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We consider the action of semigroups e~tH, with H = -Δ + V on
L2(RV), on the scale of Sobolev spaces J>f α. We show that while e'tH

maps L2 — Jf° to 3tf2 under great generality, there exist bounded V
so that, for all β > 0, e~tH[3fβ] is not contained in any 3^a with
a > 2.

1. Introduction. This note represents a modest contribution to the
issue of smoothing properties of Schrδdinger semigroups, e~tH, H = -Δ
+ V on L2(i?") [12]. It has been shown [3, 8, 2, 11, 12] under fairly great
generality (i.e. assumptions on V) that e~tH is smoothing on the scale of
Lp spacses, i.e. e"tH maps Lp into any Lq with q > p. Kon [7] asked the
question of smoothing properties on the scale of Sobolev spaces Jί?a.
Below we will exploit their Lq analogs, so we define them: / e Lq(Rv)
is said to lie in Lq

a (a > 0) if there exists g e Lq(Rv) so that g(p) =
(1 + \p\2)a/2f(p) L\ s jf«. We will also require the spaces * ; defined
initially by Kato [5]: If v = 1,

- /

otherwise
J C - 1

< 00

= 0Kψ=lf Km sup ί Bv(x-y
\ «i°L x J\χ-y\<<*

where Bp(x) = |JC|~(Ϊ ;~2) if v > 3 and B2(x) = -ln|x|. For any of these
spaces χ, we define χ l o c = { / | / φ E χ for all φ e Q°(i?")}. We sum-
marize properties of these spaces needed below in an appendix.

Consider for a moment v = 3. It is well known [6] that if V e
(L2 + L°°)(i?3), then D{H) = Jf2, and thus obviously e~tH maps ^ ° =
L2 to Jf2. Since there is lots of room between L2 and L00, one might hope
that for any V e L00, L2 is mapped into some Jί?a with a > 2. Our main
result in §2 will be to show there are V e L00 with compact support, so
that Ran(e~ίf/) is not in any J^a with α > 2. Indeed, we will prove:

THEOREM 1. Suppose that V+ = max( V, 0) e iΓjoc

max(-F,0) e ^ ^ J that He~tHφ and e'ΐHφ He in ̂ c for some a > 2
and for one φ > 0 (φ m 0). Then for β = min(α - 2,1), V e
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The example above will come from the fact that there exist F G L 0 0

of compact support but in no Lβ/3 with β > 0.
In the above motivating discussion, we obtain mapping onto Jίf2 by

using D{H) = Z)(-Δ). This is not necessary; V e L\oc suffices if we only
want local results, for in §3, we prove

THEOREM 2. // F_e Kv, F + <E L\oc and V <Ξ L{OC on some open set 5,

then e~tH maps L2 to functions in Lζ=1Xoc on S.

Of course, to get additional smoothing, one needs more smoothness
on V. In §3, we also prove

THEOREM 3. // F e L £ l o c , then e~tH maps L2 to Jίfζc

+2 for all
α' < α.

We note that Sobolev imbedding theorems imply that Lgloc c L^loc if
0<a<af = β - vp~l.

The astute reader will note the presence of Lp conditions on the
potential with p < 2 in Theorem 1 and p > 2 in Theorem 3. One might
hope that with more clever arguments one could get away with sharp L2

conditions. We do not have enough evidence to call the statement below a
conjecture, although it would be pretty if true:

Open question. Is it true that e'tH maps L2 to Jί?£c with a > 2 if and

We remark that there are earlier results of Hunziker [4] on smooth
F's yielding e'tH mapping the Schwartz space, 5f, to itself. Indeed, by
using the ideas of [10], one can prove that if DaV e L00 for all α, then
e~tH maps Sf to itself. From this, it immediately follows that e~tH maps
& to itself.

The counterexample in this paper involves the most regular of elliptic
operators with mildest noncontinuity possible, namely, a noncontinuity in
the lowest order term. We show that the semigroup for the operator which
is normally the most regularizing function of the operator already does
not act particularly well on the scale of Sobolev spaces. This illustrates
that the Sobolev spaces are not really well suited to the study of partial
differential operators with noncontinuous coefficients.

2. Negative results.

Proof of Theorem 1. Let ψ = e~tHψ. By hypothesis, ψ e Jί?£c. More-
over, by general principles (see Cor. B.3.2, Thm. B.7.1 and the proof of
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Lemma B.7.7 in [12]), ψ is continuous and everywhere strictly positive.
Since ψ G J f 2 c j f «, we have, by Theorem A.6 that ψ G L\, and then by
Theorem A.5 that ψ"1 G L\. But since Hψ G ̂ " C by hypothesis and
-Δψ G ̂ o ~ 2 by hypothesis, Fψ = H\p + Δψ G J^^Γ2, SO by Theorem
A.4, V = ψ~1(Fψ) G L^/3 where β = min(α — 2,1). This completes the
proof of Theorem 1. D

REMARKS (1) As noted in the introduction, there exist F G L 0 0 with
V <£ L^lc for all β > 0. Thus there exist V G L°° so e~tH does not map
L2 to 3tfa (a > 2) for any s > 0. For if it does, then for t > s, e~tH and
He~tH = e-sHHe~{t-s)H map L 2 to J>fα.

(2) It cannot even be true if V & Z^/3, that e~tH (t > t0) maps Jίfy

to Jί?a with α > 0. For if it did, by applying the Stein interpolation
theorem, e~tH would map Jίf γ~ε to Jίf a~ε' holomorphically in s for s
near ί0, and so Hesh would also map 3? γ~ε to JfOί~ε.

3. Positive results.

Proof of Theorem 2. By general principles (Theorem B.I.I of [22]),
e~tH maps L2 to L00, so if φ G L2, Fe '^φ G Lζ c and He~tHφ G L00 c
L ^ , so -Δ(e~ί/7φ) = (jff - V)e~tHφ G Lj^. Since £>~r/fy G Lfoc, we have,
by Theorem A.8, that e~tHφ <Ξ L{

REMARK. It is known (Theorem B.2.1 of [12]) that (i/ + c)~*: L2 ->
if a > n/4. The above proof shows that if a > 1 4- w/4, then

Proof of Theorem 3. Suppose first S = iϊ". By Theorem 2, / Ξ e"ί7/φ
e Lξloc c Lf loc, all ,p < oo (by Theorem A.2). Since V e L^loc, it follows
by Theorem A.I that Vf e L^loc with jβ = min(α, 2), p < oo and so, by a
Sobolev estimate, F f e L^loc, all ̂ 8' < jβ. Thus, since He'tHφ e L^oc, we
see that Δ / e L^ loc, i.e. by Theorem A.8, / G L ^ + 2 1 O C . This completes
the proof if a < 2. If a > 2, we have /, if/ G L^1OC, all η < 2, and we can
repeat the argument above to learn / G L^ 1 O C with β' < β = min(α, 4).
By iteration, we can obtain the result for any a. Since the above proof is
local, it works for any S. D

APPENDIX

Some properties of Lp-Soboleυ spaces. In this appendix, we provide,
for the reader's convenience, a summary of various facts about L^-Sobo-
lev spaces used in this paper. Lζ is defined to be the set of functions, /, in
Lp so that there exists g & Lp with f(k) = (1 + k2)a/2g(k). If β is a
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multi-index with \β\ < a, then kβ(l + k2)~a/2 is the Fourier transform of
a function in L1, so since convolution with L1 functions leaves Lp

invariant, we see that if a < γ, then Lp c Lp, and if a > n is an integer,
all Dβf e Lp for |/?| < n. Only for n = 1 will we require the more subtle
fact [13] that this holds if a = n when /? Φ 1, oo (see Theorem A.3). In
particular, it is obvious that if a = 2/ is an even integer, then / e Lp if
and only if /, Δ/,..., Δ*/ e ZΛ

We will exploit the theory of complex inteφolation [1] for the Lg9s.
The key fact [1] is that if 1 < p0, pλ < oo, then (L£°, L Λ ) , = Lp° where
Λ"1 = Opl1 + (1 - ^)/>ό1 and α, = ^ + (1 - ^)αo.°

We will occasionally state the results in a less general form than that
which is valid if the proof of the less general result is easier, and the less
general result is all that is needed in the text.

THEOREM A.I. Let f be Clk for k, an integer. Then the map Mf:
g *"* fg maps Lζ to itself for all p Φ 1, oo and all a e [0,2 k].

PROOF. By inteφolation, we need only consider the cases a = 0,2k,
a = 0 is trivial. For a = 2k, note that Δ*(/g) =/(Δ*g) + g(Δ*/) + R
where R involves products of derivative of degree β < 2k. Since g e Lξk9

Dβg G Lp for all β < 2k and Δkg e Lp

9 the result follows. D

In particular, this result shows that Lp c Lp

loc. Let Lp

comp denote
the f^Lp with compact support. The g with g = (1 + k2)a/2f will not
have compact support if a Φ 21, but since the Fourier transform of
(1 + k2)a/1 is a distribution given away from zero by a function with
exponential decay, \g(x)\ < Ce~D]x] for x < p. Thus:

T H E O R E M A.2. If \<q<p<π, L £ c o m p c L22 , c o m p

The next few results require a basic fact about Lp proven, for
example, in Stein [13], p. 135ff.

THEOREM A.3. Let 1 < p < oo. Then f' e L[ if and only iff and v /
{distributional derivative) HeinLp and \\f\\LP is equivalent to \\f\\p + HVll^.

There is a more general Lf-Hόlder inequality: Lp Lq

a lies in Lr

a

(r~ι = p~ι + q'1). We only require the result that follows:

THEOREM A.4. /// <Ξ LP and g^L^ with 0 < β < 1 andp(p - I )" 1

< q < oo, thenfg e L^ w/YΛ r"1 = /Γ1 + ^r"1.
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Proof. By interpolation, we need only prove the result for β = 0,1.
β = 0 is the ordinary Holder inequality, β = 1 follows from Theorem A.3
and the ordinary Holder inequality if we note V(/g) = (V/)g + /(Vg).Π

THEOREM A.5. /// is a continuous function on Rv everywhere strictly
positive, andf "e £{ l o c, thenf~ι e Lfloc.

Proof. By mollifying /, it is easy to check that, in distributional sense,
Vί/" 1) = -/~2V/. Thus V/ in Lf^ and f~ι in Lfoc implies that

1 € Lfee. D

The following result is a special case of the Gagliardo-Nirenberg
inequalities (see e.g. [9]).

THEOREM A.6. / / / e L°° n L^loc, ίλew v/ e Lioc and so f e Lj loc.

Next we will construct / G L00 with compact support so that / lies in
n o L 1

α ( α > 0 ) (and so by Theorem A.2 in no Lξ (a > 0)).

THEOREM A.7. There exists /, a continuous function, with compact

support, w / ί U Λ > 0 L i -

Proof. Let kn = (2M,0,...,0) e Λ", let g e C^ίΛ') with g(0) = 1

and let f(x) = Σ M J Γ V * « *g(x). The sum converges uniformly, so / is

continuous. Moreover, since g(k) decays faster than A:"1, it is easy to see

that n2f(kn) -> 1. In particular, (1 + \kn\
2)a/2f{kn) -* oo for any a > 0.

It follows that / £ 1^ for any α > 0. D

As a final result, we need

THEOREM A.8. ///,Δ/e L£loc> **" f * L£+voc

Proof. The proof is only somewhat involved since we have the loc's.
For φ e Co°°,

where g = φ(l - Δ)/ + (Δφ)/ G L^ by hypothesis. Thus

(1) (l-Δ)1
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where A = (1 - Δ)"2/3g e L£ + 4 / 3 and At = (1 - Δ)"3/4V, is convolu-
tion with a function in L1 and so a bounded map on each Lζ. By 91) and
/ < Ξ L £ 1 O C , we conclude that (1 - A ) 1 ^ / ) E If, so / e L*+ 2 / 3 J o c.
Iterating this argument twice, we find f ^ Lfoc. The iteration stops
because A is only in L£ + 4 / 3 . D
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