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One of the main results of this paper implies that a locally compact
group G is amenable if and only ii whenever X is a weak*-closed left
translation invariant complemented subspace of L^iG), X is the range
of a projection on L^iG) commuting with left translations. We also
prove that if G is a locally compact group and M is an invariant
W^-subalgebra of the von Neumann algebra VN(G) generated by the
left translation operators lg, g e G, on L2(G), and Σ(M) « {g e G;
ίg e M} is a normal subgroup of G, then M is the range of a projection
on VN(G) commuting with the action of the Fourier algebra A(G) on

l Introduction. Let G be a locally compact group and L^iG) be
the algebra of essentially bounded measurable complex-valued functions
on G with pointwise operations and essential sup norm. Let X be a
weak*-closed left translation invariant subspace of L^G). Then X is
invaήantly complemented in L^G) if X admits a left translation invariant
closed complement, or equivalently, X is the range of a continuous
projection on L^G) commuting with left translations.

H. Rosenthal proved in [13] that if G is an abelian locally compact
group and X is a weak*-closed translation invariant complemented
subspace of L^G), then X is invariantly complemented in L^G).
Recently Lau [11, Theorem 3.3] proved that a locally compact group G is
left amenable if and only if every left translation invariant weak*-closed
subalgebra of L^iG) which is closed under conjugation is invariantly
complemented. Note that if T is the circle group, then the Hardy space
H^ is a weak*-closed translation invariant subalgebra of L^iT) and not
(invariantly) complemented (see [15] and Corollary 4),

In [20, Lemma 4], Y. Takahashi proved that if G is a compact group,
then any weak*-closed complemented left translation invariant subspace
of L^{G) is invariantly complemented. However, there is a gap in
Takahashi's adaptation of RosenthaΓs argument (see Zentralblatt fur
Mathematik 1982: 483.43002). It should be observed that RosenthaΓs
original argument in [13, Theorem 1.1] is valid only for locally compact
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groups G which is amenable as discrete (for example when G is solvable).
Indeed it follows from [21, Theorem 16] that under Martin's Axiom, if P
is a bounded projection of L^G) onto C (which is a weak*-closed and
left translation invariant subspace of L^G)), the functions x ->
(lx-iPlxf,h) = (Plxf,h), where feLJG) and h e LX(G), is in gen-
eral bounded but not measurable even when G is compact.

In §3 of this paper, we generalize RosenthaΓs result to all amenable
locally compact groups (and thus giving a correct proof of Takahashi's
Lemma 4 in [20] for all compact groups). More precisely, our Theorem 1
implies that a locally compact group G is amenable if and only if
whenever X is a weak*-closed translation invariant complemented sub-
space of L^iG), X is invariantly complemented. Furthermore (Corollary
4), if G is compact, then X is even the range of a weak*-weak*
continuous projection which commutes with left translations. Also in this
case, L^G) has a unique left invariant mean (for example when G =
SO(«,R), n > 5) if and only if every bounded projection of L^G) into
L^G) which commutes with left translations is weak*-weak* continuous.

Our proof of Theorem 1 depends heavily on a recent result of Losert
and Rindler [12] on the existence of an asymptotically central unit in
LX(G) of an amenable locally compact group.

Finally in §4 we give a non-commutative analogue of Lau's result [11,
Theorem 3.3]. We prove that (Theorem 4) if M is an invariant W/Γ*-subal-
gebra of the von Neuman algebra VN(G) generated by the left translation
operators {lg; g e G) on L2(G) of a locally compact group G and
Σ(M) = { g £ G ; lg G M] is a normal subgroup of (7, then M is
invariantly complement. However, we do not know if the normality
condition on Σ(M) may be dropped or not unless Σ(M) is compact or
open.

2. Preliminaries. If £ is a Banach space, then E* denotes its
continuous dual. Also if φ e £ * and x e E, then the value of φ at x will
be written as φ(x) or (φ, JC).

Throughout this paper, G denotes a locally compact group with a
fixed left Haar measure. Let C(G) denote the Banach algebra of bounded
continuous complex-valued functions on G with the supremum norm, and
let C0(G) be the closed subspace of C(G) consisting of all functions in
C{G) which vanish at infinity. The Banach spaces Lp(G), 1 < p < oc, are
as defined in [7]. If / is a complex-valued function defined locally almost
everywhere on G, and if a, t e G, then (laf)(t) = f(a'ιt) and {rj)(t) =
f(ta) whenever this is defined. We say that G is amenable if there exists
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m G L^G)* such that m > 0, ||m|| = 1 and m(lj) = m(/) for which
/ G L^G) and α G G (m is called a /e/ί invariant mean). Amenable
locally compact groups include all compact groups and all solvable
groups. However, the free group on two generators is not amenable (see

[4])
For g G G, the corresponding inner automorphism induces a map τg

on L^G) by τg'/(x) = f{gxg~ι). The adjoint map τg on Lλ(G) is given by
τ.φ(x) = φ(g~1xg)Δ(g), where Δ is the Haar modulus function of G.
This can also be written as τgφ = δg*φ*δg-ι9 where δg stands for the
Dirac measure concentrated at g G G (convolution as defined in [7]). A
net { ua) in Lλ(G) is called an approximate unit if lim J|wα * φ — φ j ^ =
limjlφ* ua - ΦHi = 0 for all φ G Lλ{G). The net {wα} is said to be
asymptotically central if limα||Mα||"1||τgi/α — ua\\ = 0 for all g G G. The
following result of Losert and Rindler is the key to the proof of one of our
main results:

LEMMA 1 ([12, Theorem 3]). Let G be an amenable locally compact
group, then Lλ(G) has an asymptotically central approximate unit {ua}
with III/ II < 1.

3. Subspaces of L^G). A left Banach G-module X is a Banach space
X which is left G-module such that

(i) \\s x|| < ||JC|| for all x G X, s G G.

(ii) for all x G X, the map Λ1 -> Λ1 x is continuous from G into X
In this case, we define for each / G I ^ E G ^ G J

(/• s,x) = (f9s - x).

Define also (f-μ,x) = f(f,s x) dμ(s), μ G M(G), feX*9 x G X,
where M ( G ) is the space of (complex, bounded) Radon measures on G.

Then / μ G X*, f-μ=f-s if μ = δs and ( / /x1) μ 2 = / (/xx * μ 2 ) for

A subspace L c J * is called G-inυariant if L s Q L for all ^ G G.

LEMMA 2. Le/ L be a weak*-closed subspace of X*. Then L is

G-invariant if and only ifL-φQ L for each φ G LX(G).

Proof. Suppose that L is G-invariant and φ ̂  Lλ(G), φ > 0 and
UΦUi = 1. Define Φ(/) = ff(t)φ(t)dt, / G C(G). Then Φ is a positive
functional on C(G) with norm one. Hence there exists a net {mft} in
C(G)* such that each ma is a convex combination of point evaluations
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and ma converges to Φ in the weak* topology of C(G)*. If mα =
Σ"=1 λiPSι9 where ps(h) = h(s), h e C(G), ί E ^ a n d / G L, then / ma

= Σ"1λιf 5/ converges to /• φ in the weak*-topology of X*. HenceΣ

Conversely, if L φ c L for each φ G Lλ(G) and 5 G G, let m e
^oo(^)* s u c h ^at m extends /?5 G C(G)* and ||m|| = \\ps\\ = 1. Then
m > 0. Hence there exists a net {φa} c Lλ(G), φa > 0, llΦJh = 1, such
that {φα} converges to m in the weak* topology of L^G)*. Conse-
quently, if / G L, then / φa converges in the weak* topology of X* to

f ' S

A left Banach G-module X is called non-degenerate if the closed
linear span of {g JC; g G G, X G X} is X

THEOREM 1. Lei G be a locally compact group. Then G is amenable if
and only if whenever X is a non-degenerate left Banach G-module and L is a
weak*-closed G-inυariant subspace of X which is complemented in X, then
there exists a projection Q of X* onto L such that Q(f s) = Q(f) s for
alls G (?,/G X*.

Proof. If G is amenable, there exists an asymptotically central ap-
proximate unit {ua} in Lλ(G), \\ua\\ < 1 (Lemma 1). Let m be an
invariant mean on L^G). For each s G G, / G X * , put Pas(f) =

•(««•«,))• (8,-1 •«„). By Lemma 2, Pα?5: X* -> L and | | > β J <
For each fixed α, / G X*, x G X, the function s -> (JC, PΛtS(f)) is

bounded and continuous. Hence we may define the mean Pa of the family

Then Pa: X* -> L (since L is weak*-closed and if x e X is annihilated
by L, then (x, ,?„/> = 0 by Lemma 2), and \\PJ\\ < \\P\\. Finally define
Q(f) = weak* limβPβ(/). Again Q: X* -> L, | |β | | < | |P| |. For / e l ,
/• (««*δ,) e L. Hence (PaJ(f) = f • (ua* ua). Now {wα*Mα} is also
an approximate unit in L^G). Since X is non-degenerate, Cohen's
factorization theorem [8, 32.26] implies that each y in X has the form
φ • x, x e X, φ e LL(G). Hence

(/ «« * "« - /, J> = ( A ("« * u J • (φ x) - φ αc) - 0

i.e. /»„,,(/)=/.
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Now for each t G G

-P{f {ua*8ts))-{8s-,*ua)

+ P{f (ua*δts))-{δUsΓi*δt*ua*δΓ>*δt)

Hence

and this estimate carries over to \\Pa(f- t) — Pa(f) * t\\ by invariance of
m. Since we assume \\δt *ua* δ r i - ua\\ -> 0, we get g ( / t) = Q(f) ί.

The converse follows as in the proof of Theorem 3.3 in [11] by
considering X = Lλ{G) and (s - φ)(t) = ΦO"1/), 5 G G, / G G, φG

). Then if / e ^ ( G ) , (/ *)(/) = /(j/) = (/,

Let Z be a locally compact Hausdorff space. Consider a jointly
continuous action G X Z -+ Z. Assume that Z has a quasi-invariant
measure v. For each s e G, define χ5(i?) = v(s"1E). Then ^ « j^. Hence
there is a locally f-integrable Radon Nikodym derivative (dvjdv) such
that vs = (dvjdv) *>. Also Lλ{Z,v) is a non-degenerate Banach left
G-module (see [5, Lemma 2.3]): s φ = δ5 * φ, s e G, φ G L X ( Z , ^) where
(δ 5*φ)(ξ) = (dvs/dv)(ξ)(s'ιi) defined y-a.e. on Z. Hence Theorem 1
implies:

COROLLARY 1. Let G be a locally compact group. Then G is amenable if
and only if for any locally compact Hausdorff space Z and jointly continuous
action G X Z —> Z such that Z has a quasi-invariant measure, then any
weak*-closed G-inυariant complementedsubspace of LJ^Z, v) is inυariantly
complemented.

REMARK. Theorem 1 also implies Lemma 3.1 of [13] for Lp(G),
1 < p < oo, and Theorem 4.1 of [11].

If H is a closed subgroup of a locally compact group, then there exists
a non-trivial quasi-invariant measure v on the coset space G/H = {xH;
x G G} which is essentially unique. Write L^G/H) = LJ^G/H, v).

COROLLARY 2. Let G be a locally compact group. Then G is amenable if
and only if every weak*-closed complemented invariant subspace of
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H a closed subgroup of G, is the range of a projection on

LJ^G/H) which commutes with translation.

COROLLARY 3. Let G be an amenable locally compact group and X be a

weak*-closed left translation invariant subspace of L^(G). Then X is the

range of a weak*-weak* continuous projection on L^{G) commuting with

left translation if and only ifXΓ\ C0(G) is weak*-dense in X.

Proof. This follows from Corollary 2 and Lemma 5.2 of [11].

COROLLARY 4. Let G be a locally compact group. Then G is compact if

and only if G has the following property.

(*) Whenever I is a weak*-closed complemented left translation

invariant subspace of L^G), there exists a weak*-weak* continuous

projection from L^{G) onto X commuting with left translations.

Proof. If G is compact, property (*) follows from Corollary 2, and

Lemma 2.1, Lemma 5.2 of [11]. Conversely, if (*) holds, then apply the

property to the one-dimensional subspace X = C. It follows that there

exists φ e Lλ(G\ φ > 0, φ(l) = 1 such that Φ(IJ) = φ(f) for all / e

GAn particular, G is compact.

A bounded linear operator T from L^(G) into L^G) is said to

commute with convolution from the left if T(φ*f) = φ*T(f) for all

φ G Lλ(G) and / e L^G). In this case, T also commutes with left

translations i.e. T(lsf) = lsT(f) for all s e G (see [10, Lemma 2]).

LEMMA 3. // T is a weak*-weak* continuous linear operator from

L^G) into L^G) and T commutes with left translations, then T also

commutes with convolutions from the left.

Proof. Let φ e LX{G\ φ > 0 and H*^ = 1. Let φa = Σ ^ λ Λ , be a

net of convex combinations of point measures on G such that ff(t) dφa(t)

converges to jf(t)dφ(t) for each / e C(G). Hence if h e L^G), then

the net

(φa * h, k) = (k * Λ,φa) -> (k * A,φ) = (φ * A, k)

for each k e Lλ(G) (h(t) = h(t'1)). Consequently,

T(φ*h) = lim T(φa*h) = lim φa*T(h) = φ*T(h).
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LEMMA 4 [10]. // G is compact, then any bounded linear operator T

from L^(G) into L^(G) which commutes with convolution from the left is

weak*-weak* continuous.

Proof. This is proved in [10, Theorem 2]1. We give here a different

proof. Indeed if φ e Lλ(G), then φ = φx * φ2, φvφ2 ^ Lλ(G) by Cohen's

factorization theorem. Hence if / e L^G), then

i.e. Γ*(φ) = aλ Θ Γ*(φ2), where Θ is the Arens product defined on the

second conjugate algebra L^(G)* = LX(G)**. Since G is compact, Lλ(G)

is an ideal in L^G)* (see [6]). Hence Γ*(φ) e L^G), i.e. Γ is weak*-

weak* continuous.

PROPOSITION 1. Let G be a compact group. The following are equiva-

lent:

(a) L^G) has a unique left invariant mean.

(b) If E is a finite dimensional G-invariant subspace of L^G)*

(i.e ifE c E for all s ^ G) such that the map s -» /fψ of G into E is

continuous, then E c Lλ(G).

(c) Any bounded (projection) linear operator T from L^G) into

L^G) which commutes with left translations is weak*-weak* continuous.

(d) Any bounded (projection) linear operator T from L^G) into

L^G) which commutes with left translation also commutes with convolution

from the left.

Proof, (a) => (b). Consider a continuous representation π of G on E

defined by π(s)(m) = /*-im, ί E ( ? , m e E. Since E is finite dimen-

sional, there exists an inner product ( ,) on E such that π is unitary. We

may further assume that Ή is irreducible. Let {ψ1 ?..., \pn] be an ortho-

normal basis of E. Write etj(s) = (π(s)\pj, ψ,) for the coefficients of π.

For g e LJG), ψ e L J G ) * , define ψ - g e L J G ) * by (ψ g,/> =

<ψ, g θ , / e L J G ) . Then for any/, g e ^ ( G ) , ψ e ^ ( G ) * , we have

1 The converse to Theorem 2 in [10] was omitted in print. It is stated on page 352.
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Consequently /5*(ψ g) = (/fψ) (/5-ig) Furthermore, observe that

i = Σ ejΊ(s-ι)4,J9 ls-ιelk =

Since m is unitary, E^-ί-x^/iί*) = 5y/. Put φ̂ . = Σf=1ψ, * eik (~ denotes
the complex conjugate). Then

= Σ eμ(s~l)Ψfu(s~ι) ' eik= Σ
tj,ι j

for all 5 E G. By assumption, φ^ G LX(G). Finally

Σ Φ* */* = Σ Ψ, ( Σ */* •*
A: i V k

and φ / e LX(G) whenever φ e L^G), / e LJJS). Hence ψ7

for all / = 1,2,...,«.
(b) => (c). Since G is compact, it follows that T(φ * /) = φ * Γ(/) for

all φ G LX(G), / G C(G). If φ G L X ( G ) such that {/5*φ; 5 G G) belongs
to a finite-dimensional G-invariant subspace of ^ ( G ) * , then the same is
true for Γ*φ. Hence Γ*φ G L X ( G ) by (b). Since elements of this type are
dense in LX(G)9 Γ*(L1(G)) c LX(G) i.e. Γ is weak*-weak* continuous.

That (c) => (d) follows from Lemma 3.
(d) => (a). If L^G) has more than one left invariant mean, then there

exists a left invariant mean m such that m £ Lλ{G). Now define T(f) =
m(f) 1, f^L^G). Then Γ is a projection of L^G) into L J G )
commuting with left translations. But Γ does not commute with convolu-
tion by Lemma 4.

REMARK. AS known (see [3], [15] and [16]) if G is a nondiscrete
compact abelian group (or more generally, G is amenable as discrete),
then L^G) has more than one left invariant mean. However, if n > 5,
and G = SO(#, R), then L^(G) has a unique left invariant mean (see [14]
and [17] for more details).

4. Subspaces of VN(G). Let P(G) be the continuous positive defi-
nite functions on G (see [6]). If H is a closed subgroup of G, let

PH={φt P(G); Φ(g) = 1 for all g e H)

Then PH is a subsemigroup of P(G).

LEMMA 5. If H is a closed normal subgroup of G, g £ //,

Φ ^ PH such that φ(g) = 0.
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Proof. Consider the quotient group G/H and let ψ G P(G/H) such
that ψ(gH) = 0 and ψ(#) = 1. Define φ = ψ ° 77, where 77 is the canoni-
cal mapping of G onto G/H. Then φ G P(G), φ(h) = 1, for all A G Jϊ
andφ(g) = 0(see[2,p.l99]).

Let VN(G) denote the von Neumann algebra generated by the left
translation operators /g, g G G, on L2(G). Then the predual of VN(G)
may be identified with A(G), a subalgebra of C0(G) with pointwise
multiplication, consisting of all functions φ of the form φ(g) =
I h(g'ιt)k(t)dt, h,k G L2(G). Furthermore, ̂ 4(G) with the predual norm
is a semi-simple commutative Banach algebra and a closed two sided ideal
of B(G), the linear span of P(G). There is a natural action of A(G) on
VN(G) defined by (φ x,ψ) = (x,Φψ), x G VN(G). When G is com-
mutative, then A(G) and VN(G) are isometrically isomorphic to Lτ(G)
and L ^ G ) respectively (where G is the dual group of G) and the action
of A(G) on VN(G) corresponds to convolution of functions in LX(G) and
Loo(G). (see [2] for more details.)

A subspace M of VN(G) is called invariant if φ x ^ M for all
φ G v4(G), x G M. Define

If Λf is an invariant PF*-subalgebra of VN(G), then Σ(M) = // is a
non-empty closed subgroup of G and M = Nff9 the ultraweak closure of
the linear span of [lg\ g^H) in VN(G) (see [18, Theorems 6 and 8]).

LEMMA 6. Let M be an invariant W*-subalgebra of VN(G)
Σ(M) = H is a normal subgroup of G. Then M = {x G VN(G); φ x = x
for all φ G P^}.

Proo/. Let Â  = {x e VN(G); φ x = x for all φ G PH). Then Λ̂  is
weak*-closed, invariant and N ^ NH = M (since Φ - lg = Φ(g)lg= lg for
φ G PH9 g G //). Now if g G G and /g G TV, then φ(g) = 1 for all
φ G PJJ. In particular Σ(M) cz H by Lemma 4. Hence if x G iV, then
supp(x) c Σ(iV) c i/ by Proposition 4.4 [2]. Consequently, x ^ NH by
Theorem 3 [19].

The following implies one direction of Theorem 3.3 [11] when G is
abelian:

THEOREM 2. Let M be an invariant W*-subalgebra of VN(G) such
that Σ(M) = H is a normal subgroup of G. Then there exists a continuous
projection P of VN(G) onto M such that P(φ x) = φ P(x) for all
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φ e A(G) and x e VN(G). In particular, M admits a closed complement

which is also invariant.

Proof. By Lemma 6, M = {x e VN(G); φ x = x for all φ e P^}.

For each x G VN(G), let Kx denote the weak *-closed convex hull of

{φ x; φ G Λ(G)}> where PX(G) = { φ e P(G); φ(e) = 1}, and <φ

x, ψ> = (x, φψ), ψ G Λ(G). Then Kx is a weak*-closed subset of VN(G).

For each ψ G P^, let Γψ: Kx -> ^ be defined by Γψ( j ) = ψ y9 y G iΓx.

Then Γψ is weak*-weak* continuous and affine. Since PH is a commuta-

tive semigroup, an application of the Markov-Kakutani fixed point theo-

rem ([1, p. 456]) shows that M Π Kx is nonempty for each x G VN(G).

By Theorem 2.1 in [9], there exists a projection P from VN(G) onto M

and P commutes with any weak*-weak* continuous operator from M

into M which commutes with {Γψ; ψ G PH). Hence P(φ - x) = φ - P(x)

for each φ G ^ ( G ) , X G VN(G).

REMARK. Lemma 5 (hence Lemma 6 and Theorem 2) holds for any

compact subgroup (see Eymard [2, Lemma 3.2]) and any open subgroup

H of G (see Hewitt and Ross [8, 32.43]) without normality.
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