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It was proven in [A-G-R] that if V c Rn is a surface and a a total
ordering in its coordinate polynomial ring, a can be described by a half
branch (i.e., there exists γ(0, ε) -> V, analytic, such that for every
/ e R [ F ] s g n α / = sgn/(γ(/)) for/ small enough). Here we prove (in
any dimension) that the orderings with maximum rank valuation can be
described in this way. Furthermore, if the ordering is centered at a
regular point we show that the curve can be extended C°° to t = 0.

1. (1.0) Let V be an algebraic variety over R and a an ordering in
K = R(V). If a is described by a half-branch γ: (0, ε) -> V, no non-zero
polynomial vanishes over y(t) for t small enough. Consequently, if V is
birrationally equivalent to V (i.e., R(F) = R(F)), a Π R[F] is also de-
scribed by a curve in V.

(1.1) PROPOSITION. Let Vbe an algebraic variety over R andn = dimF.
// R[V] is an integral extension of R[xv . . . , xn] = R[x] and a an ordering
on R[V] such that β = α(ΊR[jc] can be described by a half-branch, then the
same holds true for a.

Proof. By our previous remark (1.0) we can suppose V is a hyper-
surface. Thus R[V] = R[x, xn+ι](P) where P e R[x][xw+i] is a monic
polynomial in xn+v Let δ be the discriminant of P and π: V -» Rn the
projection on the first n-coordinates. Then the restriction

9r,: V\π-ι(δ = 0) -* R"\{δ = 0}

has finite fibers with constant cardinal over every connected component.
Moreover, by the implicit function theorem, ττ( is an analytic diffeomor-
phism from every connected component of V\π~\δ = 0) onto someone
ofR"\{δ = 0}.

Let γ: (0, ε) -> R" be the curve describing β. The connected compo-
nents Cl9..., Cp of Rn \ {δ = 0} are open semi-algebraic sets, and we can
write

C,= U{flfl>0,...,f,Jr>0}, / ( J /eR[i].
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As γ describes the ordering in R[x] and the C/s are pairwise disjoint, for /

small enough, / / 7,(γ(0) does not change the sign and y(t) is contained in

a unique CiQ. We put C = C/Q.

Let DV...,DS (we shall see below that s is not zero) be the

connected components of K X T Γ ' ^ S = 0} diffeomorphic to C via π. We

claim that

s = number of extensions of β to R(V).

By construction s is the number of roots of P{x, xn+λ) for every x G C.

On the other hand, the number of extensions of β to R(K) coincides with

the number of roots of P Ξ R(X)[JC W + 1 ] in a real closure of (R(x), β) (see

[Pr] 3.12). We shall prove now the latter is also the number of real roots of

P(x,xn+ι) ΐoτ x G C.
Let S = {PQ9..., P{] R(x)[xn+ι\ be the standard Sturm sequence of

and Δ the product of all numerators and denominators of the non-zero

coefficients of the polynomials in xn+ι used in the construction of S. In

this situation, by Artin's specialization theorem there exists x0 G R" such

that

(a)/-α/Ateo) > 0, Δ ( x o ) # O , somey = l , . . . , ? , a U Λ = l , . . . , r
(b) s g n ^ P , ( ± M ) = s g n R P , ( x 0 , ± M(x 0 )), fc = 0,...,/.

By (a), x0 G C and 5 ^ = ( P ^ X Q ) , . . . , P / ( X 0 ) }
 i s t h e standard Sturm

sequence of P(x0, xn+ι). By (b) the number of sign changes of Sx and S

coincides. Then the claim is proven.

Now, let us denote by yk = (TΓJ^)" 1 ° γ, k = 1, . . . , / the liftings of γ.

Then it is easy to prove:

(a') If / G R [ F ] \ {0}, f(yk(t)) Φ 0 and its sign does not change for /

small enough. Consequently every yk defines an ordering that we call ak.

(b') If k Φ k\ ak Φ ak,.

From the remarks above, a must be equal to some ak9 hence it is

described by the corresponding ak.

2. (2.0) Let K and Δ be ordered fields and p: K -> Δ, oo a place

such that for x positive, p(x) is not negative. Then we define a signed

place / ) : A ^ - > Δ U { + oo,oo} = Δ, ± o o i n the following way:

p(x)=p(x) iΐp(x)φao; p(x) = sign(x) oo if p(x) = oo.

Now assume K is the function field of a real algebraic variety V, and

a an ordering in K. A point O e V is the center of a in V if the real

valued canonical place pa associated to a (see [B] Chap. VII) is finite over



ORDERINGS ON ALGEBRAIC VARIETIES 3

R[F] and the ideal of O is the center of pa in R[F]. In that case, every
function positive at O is positive in α, and if a is described by γ, then

l i m , _ o γ ( O = O.
We are interested in the case when the rank of pa is maximum (i.e., it

coincides with the dimension of V). In this situation the decomposition of
pa in rank 1 places is

(2.0.1) K = Λ χ _ l 9 oo -> -* R, oo,

where Kj is a function field over R of dimension j . Then it is possible to
define uniquely orderings in K}(j = 1,..., r) such that, considering a in
K, all places verify the compatibility conditions. Thus we consider the
associated signed places θf. Kj -> Ky_v ±00 (see [B] Chap. VIII), to get a
decomposition of pa in rank 1 signed places.

(2.1) PROPOSITION. Ifpa has a maximum rank, a can be described by a
half-branch.

Proof. The proof goes by induction. If n = 1, by 1.1 and 1.0 we can
suppose K = R(JC), a centered at x = 0, and x > a 0. Then, there is a
unique ordering with this property (i.e., making x infinitesimal with
respect to R and positive), and it is described by the curve y(t) = t.

In the general situation we can choose ξl9..., ξn_v ξn in K such that

(0 0*-i(fi)> • > θn-\(L-\) a r e algebraically independent,
(ii) f x , . . . , ζn are algebraically independent

(in)/>„(£,) = 0(i = l,...,/i).
Since AT is the quotient field of the integral closure of B =
R[£\,..., ξn_v ζn] we can suppose K = q f(B) by 1.1. Then the kernel of
θn-ιy B -* Kn_λ is an height one prime ideal and hence it is generated by
some F e B. The field ^ w _ ! is the function field of the hypersurface
{F = 0}. Moreover we may assume F > a 0.

Let us consider, according to 2.0, the ordering β associated to
T = θ0 o o 0n 2 in jR^.p Then pβ = r and )8 is centered at 0 =
(0,.. . , 0) which belongs to the hypersurface. Consequently, for every
/ e δ w e have:

(2.1.1) if /(0) = pa(f) Φ 0, then sgnβ/ = sgn/(0)
if θn_λU) * 0, sgn α /= sgn,/, where / is / + (F)
if ^ - i ( / ) = 0 and / = u Fr with g.c.d (w, F) = 1,
then sgn α /= sgnαw = sgn^w.
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Now we need a lemma:

(2.2) LEMMA. Let H — {F(x) = 0} be a real irreducible hypersurface
in R" and β a rank (n — 1) ordering in H (i.e., in R[x]/(F)) centered at
the point 0 and described by y: (0, ε) —> H. Then, there is not more than one
ordering a in R[x] making F infinitesimal and positive, and inducing β in
R[x]/(F). Moreover a can be described by a half-branch.

Proof. The first claim is an easy consequence of 2.1.1.

Next, as pβ has rank /ι — 1, ρβ is discrete and its value group is

isomorphic to Z Θ Θ Z, lexicographically ordered. Let Ίi e

have value (av...,an_1) with ax > 1 (notice that this is
possible because the valuation ring of pβ contains R[x]/(F)), and put
Ψ(O = Λ(Y(O) s i n c e PβO*) = 09 h(0) = 0 and limt_0\p(t) = 0, ψ is
analytic in (0, ε). Now we define the analytic curve:

γ*: (0, ε) -> R": / ̂  (γf.(0 + cf.e-1/ψ(')2) / = 1,..., Λ

where the c/s will be determined later.
Thus, the result follows from the statements (a) and (b) below.
(a) For any c/s, if G e R[JC] is positive along γ, so is along γ*.
(b) There is (cv.. .,cn) e Rn such that F(γ*(ί)) > 0 for ί small

enough.
To prove (a) we first write:

(2.2.1) G(γ*(0) = G(γ(0) + m(t)e-W?

where m(/) is a polynomial in yλ(t),...,yn(t) and e~1/xp(t)2. On the other
hand, looking at the value of Λ, for large m e TV we know that Λw/G
(G = G + (F) e R[x]/(F)) is infinitesimal in β w.r.t. R and so, 1 -
Tιm/G > β 0. Since G is positive in β, taking an even m we have G > βhm

> β0. Hence G(y(t)) > β ψ(t)m > β 0 for small t enough, what implies
l im,_ 0 έr 1 / ι H ' ) 2 /G(γ(0) = 0. Thus, we get (a) after dividing in 2.2.1 by
G(γ(/)) and taking the limit when t -» 0.

For (b), we take the Taylor expansion of F at y(t) and compute it at

(2.2.2) F{y*(t)) - Σ ^
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As dF/dxi € (F) for some /, we have c, = sgn^θF/θx,.) (=
and we take c. = 0 for j Φ i. Then, β being described by γ:

(2.2.3) H(t) = Σ ^ & ^ c y > 0, for small t.
i - l d * <

Again we have limt^oe'ι/φ(t)2/H(t) = 0. Then, dividing in 2.2.2 by
we find F(y*(t))/H(t) > 0, hence F(γ*(f)) > 0, for small ί.

(2.3) REMARK. Looking at the class of the curve γ at 0, we see that if
O e Reg //, and γ can be extended C00 to / = 0, the same holds true for
γ*.

(2.4) REMARK. Notice that 2.2 and 2.3 hold also true if we replace R'7

by an algebraic variety V with O e Reg V. In fact the same proof applies,
by taking a regular system of parameters at O in the place of xx, . . ., xn.

(2.5) Application. As an example of the constructibility of the proof of
2.1 we determine the curves describing the rank 2 orderings in R2 (see
[A-G-R]).

Firstly, after changes x -> ±(JC ± a)±ι

9 y -> ±(y ± b)±\ we can
suppose (0,0) is the center of the ordering a and x > a 0, y > a 0.
Assume the divisor w which specializes pa is centered in R[x, y] at
F(JC, y) = 0, and x = V\ y = axt"

1 + (« < «x), / > 0, is a primitive
parametrization of the half-branch describing the corresponding ordering
in R[x, y]/(F). According to the above parametrization and looking at
the proof of 2.2, we may choose h(x) = JC, cλ = 0 and c2 = ±1 in the
proof of 2.2, and we get a half-branch describing a of the form:

γ ( 0 = (t\ ±e-ι/'2" + axt
th + ••

Now assume that the prime divisor w is centered at the maximal
ideal, (JC, y). Let us call υ the valuation corresponding to pa. Following
Abhyankar [A], after a finite number of quadratic transforms along w we
get the previous situation. In fact, we call Ao = R[JC, y] and, if v(x) < v(y)
(so w(x) < w{y)) we put: r0 = pa(y/x), yx = (y - rox)/x9 xx = x and
A{ = Aγ[xv yλ]. Repeating this procedure we end at As = A^^x^ ys] =
R[*.v» ys]

 s u °h ^at, the center of w in As is 1-dimensional, and w is
centered at(xs_l9ys_x)in As_v We have, say,
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and xs = xs_v Hence w(xs) = w(xs_λ) > 0 and Mw Π As = (xs). Thus,

according to the proof of 2.2, the half-branch xs = ±e~1/ί2, ys = t

describes the ordering in As. Hence, going backwards in the quadratic

transformations, it follows easily that the ordering a can be described by a

curve

for some polynomials P and Q.

3. (3.0) We finish this note with some considerations about the class

at t = 0 of the γ's describing orderings (see also [R] §3). To start with

notice that any algebraically independent power series x1(t)9...9xn(t)9

describe an ordering in R[x]. Then by [An] the set of such orderings is

dense in the space of all orderings endowed with the Harrison Topology

[H]. Moreover, the valuations associated to these orderings are discrete of

rank one. Hence the orderings with maximum rank valuation, cannot be

described by curves which are analytic at / = 0 unless the variety is a

curve. So, the best result we can expect is the following:

(3.1) PROPOSITION. // V c R" is an algebraic variety an a an ordering

centered at 0 = (0, . . . , 0)Reg V, with associated valuation of maximum

rank, there is a half-branch describing a which can be extended C°° (but not

analytically) to t = 0. Furthermore the set of orderings of R[V] described

by half-branches C°° at t = 0 but not by analytic ones, is dense in the space

of orderings.

Proof. The proof goes by induction on d = dimF. If d = 1, the

valuation associated to the ordering a is discrete, has rank one, and the

ordering is described by the unique branch of V through 0:

where each ut(t) is analytic and the choice / > 0 or / < 0.

In the general case, set pa = p and consider again

K = R(V) 1 Kn_l9 ± o o ^ R , ± o o , p = roq,

the decomposition of p in signed places of rank one.

As we did in 2.1 we can find an (affine) algebraic variety Vx and TΓ:

Vλ -> V birational morphism such that the center of q in Vv say Hv has

dimension d — 1. By means of Hironaka's desingularization I [Hi] we may

assume Vγ is smooth. Then by Hironaka's desingularization II (loc. cit),

we find V and #: V -> Vv a proper birrational map such that ττ~\H^) is
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a normal crossing divisor. Let 0 be the center of p in V and H the center

of q. Since the valuation ring of q, R[Fj]^ ( / / i ), dominates R[V] and AT lies

over Hl9 we have Kn_i = qf H and the center of r in ΛΓ is 0.

We call β the ordering in Kn_x corresponding to the precedent

decomposition (i.e. pβ = r). Since r has maximum rank, by our inductive

hypothesis the ordering β Γ\R[H] can be described by γ: (0, ε) -> H,

with lim /_> oγ(/) = 0, and γ can be extended C°° to / = 0. Then, consider-

ing a modification γ* of γ as we did in 2.2 and using Remarks 2.3 and

2.4, a is described in V by γ* and it can be extended C0 0 to t = 0.

Finally 77! ° # o γ* is a curve which defines the ordering a and can be

extended C 0 0 to / = 0.

The second part comes from the first one, the above remark 3.0, and

the fact that the set of orderings with maximum rank are dense (see [B],

8.4.9).
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