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Let x be a number of the unit interval. Then x may be written in a
unique way as a continued fraction

x = 1/(“1(7‘) + 81()C)/("‘2(") +er(x) /(@3 (x) + -+ )))
where ¢, € {-1,1}, a,, > 1, a, = 1 (mod 2) and a,, + ¢, > 1. Using the
ergodic behaviour of a certain homogeneous random system with com-
plete connections we solve a variant of Gauss-Kuzmin problem for the
above expansion.

1. Introduction. We define continued fraction with odd partial quo-
tients as follows. Let us partition the unit interval into

1 1 1 1
(ﬁ,‘m}, k= 1,2,..., and (Zk—— 1’ 2k—2]’ k= 2,3,...
and define the transformation 7 [0, 1] — [0, 1] by

1
Tx = e(; -2k - 1))
where
. 1 1
e=1 ifxe (ﬁ’Z—kj]’
and
. 1 1
e= -1 1fx€(2k—1’2k—2]'
We arrive at
x = 1
2k — 1+ e(Tx)
and therefore the map T generates a continued fraction
1

(1.1) X =

a(x) + &(x)/(@y(x) + &3(x)/(as(x) + -+ ))
1, g(x), &,(x),...

a(x), ay(x), ay(x),...
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where ¢, € {-1,1}, @, > 1, a, = 1 (mod 2) and a, + ¢, > 1. The expres-
sion (1.1) is called the continued fraction with odd partial quotients expan-
sion of x.
Let us denote
= a, +[fx*+11 ] n=1,2,....
The purpose of this paper is to find the limit
lim p(r,>1t)=1

n— o0
for a given nonatomic measure p on the o-algebra of the Borel sets of
[0,1] and to estimate the error u(r, > ¢) — /. This is the variant of
Gauss-Kuzmin problem for the continued fraction with odd partial quo-
tients expansion. For solving of the above problem we shall use the
approach of the random system with complete connections.

NOTATION.
N* ={1,2,3,...},
N={0,1,2,...},
R = the set of real numbers,
[a
IA

I

] = the integral part of a € R,
= the characteristic function of A4,
G=((5+1),2
%y, = the o-algebra of the Borel sets of [0, 1],
P(X) = the power set of X,
(X, Z") = the n-fold product measurable space of (X, Z').

2. Preliminaries.

DEFINITION 2.1. A quadruple {(W,#"), (X, %),u, P} is named a
homogeneous random system with complete connections (RSCC) if
(1) (W, #") and ( X, &) are arbitrary measurable spaces;
(i) u: WX X - Wisa(#®Z,# )-measurable function;
(iii) P is a transition probability function from (W, #") to (X, ).

Next, denote the element (x,, ..., x,) € X" by x.

DErFINITION 2.2. The functions u™: W X X® - W, n € N*, are

defined as follows:
u D (w, x(*D) = u(w, x), ifn=0
’ u(u™(w, x™),x,,,), ifnx=1.

Convention. We shall write wx‘" instead of u”(w, x(™).
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DErFINITION 2.3. The transition probability functions P,

', r € N*, are
defined by

P(w,4), ifr=1
P(w, 4)=] L P(w,x)) ¥ P(wx,x;)--+ L Plwx""Dx, )1 (x"),
x €X x€X x, €X

ifr>1,

foranywe W, re N*and 4 € ¥".

DEFINITION 2.4. Assume that X° X 4 = 4. Then we define
Pr(w,A)=P,,, (w, X""1 X A4),

foranywe W, n,re N*and 4 € Z".

THEOREM 2.5. ( Existence theorem.) Let {(W, %), (X, %), u, P} be a
homogeneous RSCC and let wy € W. Then there exist a probability space
(R, A, P, ) and two chains of random variables (§,),cn+ and (§),en
defined on S with values in X and W respectively, such that

@)@ Py((£rs- s Ensyo1) € A) = Py, A),

(0) Pl sms s Ensmsrr) € AIEM) = PP(wet™, 4), P, -ae.

(C) Pwo((gn—i—m’ tet §n+m+r—1) € Alg(n)a g'(n)) = Prm(gn’ A)’ Pwo'a'e'
for any n, m, r € N* and A € &', where £, ¢\ denote the random
vectors (&,,...,&,) and (§,,...,§,) respectively.

(1) ({,) ey is a homogeneous Markov chain with initial distribution
concentrated in w, and with the transition operator U defined by

(2.1) Uf(w) = X P(w,x)f(wx),

xeX
for any f real W-measurable and bounded function.
This theorem is proved by losifescu [2].
REMARK. (i) Letting m = r = 1 in (i)b we obtain
P, (£, € A|EM) = P(wg™, 4),  P,-ae.
that is the conditioned distribution of &, ; by the past depends actually

by this, through «‘™. This fact justifies the name of chain of infinite order
or chain with complete connections used for (£,), < n-
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(i) On account of (2.1) we have
(2.2) Uf(w)= Y P,(w,x")f(wx"), neN*
xtmex"

for any f real #“measurable and bounded function.
(iii) The transition probability function of the Markov chain ({,), < v
is
Q(w,4) = Y. P(w,x)1,(wx)=P(w,4,),
xeX
where 4, = {x € X: wx € 4}, w € W. It follows that the transition
probability after n paths of the Markov chain (§,),, < » 18

0"(w,A) = P,(w, A),

where A = {x": wx™ € 4}.

2.6. Let Q, be the transition probability function defined by
Q,(w,4)=nt Y 0w, 4)
k=1

and let U, be the Markov operator associated with Q,. Next, denote
L(W) the space of all real Lipschitz functions defined on W and assume
that (L(W), || - ||) is a Banach space with respect to a norm || - ||.

| (1) If there exists a linear bounded operator U* from L(W) to
L (W) such that

lim ||U,f— U*f]|=0,

for any f € L(W) with || f]| = 1, we say U ordered.
(i1) If
lim |U"f — U*f||=0,

forany f € L(W) with || f]| = 1, we say U aperiodic.

(iii) If U is ordered and U*(L(W)) is one-dimensional space, it is
named ergodic with respect to L(W).

(iv) If U is ergodic and aperiodic, it is named regular with respect to
L (W) and the corresponding Markov chain has the same name.

DEFINITION 2.7. If {(W,#"), (X, %), u, P} is a RSCC which satisfies
the properties
(i) (W, d) is a metric separable space;
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(ii) r; < oo, where

1y (k) 3174 ()
(w'x ) w”x ™)

d
re= sup Y P(w,x®)

’ 1” ? k € N*’
w Fw’” Xk d(W ’w )
(iii) R, < oo, where
R1=Sup sup IP(W’A)jP,(,WaA)|’
AEX w+w" d(W » W )
(iv) there exists k € N* such that r, <1, it is named RSCC with
contraction.

This definition is due to M. F. Norman [3].

THEOREM 2.8. Let (W,d) be a compact space and {(W,#"),
(X, Z),u, P} bea RSCC with contraction.

The Markov chain associated to the RSCC is regular, if and only if,
there exists a point w € W such that

lim d(s,(#),w) =0,

n— 00

for any w € W, where o,(w) = supp Q"(w, ) (suppp denotes the support
of the measure ).

LEMMA 2.9. We have
Um+n(w) = U O'n(W/),
w €a,(w)

for any m, n € N, w € W (the line designates the topological aderence).
Theorem 2.8 and Lemma 2.9 are due to Iosifescu [1].

DEeFINITION 2.10. Let {((W,#7),(X, Z)u, P} be a RSCC. The RSCC
is called uniformly ergodic if for any » € N* there exists a probability P>
on 4" such thatlime, = 0, as n — 00, where
e,= sup |P"(w,A4)—P>(4)].

n
we W, rc N*
Aex”

THEOREM 2.11. Let (W, d) be a compact space. If the RSCC {(W,#"),
(X, &), u, P} with contraction has regular associated Markov chain, then it
is uniform ergodic.

This result one can find in [1].
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3. The Gauss-Kuzmin type equation. Let p be a nonatomic measure on
%) and define

E(w)=F,(w,p)=p(rly<w), nenNwel0,1].
Clearly Fy(w) = ([0, ).

PROPOSITION 3.2. (The Gauss-Kuzmin type equation) F,, n € N, satisfy
the relation

Fam= % o5

(k.€)
k=1 (mod 2)
le|=1, k+e>1

%) -Fn(k_:w)), we [0.1].

Proof. We start from the relation

_ n+1
rn+l - an+1 + rn+2
Thus
Ez+1(w) = :“("nllz <SW, €, T 1) + N(’nlll <W, €, = _1)
= X wllk+w)yT<nli <k
k=1(mod?2)
O <t < (- w) )
k=1 (mod?2)
k+1
1 1
- L dalz) sl w )

and this completes the proof.

Further, suppose that Fj exists and it is bounded (p has bounded
density). By induction we obtain that F, exists and it is bounded too for
any n € N*. Deriving the Gauss-Kuzmin type equation we arrive at

’ w) = 1 ’ 1
(31) E7+1( ) (:L?E) (k + EW)2 "(k + EW).

Let us denote for p(w)=(G—-14+w) ' =(-G—-1+w), we
[0,1]and n € N

fi(w) = Ei(w)/p(w).
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Then (3.1) becomes

fan(w) = (G* ~(1 - w)))
1

1
g (Z.:e) ((G = V)(k + &w) + D((G + 1)(k + ew) — 1)f"(k + sw)'

Now, we prove

PROPOSITION 3.3. The function

_ G*-(1—w)’
P(w,(k,e)) = (G = 1)(k + ew) + 1)((G + 1)(k + ew) — 1)

defines a transition probability function from ([0,1], %;)) to (X, P(X))
where

X={(k,e): k=1, k=1(mod2), le|=1, k +e> 1}.

Proof. We must verify that

Y, P(w,(k,e)) =1.

(k&)
Indeed, noting that (G — 1) = G and (G + 1)™! = -G + 2, we have
Z G2 _(1 - W)2
ey ((G=1)(k +ew) + 1)((G + 1)(k + ew) — 1)
_GP-(1-w)’ 5 1

1
* _,Z (k—w+G)(k——w+G—w))

G2 —(1-w) 5 ( 1 _ 1 )
- 2G fm k—-2+w+G k+w+G

1 1
> (k—-2—~w+G_k—w+G))

g

G*—(1-w) 1 1 B
- 2G (G—(l—w)+G+(1—w))—1

that is the desired result.
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Now, we can define a random system with complete connections as
follows.

(3.2) (W, #),(X,%),u, P}
where
w=1[0,1, =4,
{(k,e): k>1, k=1(mod2), |e]=1, k + &> 1},

X ={(
Z=2(X), ulw,(k,e)= k +1£W’

G2—(1-w)’
(G=1)(k+ew)+ DG+ 1)(k+ew)—1)"

P(w,(k,¢)) =

4. The ergodic behaviour of the RSCC. In this section we study the
ergodic behaviour of RSCC (3.2) in order to solve a Gauss-Kuzmin type
theorem.

In what follows we shall introduce the norm || - ||, defined by

|f(w) = f(w")]

W”|

[ fll= sup |f(w)|+ sup

’
wew wEw"” IW -

Then (L(W),|| - || ) is a Banach algebra.

, fe L(w).

ProPOSITION 4.1. RSCC (3.2) is a RSCC with contraction and its
associated Markov operator U is regular with respect to L(W).
Proof. We have
dP 2(1 = w)((G = 1)(x +ew) + D)((G + 1)(x + ew) — 1)
dw (G = 1)(k + ew) + 1(G + Dk + ew) — 1)
2¢(G2 — (1 — w)’)((G* = 1)(x + ew) + 1)
T (G = D)(k + ew) + 1((G + 1)(k + ew) — 1)

du _ &
dw (k + sw)z.
Therefore
d
sup —P(w,(x,¢g))]| < o0,
o A aw (w,(x,¢))
d ' 1

sup |—u(w,(x,¢8))| < ———, k=3,5,...
weIzV dw ( ( )) (x _ 1)2
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It follows that R, < oo and r; <1, that is, (3.2) is a SALC with
contraction.

To prove the regularity of U with respect to L(W), define the
recurrence relation w,,, = (w, + 1)}, n € N, with w, = w. Clearly w,
€ o(w,). Then using Lemma 2.9 and by induction we obtain w, € ¢,(w),
n € N*. Because w, tends to G — 1 as n — oo, for every w € [0,1], then

[o,(w),G —1|<|w,— G+ 1|0

as n — oo. The regularity of U with respect to L(W) follows from
Theorem 2.8. and the proof is completed.

Now, by virtue of Theorem 2.11, RSCC (3.2) is uniformly ergodic.
Moreover, Theorem 2.1.57 of losifescu-Theodorescu [2], implies that
Q"(-, ) converges uniformly to a probability Q0 and there exist two
positive constants ¢ < 1 and c¢ such that

(4.1) 1U"f = U*flle < cq"

for all n € N*, f € L(W), where

(4.2) Uef = [ f(0)Q*(dw).

Further, by virtue of Lemma 2.1.58 of Iosifescu-Theodorescu [2], U has
no eigenvalues of modulus 1 other than 1. Then, taking into account
Proposition 2.1.6 of [2] the adjoint of the operator U with the transition
probability function Q has the only eigenvector the measure 0, that is

(4.3) f " 0(w, B)Q"(dw) = 0*(B),

for all the Borel sets B of [0, 1].
Generally, the form of Q* cannot be identified but in our case this is
possible as we shall show below

PROPOSITION 4.2. The probability Q* has the density

%) = 55 6=T ~ 7=
piw w+G-1 w—-G-1’

w e [0,1]

and the normalizing constant 1 /(3 log G).
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Proof. By virtue of uniqueness of Q* we have to prove the equality
(4.3) where

Q(w, B) = Y. P(w,(x,¢)), we [0,1], B B o.-
(x,8)€X
(x+ew)leB

Since the intervals [0, u] C [0,1] generate %, ;;, it suffices to verify the

equality (4.3) only for B = [0, u], 0 < u < 1. First, we consider that [u~!]
is even. Then

[ " 0(w, [0, u))p(w) dw

( S P+ ¥ <w,<k,—1>>)p<w>dw

k=13,... k=35,...
k>{ut—w] k>[u'1]
zfl G*—(1-w)’
o 2(G*-1)
il 1 1
Xkﬂngk—2+w+G_k+w+G)MwMW

1T+ [ut]—ut G2 ”"(1 - W)2
+£ 26

X

0 1 1
2 (k—2+w+G_k+w+G%“0W
k=[u"]+1

+f1 G2 —(1—w)’

+u ] —ut 26

X

x 1 1
; (k—2—w+G—k—w+G%“0W
k=[u"']+3

= log

G+[u'] G+[u']-1 G+u?
G +]|

ull -1 G+u'-2 G+[u]

(G+1)(G—1+u)
(G-1)(G+1—u)

= log =f0up(w)dw.
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Analogously if [#7'] is odd we have

fol Q(w, [0, u))p(w) dw

_ fu“~[u“] G —(1-w) p(w)
0 2G [u ] +w+ G
—(1-w)’ p(w)
+ d
f—l—[u 2G (u-2+w+G "

L G* - (1—W) p(w)
+f .[u“I]—erG
u‘1+G.[u“1]+G—1_ [u'] +G
[u‘1]+G ult+G-1 [u*1]+G—l

B (G+1)(G—-T1+u) v
=g e TG 1) —fo p(w) dw

dw

= log

5. The Gauss-Kuzmin type theorem. Now, we may determine where
w(r, > t) tends as n — oo and give the rate of this convergence.

PROPOSITION 5.1. (The solution of Gauss-Kuzmin type problem.) If the
density Fj of w is a Riemann integrable function, then

r>1.

. 1 (G + 1)(+(G — 1) +1)
Jim (7> 1) = 35556 0 G T (G 1) = 1)

If the density Fj of p is a Lipschitz function, then there exist two
positive constants ¢ and q < 1 such that forallt > 1, n € N*

(G+1)(t(G—-1)+1)
(G-1)(t(G+1)—1)

1 "
plr,>1)= 3logG(1 + 0q")log
where § = 0(p, n,t) with || < c.

Proof. Let F; be a Lipschitz function. Then f, € L(W) and by virtue
of (4.2)

Uty = [ fol) @) = 51 [ EOw) dv = 370

3logG "

According to (4.1) there exist two constants ¢ and ¢ < 1 such that
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Unfo = Uwfo + Tnfo’ ne N*’

with |77/, < cq".
Further, consider C[0, 1] the metric space of real continuous functions

defined on [0, 1] with the norm |- | = sup| - |. Since L([0,1]) is a dense
subset of C([0,1]) we have
(5.1) lim |T"f,] =0

for f, € C([0,1]). Therefore (5.1) is valid for measurable f, which is
Q>-almost surely continuous, that is for Riemann integrable f,. Thus

lim p(r, > t) = lim Fn—1(%)

n— o0 n— oo

lim [ U Yy(u)p(u)aw

n—oo YQ

1 1/t
" 3logG j(; plw) dw

and the desired result follows.
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