = @(f(t)?)
is differentiable at t, and

V0N

- po ) 10| )

=ty
Proof. The strong derivative of || - ||, at f(#,) is the linear form
1- —
u=|f(t)ll, " (f(2)"" ")

because the supporting hyperplane through f(z,) of the ball of radius
1/(2o)1l, 1s given by

{xELP

o) "o (£(20)” %) =11 £(2a)], )

and thus one can apply [21], (12) p. 349 and (4) p. 364. By the chain rule
property the strong derivative of || - ||2 at f(z,) is v = pe(f(1,)?~' - ). By
assumption for small ¢ € R*, x, = f(¢, + €) — f(¢,) € L? and

L1 =l ~ imetx, < 17
dt t=t,
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Consequently,

e o(f(1o+8)") = 9(f(2)")] = po(f(r0)ex,) + &7,

where 8, = [|f(t, + x )12 = [If(1)l12 — v(x,)and ||x,JI;}(6,] tends to O as
lxll, tends to 0 as we have seen. 0O

We are now in position to look at the case of equality in Proposi-
tion 9.

Lemma 15.
O Nx2 + W2 =llx + yI) forx,y € My, p € 1, 00[ iffxp =0
() 2' llx + y[l) = x|z + lIyllZ for x, y € M, p € 10,00 \ {1}
ffx=y
(i) x + plff + llx = [0 = 200xl2 + Iyl2) for x, yEM,, pe
[1, o[ \ {2} iff xy = 0.

Proof. We can assume that M is a J.W. algebra ([39] Prop. 2.1) by
restricting to the algebra generated by x and y.

(1) If 0 =xp =2"Yx -y + y - x) where - is the usual operator prod-
uct, x2 -y = -x-y-x=y.x2 Since [x2, y] =0, [x, y] = 0 because x =
(x*)Y? = lim, p,(x) where p, is a polynomial of order n and x - y = 0.
The equality (x + y)? = x? + yF follows as ||x + || = ||x]|Z + [| yl|5.

Conversely suppose @((x + y)?) = @(x?) + @(y?). For every
a,b € M, t € R we have by Proposition 9(ii)

(5) f(1) = p((x + eebly)”)

> g(x7) + g((e1Hy)”).
The fact that el%«5) is an automorphism of M leaving the trace invariant
(Lemma 1) implies f(¢) = ¢(x*) + ¢(y?) = f(0). Thanks to the previous
lemma,
0 =£"(0) = pp(z([L,, L,]y)) wherez = (x+y)""
and
¢(z(a(by))) = o(z(b(ay))) Va,beM
that is
o((z(by))a) = 9(((zb)y)a).

Since (L')* = M (Theorem 5), z(by) = (zb)y Vb € M. In particular for
b=y, zy>=y(yz)and U,z = y’z.
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Theorem 5 of [42] asserts the associativity of the J.B. algebra gener-
ated by z and y hence by x and y, thus this algebra is isometrically
isomorphic to C(X) ([4] Proposition 2.3). If p is the positive measure on
X associated to @, the equality

/X (x(&) + y(£)? du(£) = fX (x(£)” + y(£)7) du(8)

yields x(§) y(§) = 0 ae.

Thus xy = 0.

(ii) Suppose 2! Pp((x + y)?) = @(x?) + @(y*) for p > 1. The func-
tion 2! 77f in (5) attains its maximum at ¢ = 0 (Proposition 9(i)). The
same method as before yields x = y.

For p <1 the concavity of: x € M — x? € M ([30]) implies that
x? + y? < 2'7P(x + y)? thus the function 2! ~?f in (5) attains its mini-
mum at £ = 0 and we have still x = y.

(i) Suppose {|x + ylI7 + llx — ylI7 = 2(x||; + Iyl
Thenforg=p/2 #1

g q q
G+ )2, + e =207, = 2(1=215 + 152 [)
and by Proposition 9(i) and (ii) this is greater than
2l|x2 + y2fy = 2lx? g + | y2lg) forg>1
and for g < 1, this is less than
21_4H(x +y) +(x - y)ZHZ (concavity z — z%forz € M™)
< 2(Hx2||2 + Hyzll?;) (Proposition 8).
Thus
q q
“(x + y)2”q +||(x - y)2||q =2||x* + y2||Z for g €10, o[\ {1}.
The application of (ii) gives (x + y)? = (x — y)? and xy = 0.
Conversely, suppose xy = 0. The first part of the proof of (i) gives us
20((x2) 7 +(»2)7) = 20((x? + 2)*) = o((x + ) +(x = »)*)
thatis 2(||x[I7 + lIyll7) = llx + yliy + llx — »ll2. O

The uniform convexity of L? has a useful application. For instance,
the following is standard ([36] Theorem 1.24).

LEMMA 16. Let {x,}, cn be asequencein M, x € M, andp € |1, 00| .
If x, tends to x for the o(L?,(L?)*)-topology and ||x,||, tends to ||x||,
then ||x — x,]||, tends to zero.
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ReMArRk 17. If we replace the o(L?,(L”)*)-topology by the
o(M, M,)-topology, the same result shows (Grumms’ theorem, cf. [36]
Theorem 2.21).

If p=1 and x,, x € M{, then the previous lemma holds for the
o(M, M,) topology (see [9], Appendix).

4. Miscellaneous results. The space L? has a natural structure of
Hilbert space. For more details see [3] if the trace is finite and [19] for the
semifinite case.

It is possible to give a short proof of the weak Holder inequality
lp(xy)| < |Ix]l lI¥ll,+ Restricting to simple elements in Lemma 3, we can
see that the map f&€ Cr(X X Y) > L, . f(A,p,)9(e;f;) where X =
spectrum (x), Y = spectrum (y) and Cgx(X X Y) is the space of real
valued continuous functions on X X Y, defines a positive Borel measure
reducing the problem to the Holder’s inequality on a measure space. With
the same trick it is possible to prove for x, y € M;" that

p(x?" ) < p(xp? )" T o(»?) 7,  pell2],

<o ) le(x?) ",  pel2of, =+ ==1

N e
N

since these inequalities are true on measure spaces [22].
All inequalities on measure spaces involving integrals of product of
positive elements can be extended by this method to our L? spaces.
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