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In an earlier paper, the author generalized Glicksberg's theorem
about the Stone-Cech compactifiction of products to the context of
G-spaces and their maximal G-compactifications, where G is an arbi-
trary locally compact group, acting on all spaces under consideration.
However, in that paper only products of finitely many factors were
considered. In the present note, infinite products are taken into account.

A note on the G-space version of Glicksberg's theorem. This note is a

supplement to [2] and [3]. In [2] the theorem below was proved for finite
products (with "G-pseudocompact" instead of "pseudocompact"). Later
in [3] it was shown that G-pseudocompactness is equivalent to pseu-
docompactness. Using the result from [3], we are now able to prove the
theorem in its full generality. For notation and terminology we refer to [2].
In particular, G is a locally compact topological group and all G-spaces
have completely regular Hausdorff phase spaces.

T H E O R E M . Let {(Xλ,πλ): λ e A ) be a set of G-spaces. Then the

following statements hold true:

(i) Suppose G is locally connected and there exists a partition A = A u A

such that both Π γ e Γ I γ and Π δ e Δ Xδ are G-infinite. If

0 σ ( Π λ e Λ * x ) = Π λ e Λ βG

χ\> t h e n Π λ e Λ

 x \ ispseudocompact.

(ii) / / Π λ e Λ Xλ is pseudocompact, then βG(Πλ e Λ Xλ) = Π λ e Λ βG

χ\

Proof, (i) In [2] this statement was proved for a product of two factors
(note, that by [3] the conclusion of [2] that the product is G-pseudocom-
pact, implies that the product is pseudocompact). So we have to reduce
the case of infinite products to the case of a product of two factors. This
can be done exactly as in [1], once the following claim has been proved:

Claim. If βG(UλGAXλ) = Π λ e Λ j8GX λ, then for every subset Γ of Λ
one has βG(Πy^τXy) = Γίy&τβGXy. (This claim holds true without the
additional conditions, mentioned in the theorem above.) The proof of this
claim cannot be given similar as in (one of the footnotes of) [1], because in
general the embedding of a subproduct in the full product cannot be
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performed in an equivariant way. Instead, we shall use the projection pτ:
Π λ G Λ I λ -> Π γ e Γ Xy, which is equivariant.

Proof of the claim. We need the following notational convention. If ψ:
Yx -> Y2 is a continuous mapping between two topological spaces, then
Rψ = {(y,y') G Yi X ^ : Ψ(j>) = Ψ(/)} If ^ is a Hausdorff space,
then i?ψ is closed in Yx X Yv We shall prove, that Γίy€ΞTβGXy has the
universal property, which characterizes βG(ΐly^ΓXy). So let (Z, f) be an
arbitrary compact Hausdorff G-space and let φ: Πy^τXy -> Z be an
equivariant continuous mapping. By assumption, φ° pτ: Ώλ<ΞAXλ -> Z
has a continuous extension φ: Π λ e Λ i8 σ JΓ λ -> Z. Let pΓ denote the
canonical projection of Tlλ(EAβGXλ onto Πy(ΞTβGXγ. We want to show
that φ factorizes over pτ. To do so, consider the set R^QΠλ^AβGXλX
Π λ e Λ βc^λ By the definition of φ, it is clear that

Λ,Γ

 Π ( Π x XΠ
As for each λ G Λ, I λ is dense in >SĜ fλ this implies that

(Note, that in general for a closed set 5 and a dense set D of a space Y
*

one need not have S c S Π 2), but in this special case the inclusion c is

easily seen to be correct: every (basic) nbd of a point of Rpr meets
RPr Π (Tlλ<=AXλ X Π λ G Λ X λ ) . ) From this inclusion it follows im-
mediately that there exists a unique mapping φ: YlyGTβGXy -> Z such
that φ = Φ° pr', cf. the following diagram:

γGΓ ' «> γ^Γ

As /7Γ is a continuous mapping between compact Hausdorff spaces, it
is a quotient mapping, hence continuity of φ ° j?r( = φ) implies continuity
of φ. Since φ extends φ, the restriction of φ to the dense subset Π γ e Γ Xy

ofϊlΎeTβGXy is equivariant, hence by continuity φ is equivariant. This
concludes the proof of the claim.

(ii) In [2], Lemma 5.5 it was noticed that if a G-space (Y,σ) has Y
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pseudocompact, then βGY = βY, the ordinary Stone-Cech compactifica-
tion of Y. Hence (ii) follows immediately from the classical result of
Glicksberg. D

We add some remarks on the "non-triviality condition", mentioned in
part (i) of the theorem, i.e. the condition

(C) there is a partition Λ = Γ U Δ such that T\y(ΞTXy and Π δ e Δ X δ

are G-infinite.

In the case of the classical Glickberg theorem (i.e. G the trivial group)

this condition is easily seen to be equivalent to the following one:

(CO Vλ0 G Λ : Π *λ i s G-infinite.
λ

In the general case one still has (C) => (C). Indeed, suppose (C)
holds, and that λ 0 e Δ. Then Γ c Λ \ { λ 0 } , so the projection pτ\
Πχ^λo^λ -* ΠγeΓ^γ is a continuous, equivariant surjection. Taking the
preimage under pv of an infinite G-dispersion in Π γ G Γ X γ we see that
Π λ ^ λ o X λ is G-infinite. A similar proof deals with the case that λ o e Γ .
The converse implication fails in general:

EXAMPLE. Let Xx = X2 = X3 := R/Z (the circle) with an action of R
defined by tx := x + t (mod 1) for t e R, X G R/Z. For n > 4, let Xn be
a one-point space with trivial action of R. None of the spaces Xn (n e N)
is R-infinite; in particular, Xv X2 and X3 are not (see [2], 2.2(3°)).
However, Xx X X2 is R-infinite, as are Xx X X3 and X2 X X3; the idea of
proof is similar to the example in the proof of 2.5(iv) => (iii) in [2]. So the
family {Xn}n<=N satisfies (Cr) but it does not satisfy (C).
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