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In this paper, using purely Hubert space-theoretic methods, an
analogue of the Itό integral is constructed in the symmetric Fock space
of a direct integral φ of Hilbert spaces over the real line. The classical
Itό integral is the special case when § ~ L2[0, oo). An explicit formula
is obtained for the projection onto the space of 'non-anticipating func-
tionals', which is then used to prove that simple non-anticipating func-
tionals are dense in the space of all non-anticipating functionate. After
defining the analogue of the Itό integral, its isometric nature is estab-
lished. Finally, the range of this ' integral' is identified; this last result is
essentially the Kunita-Watanabe theorem on square-integrable
martingales.

Preliminaries, (a) Symmetric Fock space: If § is a (complex) Hilbert
space, the symbol § ( s ) w will denote the Hilbert space of symmetric
tensors of rank n; alternatively, φ ( J ) Λ is the closed subspace of ®"φ
spanned by {x Θ 0 r χ e φ } . ( I n the sequel, the symbol spS will
denote the closed subspace spanned by the set S of vectors.) By conven-
tion, φ ( s ) 0 = C We shall also write <g)wx for x ® ®χ, with the
convention that ® °x = 1.

The symmetric Fock space over φ, is by definition, the Hilbert direct
sum

0

If x e φ, then T(x) will denote the 'exponential' vector in Γ($) defined
by

( 2 \

1 v ® X ® X I
1 , X, , . . . , ^ . ^ , . . . IThe following are easily verified:

(i)

(1) and

(ii) (Γ(x),r(y)) = exp(x,y), x,y<=iQ.
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The symbol Ω is reserved for the 'vacuum' vector: Ω = Γ(0) =

(1,0,0,...).
If φ x and £ 2 are Hilbert spaces, it follows from (1) that the

correspondence
T{(Xl,x2))~T(Xl)®T(x2)

extends to a canonical unitary isomorphism of Hilbert spaces:

If A is a contraction on φ (i.e., A is an operator with \\A\\ < 1), there
exists a unique contraction Γ(^4) on Γ(£) such that T(A)T(x) = T(Ax)
for all x in φ. (In fact, Γ(^) = Θ ^ 0 ( ® M ) ) . If ^ and 5 are contrac-
tions on φ, it is clear that

(2) Γ(ΛΛ) = ΓU)Γ(Λ); Γ(Λ)* = T(A*).

In particular, if A is a projection, so also is T(A).

(b) Continuous tensor products: If (X,SS,μ) is a measure space and
ίg = J® $(t)μ(dt) is a. direct integral of Hilbert spaces over X (cf. [2] for
definition and basic facts about direct integrals), then, for each M in 3$,
the operator of multiplication by χM will be denoted by P(M). Thus,
M -> P(M) is the canonical spectral measure in ίp. If J f= Γ(ίp), we
shall use the symbol E(M) for Γ(P(M)). By the last remark in (a), each
E(M) is a projection; further, (2) implies that if M Q N, then E(M) <
E(N). Further, we shall write φ(M) = P(M)§ and JίT(M) = E(M)JJf.
Then, J^(M) can be naturally identified with Γ(φ(Aί)), and it is easy to
see that jf(M) = { ( / χ . o

 G ^ : Λ ^ §(M)<5>" for all Λ}.
If M and JV are disjoint sets in X, then φ(M U ΛΓ) = §(M) Θ φ(ΛΓ),

and so, there exists a canonical unitary operator (cf. (a))

UMtN: JP(M) ®Jί?(N) ^ / ( M U Λ ί ) .

(If x e £ ( M ) , ^ e φ(JV), ^ ^ ( Γ ί j c ) ® Γ(j;)) = Γ(x + j;).) The follow-
ing properties of the UM^N's are easily established (by verifying them on
exponential vectors).

PROPOSITION (ί/). (i) If L,M and N are disjoint Borel sets in X, the
following diagram of Hilbert spaces and unitary operators is commutative:

JT(L)®J

ϊuL

JίfiLU

..MU

M

M

u

UN)

N)
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(ii) IfM g N, then Jf(M) g Jίf(N) and

(Note that Ω ̂ JίT(L) for all L e 38.)

Briefly, 2? has a continuous tensor product structure over X (cf. [1]
and [6]).

In case X = [0, oo), μ is Lebesgue measure and § = L2[0, oo), it is
known that Jf?= Γ($) can be identified with L 2 (#, P), where # = {/ e
C[0, oo): /(O) = 0} and P is the Wiener (probability) measure defined on
the σ-algebra generated by point-evaluations. Explicitly, the correspon-
dence is given by

Γ(φ) ~ exp|/ φ(t) dw(t) -\

where φ e L2[0, oo) and the first integral on the right is the Wiener
integral (cf. [6]).

The text. In the sequel, the notation and terminology will be exactly
as in (b) above. We shall further restrict ourselves to the case where

(a) X = R
(b) 8% is the σ-algebra of Borel sets in R; and
(c) μ is a non-atomic, positive, σ-finite measure defined on 38. Thus,

= [*
•Ίfc

For any t in R, we shall use the abbreviations Pn En §t and $ft

respectively for P(-oo, t], £(-oo, /], P,§ and Et3^. The non-atomicity of
μ ensures that inclusion or exclusion of one or both end-points of
intervals is irrelevant. (Thus, Pt = P(-oo,0 ) Further, the non-atomicity
of μ implies that {Pt} and {Et} are strongly continuous one-parameter
families of projections.

The symbol W will be reserved for the natural (isometric) inclusion of
§ in Jf:

(3)

The map W clearly satisfies

M<Ξ3$, and
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In case § = L2[0, oo) and J^= L 2 (#, P), it can be verified that W is just
the Wiener integral: Wφ = fφ(t) dw(t). In order to define the analogue
of the Itό integral, we begin with the following:

DEFINITION 1. A non-anticipating tensor (abbreviated to n.a.t. in the
sequel) is an element of the closed subspace 9Ϊ of J(?® φ defined by

^ = { Φ ^ ^ : (1*® Pt)φ = (Et ® Pt)φ\ft)

EXAMPLE 2. Let a e R , / G jf(-oo,α],x e φ(α, oo), and let φ = / Θ
x. Then φ is a n.a.t., since (1*,® Pr)φ = (Et ® P,)φ = 0 if ί < 0, while if
t> a,

(Et 0 Pt)φ = EJ® Ptx=f® Ptx = ( 1 ^ ® P,)φ.

DEFINITION 3. A n.a.t. of the sort described in Example 2 will be
called an elementary n.a.t.; a finite linear combination of elementary
n.a.t.s will be called a simple n.a.t.

The following elementary result is recorded here for later use.

PROPOSITION 4. If φ e SSI and -oo < a <b < oo, then

(1*® P(a, b])φ = (Eh Θ P(a, b])φ.

Proof.

(1^® P(α, 6])φ = (1^® P, - 1^® Pjφ

= ( ^ ® P Λ - £ β ® P β ) φ , since φ^9ϊ .

Hence

= (Eb (8) 1^)(£, ®Pb-Ea® Pa)φ

= (Eh®Pb-EbEa®Pa)φ

= (£, ®Pb-Ea® Pa)φ = (l^β P(

by the previous equality, and the proof is complete.
We now wish to obtain a formula for the projection of Jίf® ίp onto

9ΐ, which will henceforth be denoted by Q. However, some notation
should be established first.

L e t J = { ( t 0 9 t 2 9 . . . , t n ) : - o D < t 0 < t 1 < ••• < tn < o o , n =

1,2, ...}.The set / is a directed set with respect to the partial order
defined by

( ί 0 , . . . , O < (so,...,sn) iff {to,...,tn} Q {sO9...,sm}.
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If Δ = (/<,,.. . ,*„)€/, define

(5) β Δ = Σ*(-oo,/,-_!] βPfo-!,',-]

Since the projections {P(ti^.ι , ί j : i = 1,..., n) are mutually orthogonal
it follows that βΔ, being a sum of mutually orthogonal projections, is
itself a projection with

n

(6) ran<2Δ= 0 Jf(-oo, r^J β «(*,-!,*,].

LEMMA 5. {QΔ: A e / j i n monotone net of projections', i.e., if Δ,
Δ < Δ',

Proof. It clearly suffices to prove the following: If

Δ = (a9b) a n d Δ' = (sQ9...9sn)

where α = s0 < sx < < sn = δ, then β Δ < ΔΔ,. In this case, however,

QA = E(-oo,a] ®P(a,b]

/ - I

PROPOSITION 6. Q = l i m Δ G / β Δ , m the strong operator topology.

Proof. Example 2 shows that every product vector in Jίf(-oo,a] <8>
$(a,b] is a n.a.t. It follows that (cf. (6)) ran^A £ rang for all Δ in /;
i e., QA < Q for all Δ in /.

Since Q and each β Δ are projections, it suffices to show that β Δ -> β
weakly. Further, since β Δ < g for all Δ, and since the ζ)Δ's are uniformly
bounded, it is enough to show that <βΔΨ,Φ> -> (β^,Φ> for all φ in 9?
and for all Ψ belonging to some total set of vectors in Jί*<8> φ.

Observe that {f®x: fGJtr(-T9T], χ G § ( - Γ , Γ ] , T > 0} is a
total set of vectors in Jf® φ. What we shall prove is that (QA(f <S> x), Φ>
-^ < β ( / β x),φ> for all φ in %, where/e Jf?(-T, T] and x e φ(-Γ, T]
for some Γ > 0.

Let ε > 0 be given. Since / »-> H^/H2 is monotone and uniformly
continuous (recall that μ is non-atomic, and so the above function is
continuous and constant in each of the intervals (-oo,Γ] and (Γ, oo)),
there exists Δo = (sθ9..., sN) in / such that

(i) s0 = -T; sN = Γ, and
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(ii) | |£,/ll2 - | |£,,/ | | 2 < ε2/| |x| |2 | |φ| | whenever

ί,_x <t'<t< sit for i = l,...

Claim. Δ o < Δ => | < ( β Δ - Q)(f ® x),φ)\ < ε.

Suppose Δ = (/0, ...,tn)> Δ o . Then to<so =
and hence,

, N.

-T and tn>sN=T

= P(to,tn]x=

thus,

<β(/®χ),φ) = (since φ

= Σ ( ( / ® X, ̂ ,, ® P(t,-lt t,])φ) (by Proposition 4)
1 = 1

= t({Etι®P(ti_1,ti])(f®x),φ),
1

while, by definition,

Hence

f

/,-_!, ίj jφ)
(continues)
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n

n

The first term =

1/2

1/2

i—i

1/2

1/2

the first inequality being a consequence of the choice of Δo, the inequality
Δ > Δo and the assumption / e 3tf (-Γ, Γ], while the last equality follows
from* € φ [ - Γ , r ] .

The second term is dominated by ||ψ|| since (1^® P(t^l9ί, ]: i =
1,..., /?} is a set of mutually orthogonal projections; hence, the proof of
the claim, and consequently, the proof of the proposition, is complete.

The next result is an easy consequence of the last proposition.

PROPOSITION 7. Simple n.a.t.s (c/. Definition 3) are dense in $1.

Proof. It is to be proved that Sft = 9^, where %l0 is the closure of the
set of simple n.a.t.s.

To start with, note that if / e Jίf and x e φ, then β Δ ( / Θ x) is a
simple n.a.t. for every Δ in /, and so, by Proposition 6, it follows that

Since Jf® φ = sp{/<8> x: / e J T , X e φ} it follows (from the lin-
earity and continuity of Q) that

φ) = sp{β(/0 x): / e / , x € § } ς 9ϊ0

the last inclusion following from the previous paragraph. Since, clearly,
910Ω 91, the proof is complete.

Observe that Ω <8> x e 91 ίor any JC in φ, since J^Ω = Ω for all t.
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THEOREM 8. There exists a unique isometic operator J\ 9? -»Jf such
that

(i)*/(Ω ® x) = Wx for all x in § ; and more generally,
(ii) if a e R,/e^(-oo,t f] , JC e £(α, oo) awd φ = /<8> x, then Jφ =

{Note: This is the analogue of the I to integral and it is tempting to write
= fφdW.)

Proof. Since elementary n.a.t.s span Dί, it is clear that (ii) forces
uniqueness of */, so it suffices to prove existence.

For typographical economy, let us write Ua for U^^aUa,**) a n c * U<*,b
for U{_^a]{ah] when a < b, where the ULtM>s are as defined in (b) of
Preliminaries.

If a, /, x and φ are as in (ii) above, then Wx e Jίf(a, oo) (cf. (4)) and
so, it makes sense to define J§ = Ua(f ® Wx). That Jφ is unambigu-
ously defined (in the sense that Jφ depends only on φ, and not on a, f or
x) is a consequence of the consistency properties of the t / L M s stated in
Proposition (U).

Next suppose ΰ,ί>GR, / e Jίf(-oo,a], χE§(fl,oo), φ = f ® x,
and g e ^ ( - o o , 6 ] , 7 e §(Z>, 00), Ψ = g <δ j . Assume (without loss of
generality) that a < b. Then, observe that

= J{f ® JC) = t/β(/

= £/β(/β W(P(a,b]x + P{b, 00)x))

= Ua(f9 WP(a,b]x) + Ua(f® WP(b9 00)x).

Notice that t/β(/β WT(α,fe]jc) e JT(-00,/?] and so,

ί/β(/β »T(fl,fc]jc)= Ub{Ua9b{fβ> WP(a,b]x)®Q).

Similarly

On the other hand, by definition,

y ψ = ^ ( g ® j ; ) = ί/,(g^ Wy).

Since £/fr is unitary, conclude that

,b]x)®Ώ,g® Wy)
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The first term on the right is zero since (ίl,Wy) = 0 (cf. (4)), and so,
since W is isometric,

= (uatb(f9Q)9g)(p(b,ao)x9y)

= </, g)(x9 P(b9 oo)y) (since Uatb(f β Q) = /)

= (f>g)(x>y) (sincey e ^ ( 6 , oo))

So, the equation (ii) (in the statement of the theorem) unambiguously
defines a vector J$ in 3tf for every elementary n.a.t. φ; further, if φ and
Ψ are elementary n.a.t.s, then (Jφ.JΨ) = (Φ,Ψ). Since elementary
n.a.t.s generate SSI (by Proposition 7), it is clear that J extends to a unique
isometric operator from 9? into 3C.

Finally, we identify the range of J, and this result is essentially the
Kunita-Watanabe Theorem.

THEOREM 9. J($l) = {Ω} x = JTθ CΩ.

. Since {Ω}x = sp{Γ(x) - Ω: χ G $ ) , and since J (being
isometric) has closed range, it suffices to prove the following:

Claim. T(x) - Ω =J(Q(T(x) Θ JC)) for all x in φ. Since J f =
sp{ Γ(j) : y e §} , it is enough to establish that

) 9 x))9 T(y)) = (Γ(JC) - Ω, Γ(>>)> = exp(x, y) - 1.

In view of Proposition 6 (and the continuity of J), it is enough to prove
that

Urn (S{Qά(T(x) 9 x))9T(y)) - exp(x,y) - 1.

Let Δ = (t09 . . . , / „ ) € / . Writing t/f for l/ ( - 0 0 f ί ] χ ί > o o ) (as in the proof
of Theorem 8), we see that

/==1
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On the other hand, for any t in R,

T{y)=Ut{T(Pty)*T(P{t,*>)y)).

Hence,

= Σ{τ(p,ι_ιχ),τ{r,.-ιy))
i \

n

i - l

n

= Σι

where a(t) = (Ptx9y).
Hence (*/(βΔ(Γ(jc) ® x)), Γ(j )) is a typical Riemann sum (consider-

ing the left end point) corresponding to the partition Δ, in the evaluation
of the Riemann-Stieltje's integral /_°^(expα(O) da(t). (Note that a(t) is a
function of finite total variation.) Taking limits as the partition is indefi-
nitely refined, we get, by Proposition 6,

(y(Q(T(x)Θx)),T(y)) = fe^da(t)

= e^l-oo = e<x^ - 1, as desired.

The Kunita-Watanabe theorem (cf. [4]) is stated in terms of
martingales. To make contact with that formulation, one can define a
martingale (in this setting) as a curve {φ(t): t ^ R} in 3ft? such that
Esφ(t) = φ(s) for s < t. It can easily be verified, that φ(t) = Etf(φ)
defines a martingale with 'mean zero' for any φ in 9t (i.e., (EtJ

ί(φ), Ω) =
0). It can now be deduced from Theorem 9 that if {φ(t): t e R} is a
martingale such that (i) (φ(t)9 Ω)0 for all t, and (ii) sup,||φ(/)|| < oo, then
there exists φ in 9t such that φ(t) = EtJ{φ) = f\(Y#® Pt)Φ). The
verification of the above details is fairly painless and we shall be content
to stop here.

Acknowledgment. I wish to thank Professor K. R. Parthasarathy for
introducing me to continuous tensor products, Fock space and stochastic
integration.
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